PHY 712 Electrodynamics
11-11:50 AM  MWF in Olin 103

Notes for Lecture 10:

Reading Chapter 4 in JDJ --
Dipolar fields and dielectrics

A. Electric field due to a dipole
B. Electric polarization P

C. Electric displacement D and
dielectric functions
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Course schedule for Spring 2022

(Preliminary schedule -- subject to frequent adjustment.)

Lecture date JDJ Reading Topic HW| Due date

1 |Mon: 01/10/2022 |Chap. 1 & Appen. Introduction, units and Poisson equation #1 101/14/2022
2 Wed: 01/12/2022 |Chap. 1 Electrostatic energy calculations #2 (01/19/2022
3 |Fri: 01/14/2022  |Chap. 1 Electrostatic energy calculations #3 (01/21/2022

Mon: 01/17/2022 MLK Holiday -- no class
4 Wed: 01/19/2022 |Chap.1 & 2 Electrostatic potentials and fields #4 101/24/2022
9 |Fri: 01/21/2022 |Chap.1-3 Poisson's equation in 2 and 3 dimensions #5 (01/26/2022
6 |Mon:01/24/2022 |Chap.1-3 Brief introduction to numerical methods #6 |01/28/2022
7 |Wed: 01/26/2022 |(Chap.2 & 3 Image charge constructions #7 01/31/2022
8 |Fri: 01/28/2022 |Chap.2 & 3 Cylindrical and spherical geometries #8 102/02/2022
9 |Mon: 01/31/2022 |Chap.3 &4 Spherical geometry and multipole moments  [#9 |02/04/2022

Wed: 02/02/2022 |No class Fire caution

Fri: 02/04/2022  |No class Fire caution
10 |Mon: 02/07/2022 |Chap. 4 Dipoles and Dielectrics #10(02/09/2022
11 |Wed: 02/09/2022 |Chap. 4 Dipoles and Dielectrics

02/07/2022
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PHY 712 - Assignment #10

February 2, 2022
Continue reading Chapter 4 in Jackson .

1. Find the monopole, dipole, and quadrupole moments of the charge distribution shown in the figure in problem
4.1(b) of Jackson. You can use either the Cartesian or spherical polar forms for the moments as you prefer.
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Colloquium schedule and other important events —
On Friday 2/11/2022 -- http://users.wfu.edu/shapiro/WIS.html

Celebration of the International Day of Women and Girls in Science

In celebration of the International Day of Women and Girls in Science

i afecea’y Feb 11th, women-and-girls-in-science-day , we will be screening a film Picture a
.&";L‘;; & Scientist https://www.pictureascientist.com/ with a discussion and reception (with food)
— = afterwards.

D | CTU Q E A The film will be screened at 4 PM in Olin Physical Lab on Friday February 11, 2022. Small

SCI E N T IST group discussions and a reception on the rooftop (penthouse) of the Olin Physical
Laboratory will follow (around 5:30 to 6 PM)

Students from all academic disciplines are welcome. All gender identities and
expressions are welcome and encouraged to attend.

PICTURE A SCIENTIST is a feature-length documentary film chronicling the groundswell of
researchers who are writing a new chapter for women scientists. A biologist, a chemist and a
geologist lead viewers on a journey deep into their own experiences in the sciences, overcoming
brutal harassment, institutional discrimination, and years of subtle slights to revolutionize the
culture of science. From cramped laboratories to spectacular field stations, we also encounter
scientific luminaries who provide new perspectives on how to make science itself more diverse,
equitable, and open to all.

The event is organized and sponsored by the Departments of Biology, Chemistry,
Computer Science, Engineering, Mathematics, Statistics, Physics and Wake Forest's
yw IFE36 BTN | s s 6 O CLLGEPE | 1 e 260 SN w0 6 - O | TG Center for Functional Materials as well as the Wake Forest undergraduate Women in STEM group.
b e
ome S ) @ WM e e
pieturesseiantish.com

L] Ty s

Register Here
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Changes to colloquium schedule --

Thurs. Feb. 3, 2022 (rescheduled for Feb. 23)

Thurs. Feb. 10, 2022 — Dr. Delilah Gates, Princeton University — “What We can Learn from Light: Observational
Signatures of Rotating Black Holes” (host: D. Kim-Shapiro)

Thurs. Feb. 17,2022 — Mr. Andrew Barelli, WFU physics alumn, — (host: J. Macosko)

Wed. Feb. 23, 2022 (Please note different day of the week) — Professor Wendu Ding, Chemistry Department WFU —
“Plasmon-Coupled Resonance Energy Transfer” (host: S. Winter)

Thurs. Feb. 24, 2022 (Please note this is just one day after the previous colloguium) — Dr. Ken Cousins, Research
Principal at Earth Economics — “An Ecological Economics: Concepts, Application, and Potential” — (hosts: J. Macosko,
A. Cottrell, from Economics)

Thurs. Mar. 3, 2022 — Dr. Jess Mclver, University of British Columbia — “What can we learn from gravitational waves?”
—(host: G. Cook)
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Review: General results for a multipole analysis of the
electrostatic potential due to an isolated charge distribution:

General form of electrostatic potential with boundary value ®(» — o) =0

for confined charge density p(r):

J‘d3rv p(l")

(I)(r): |r—r'|

4re,

| Jd%'p(r')[z;’jl 00 (029))

dre, .

Suppose that p Z sz

o(r) =Ly I/lm(e,go)(%jor'z”dr'pl( Ver [ drp, (- )j

Ey 2 +1

1 1 | ,
For r — o0 CD(r):g Z2l+1Ylm(a¢)rl“ J-O #1240 g, sz(’”)
0 \ J

|

QIm



Comment --

Acts like a projection

o (r) - jaﬁr' p(r') operator
47e, |r—r'
( 4r 1!
"4z, jd3r'p ) lzzz+1 T (00
Suppose that p(r Z P ()Y, (0',9')
1 1 1 : + ! ! > 1= ' '
= o)=Ly L lm(@gﬂ)( e () [ dr (o )j
() Im

Why? -- Recall that
facr, @)1, 0:0) =0

[A,mu
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The the multipole analysis has the following general behavior
for r=>infinity:

For r outside the extent of p(

a(r) = 00Nty 0.0)0(0)

4re, “m 21+1

1 4 q, Y, 0,0 _ [ 24 g '
e IZ 2l+11 lr(lﬂ ) qim_.[orz dr'p, (1)
0 Im

In terms of Cartesian expansion ;
1 (¢ p r

47[30
Here q, p;, and Q; are linearly proportional to the g,
multipole values.




The multipole analysis also can be used to analyze the
the electrostatic fields for r>0 as needed in the following
example involving a very localized charge density p(r) in
a electrostatic field ®(r) (such as a nucleus in the field
produced by electrons in an atom).

charge density

within nucleus electrostatic potential

: due to electrons near
W= _[d rp(e)d(r)  the nucleus.

. jd3rp(r)(<1>(0)+r Vol LO% o)+
=61<D( ) ZQU ( )

or, 8r




The following results were presented on Monday and are
summarized here for a more complicated charge distribution:

2
,o(r): c 3££j "sin* @
a

64 ma

Note that : 1/4—”1/20(6’,@:30052 9—1 :l—ésin2 0
5 2 2 2

2 2 |4rx 2 |4r 2 |4r
sin 9_5_5\/? 20(‘9 ¢) 3\/TY00(69¢)_§\/? 20(‘9 ¢)

:p(l’) poo( ) 00(‘99¢)+pzo( ) 20(‘99¢)
D(r) = @y (7)Y (0, 8)+ @ (1)1 (6. 4)

47[ 12+ OO" ' '
O s [ e [ ()

_ (_j e—r/a p (7"):—2 472- q (szer/a
3 647za 20 3\ 5 647’ L a




Writing out the details of the potential from evaluating integrals
3r 1’ -
\/—q 1—e% 1+
4re, 4a 4a 24az3
2 2 3 4 5
D, (r)=— 6 ‘/47[ el A [ (L IS L I M . A
dre, NV S r a 2a° 6a” 24a° 144a

For r — oo; 1n terms for Legendre polynomials:

(r) > [1—6113 (cos@)j Y, (6,4)=

dre, v

CI)00( )

21 +1

4

B(cosb)

For r — 0;1n terms for Legendre polynomials :

q 1 r’
i - P,(cos @
(r)_)47u90[4a 1204’ : (cos )]




More details continued --

For r — 0;1n terms for Legendre polynomials :

o) > 1 [1 L f;<cose>j

4re,\ d4a 1204’

Implications for electric quadrupole interaction :

W — Z @Zq) ) .. P, (cosf)=2cos’ 0 -

] or, ('31/

For r — 0;1n terms of Cartesian coordinates

2 2 2
(I)(l‘)—) q (1 _22 — X 3—)/ j

e, \ 4a 240a
o’®(0) _*@(0) _ 18°®(0) ¢ 1

ot o 2 oz’ 4re, 120a’




Example of multipole distribution continued --

Electric quadrupole interaction:

¥ 520 arar)—l(Qm 20 10,220 azq)(o)J

7 6 o’ oF 7o
. le: B B 1 B 1
For symmetric nuclei, Q_=Qq = TS % =TS
~ — qz Q
4re, 240a°

Here g stands for the elementary charge
q=e=1.602176634x10-19C



Summary -- Notion of multipole moment:

In the spherical harmonic representation - -

define the moment ¢, of the (confined) charge distribution p(r):
J.d?) ' vl ),0 (r )

In the Cartesian representation - -

define the monopole moment ¢ :
= [d'r'p(r')
define the dipole moment p :
p= [d'r'v p(r')

define the quadrupole moment components Q. (i,j — x,y,2):

O, = jd3r' (3’”'1- r'—-r?s, )p(r')



General form of electrostatic potential in terms of
multipole moments:

For r outside the extent of p(r):

(D(r) _ 1 Z A7 Kmr(l‘%ﬁﬂ)qd3 Ly (9',@'),0(1"))

dre, T 20 +1

1 4 q, Y, \0,¢
Z [ [ ( )

CdAme, S 2041 M

In terms of Cartesian expansion ;

(r) = 1 [q P ) ]

4re,



Focus on dipolar contributions:

For r outside the extent of p(r):

Electrostatic potential:

o(r) ——! (P;"j

dre, \ 1

Electrostatic field:

5

B(r)=—! [31‘ (p-r)—rzp_437zp53(r)j

- dre, r
L)

Poorly defined for » — 0

*

Correct value forr = 0
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“Justification” of surprising d-function term in dipole electric
field -- Assuming dipole is located at r=0, we need to need to
evaluate the electrostatic field near r=0:

We will use the approximation:

E(r ~ 0) ~ ( [ E(r)d3r)53 ().
sphere
First we note that:

3., p2 ~
LSRE(r)d r=-R LRcD(r)rdsz.



Some details -- amplifying discussion in JDJ:
j _EMdr=-R*|  ®(r)idQ.
This result follows from the divergence theorem:

j V- Vd'r = V dA.

surface

In our case, this theorem can be used for each cartesian coordinate

if we choose V = xd(r) for the x component, etc.

| vowdr=3] v-Go)d'r+3| V-GO)dr+z[ V-@0)dr,
which 1s equal to:

J,_ PORAQ(G-BR+ (DI +(E-D2)= | OERAOF.

Therefore --

34 — 3. p2 n
S .



More details

3., p2 ~
LSRE(r)d r=-R jr:Rd)(r)rdQ.

Now, we notice that the electrostatic potential can be determined

from the charge density p(r) according to:
Z

()= ——[arr L L5 37 P )T )

dre, \r—r | 4re, 5 20+1

We also note that the unit vector can be written in terms of spherical harmonic functions:
(sin(6@) cos(@)X + sin() sin(@)y + cos(8)2

E (Y () "Ey +Y,(F) "‘j{y " Ymmij

CD(r)rdQ—— d3r'p(r)r— Ty @Y Ly ¢y XY Ly 6z
2 11 10

—
Il
N

r
——[dr' p(r) =+
3801 P

>



More details continued --

When we evaluate the integral over solid angle €2, only the

[ =1 terms contribute, and the result of the integration reduces to:

1 4zR’ Y
r p(r
drre, 3 j [ ) v

~R’ j _ D(r)EdQ = -

The choice of 7. and 7, 1s a choice between the integration variables
r' and the sphere radius R. If the sphere encloses the charge distribution,
p"), thenr. =r' and . = R so that the result 1s:
1 4zR* 1 o
d’r p(r )rt'=———.
dre, 3 R’ j pr) 3¢&,
Otherwise, 1f the charge distribution p(r') lies outside of the sphere, then

P

~R’ j _ D(r)EdQ = -

r.=Randr, =r'and the result is:

2 ' 3
1 4xR RJ‘d3r' p(r)f'z47rR

2 - —_
R L:R(I)(r)rdﬂ = - .

41e,



In summary --

Electrostatic dipolar field for dipole moment p at r=0:

E(r) = Lsr (p.r)—rzp_4jz'p53(r))

 4re, 7 3



Summary of key argument:

j d’r E(r, +r) = E(1,)

(Mean value theorem for Laplace equation)

r
1 E(r)~— j d’r E(r, +r1)
r<R
X .3 3 P P s r,)
47R° 3¢, 3¢,

Summary:

E(r) =] (31‘ (p-r)-rp _47zp53(r)]

dre, 7’ 3




Coarse grain representation of macroscopic distribution
of dipoles:

Electric polarization P (r) due to collection of dipoles :
P(r)=> pd’(r-r)
Monopole electric charge density p_ (r) ;

P (1)= X" (1)

Electrostatic potential for a single monopole charge ¢

and a single dipole p :
(D(l') = I (g-Fp;rj
dre,\r ¥



Coarse grain representation of macroscopic distribution
of dipoles -- continued:

Electrostatic potential for a single monopole charge g

and a single dipole p :
1 (g pr
d — 1
(r) 47&5‘0(7/ T 7’ j

Electrostatic potential for collections of monopole charges g,

and dipoles p; :
CD(r) _ 1 J‘d3r./0mono(r)+Jd3r.P(r)'(r;r)

4re, r—r| r—r/|
P(r')-(r—r') 1 V'.P(r')
Note: |d’r' =|d’r' P(r')-V' =—|d’r'
j ' r—r] J " B(r) r—r/| -[ r—r/|



Coarse grain representation of macroscopic distribution
of dipoles -- continued:

Electrostatic potential for collections of monopole charges g,

and dipoles p, :

(I)(r) 47e, Ud3 | mO”O jd3 ‘r r‘ j
—v%D(r)=v-E<r>=§O<pm<r>—v-1)(r>>
= V- (&E(r)+P(r)) = £, (r)

Define Displacement field: D(r)=¢,E(r)+P(r)
)=

P (T)

Macroscopic form of Gauss's law: V- D(r



Coarse grain representation of macroscopic distribution
of dipoles -- continued:

Many materials are polarizable and produce a polarization field in the
presence of an electric field with a proportionality constant y . :

P(r)=¢,x.E(r)

D(r)=¢E(r)+P(r)=¢,(1+ 7, )E(r) = ¢E(r)

g represents the dielectric function of the material

Boundary value problems in dielectric materials
FOI 2,101, (1) = 0
V-D(r)=0 and VxE(r)=0
—> At a surface between two dielectrics, in terms of surface normalr :

t-D(r)= continuous = #xE(r)



Boundary value problems in the presence of dielectrics
— example:

For isotropic dielectrics:
D, =D,, ¢k, =¢&k,,
Dlt — D2t

€ &)

Elt = Ezz




Boundary value problems in the presence of dielectrics
— example:

\AAAAL

\
as, E
N\ /6 .

V'D(r):O and VxE(r):O Atr=a: 88®<(r):808d;>(r)
v

Forr<a D(r) = —EVCD(r) or
Forr>a D(r)=-g,VO(r) o0 _(r) _ 0P, (r)
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Boundary value problems in the presence of dielectrics
— example -- continued:

« z Atr=a: ¢ 8CD<(1‘):80 8CD>(1‘)
ZAZr B cosH or or
00 _(r) 00, (r)

i(Br + jPZ(COSQ) o0 o0

=0 For r — o0 CD>(r): —E rcost

/'\
| |

Solution - - only / =1 contributes
B =-FE,

4 =— 3 E, C = &ley—1 O,
2+¢/ g, 2+¢/¢g,




Boundary value problems in the presence of dielectrics
— example -- continued:

CD<(r)=—£ > ]Eorcosé?

2+¢/¢g,

. 3
O (r)=— r- c/& ] a2 E, cos@
2+¢lgy )7

-4 ' | ' ' ' !

0 1 2 3
r/a S—
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