PHY 712 Electrodynamics
11-11:50 AM MWF in Olin 103
Notes for Lecture 23:
Complete reading of Chap. 9 & 10
A. Superposition of radiation

B. Scattered radiation
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Presenter Notes
Presentation Notes
In this lecture, we  will continue to focus on radiation from sources with pure harmonic time dependence with frequency omega, considering effects of superposition of multiple such sources (leading to interference) and also considering (re)radiation due to scattering of electromagnetic waves.



Mon: 03/21/2022 Project presentations |

Wed: 03/23/2022 Project presentations
21 |Fri: 03/25/2022 |Chap. 9 Radiation from localized oscillating sources #18 03/30/2022
22 Mon: 03/28/2022 |Chap. 9 Radiation from oscillating sources
23 Wed: 03/30/2022 |Chap. 9 & 10 Radiation and scattering #19 04/01/2022
24 |Fri: 04/01/2022  |Chap. 11 Special Theory of Relativity

PHY 712 -- Assignment #19

March 30, 2022
Finish reading Chapters 9 and 10 in Jackson .

1. Work problem 9.16(a) in Jackson. Note that you can use an approach similar to that discussed in Section 9.4 of the
textbook, replacing the "center-fed" antenna with the given antenna configuration.
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Presenter Notes
Presentation Notes
The assigned homework deals with radiation from an antenna with a slightly different configuration than covered in the textbook and in the lecture notes.  


PHYSICS

COLLOQUIUM

About half of all diagnosed cancer patients are treated nsing controlled exposures of ionizing radiation.
In general, patients are given radistion delivered in a prescribed nomber of fractionated doses. As such,
praper delivery of radiation therapy requires acourate patient positioning, to millimeters or even sub-
millimeter accuracy. It is essential that positioning to be reproducible for each fraction delivery. This
need for accurate and consistent patient positioning becomes even more important as the complexity or
the fractional radiation dose increases. Conventionally, patient positioning is verified before radiation
delivery, and immobilizmtion devices are used to minimize patient movement after setup. An
improvement on this methodology would be positioning verification performed in real-time, concarrent
with treatment. Recently, growps have been working towards establishing methods for real time
werification of radiation treatment delivery. One specific phenomenon that has boen investigated for this
purpase i Cherenkov light

When highly energetic particles travel through matter, one of the emission products is optical Fight,
through a process known as Cherenkov light emission. Cherenkov light is ohservable on patient skin
during radiation treatment delivery. This type of light emission has been shown to correlate with ionizing
radiation dose delivery in solid tissue, allowing resl-time verification of radiation trestment delivery. We
focused our study of Cherenkow light emission on the feasibility of radiation treatment field verification.
Specifically, Cherenkiv light images were acquired during radiation beam defivery to standard and
anthropomorphic phantoms. Two clinical treatment scenarios were tested: 1) Observation of field
averlaps ar gaps in matched radiation fields and ) Patient positioning shifts during modulated dose

4 PM Olin 101
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Electromagnetic waves from time harmonic sources —
review:

For scalar potential (Lorentz gauge, k = Q)
C

zk|r r'

D(r,w)=D,(r,0)+ jaﬂ '

dre, p(r ’ a))

‘l‘l‘

. 1
For vector potential (Lorentz gauge, k = —)
C

zk|r—r'

n~~/

Alr,0)=A,(r, (0)+Ejd3 r'

3(r', a))

‘l’l‘


Presenter Notes
Presentation Notes
Review of equations that we have been using for the time Fourier transforms of the scalar and vector potentials due to their corresponding Fourier transforms of the charge and current densities.


Consider antenna source (center-fed)
Note — these notes differ from previous formulation d/2 <-> d

Z

~~/

J(r, a)) =7l sin(k(d — ‘z‘))&(x)5(y) for —d <z<d
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Presenter Notes
Presentation Notes
Specifically, consider an antenna.     For convenience, we are using a slightly different notation from the previous lecture as noted at the top of the slide.


S
Consider antenna source -- continued

~

J(r.o)=2sin(k(d-|2]))5(x)5(y) for —d<z<d

for kEa):mz; n=1273...

z
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Presenter Notes
Presentation Notes
The plot indicates how the current varies along the z axis of the antenna for the center-fed configuration.


Consider antenna source -- continued

~

J(r.0)=2sin(k(d-|]))5(x)5(y) for —d<z<d

=2

C

Vector potential from source:

zk‘r r ‘

A(r,0)= Id3 ! -J(r',0)

Forr>>d A(r,a)) ~ o © Id3r'e_ikf'r'j(r',w)

A r
)

'

A(r,a))zi’u‘) ]Idz' ~iktcos O sm(k(d

z


Presenter Notes
Presentation Notes
Evaluation of the vector potential far from the antenna.


o . .
Consider antenna source -- continued

ikr d
Alr,w)~ 220 -y [ dz e sin(k(d - |2]))

dr r 2

M, e {cos(kd cos @)—cos(kd )}

= Z 21 —
4 kr sin” @

In the radiation zone :

ﬁ(r,a))—VxK(r o)~ ikt Z( o)

~~/

E(r,0)~ —zkcrx(rxA (r,®) )

2
ar = 1 rzf'.iR(]:j(r,a))x B*(r,a))): ke rz(
dQd  2u, 2 4

dP _ pyc F{cos(ka’ cosf)— cos(ka’)}
dQ 8z’

K(r,a))(2 —‘f' - K(r,a))r)

sin &


Presenter Notes
Presentation Notes
Some details for evaluating the power per unit solid angle.


.

Consider antenna source -- continued

dP  u,c % cos(kd cos @)—cos(kd)
— . .
dQQ 8z~ | sin &
for kzﬂzﬂ; n=1273...
c d
7_
6 n=
5_
dP /e o n=1
dQ/ 8r* 4__
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I- / \
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6
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Presenter Notes
Presentation Notes
Plot of the power distribution as a function of angle for this case.


Consider antenna source -- continued

" cos(kd cos@)—cos(kd )

sin @
For kd =nr:

n=1 n=2
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Presenter Notes
Presentation Notes
Polar plots of the power distribution.


Radiation from antenna arrays

20 =

~

J(r, )= 2/ sin(k(d —‘z‘))zz;5(x ~(N+1-j)a)(y) for —d<z<d

2N+1

A %

C
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Presenter Notes
Presentation Notes
Now consider the case of several antennas, in this case each antenna is oriented along the z-axis and 2N+1 of them are arranged in a line along the x-axis.


®
Radiation from antenna arrays -- continued

Vector potential from array source :

_ zk|r r’| ikr o
Alr,m)= f;jd3 'z J(r', o)~ Ho © jd3r'e_’k"""J(r',a))

‘r r‘ 4 r

2N+1

j(r,m):i]s1n( ( ‘z‘))25 —(N+1-j)ap(y) for —d<z<d

ikr N d
N ’ ~ 7 IUO € —ikaj sin @ cos ¢ ] d —ikzcos@ _: k d—
A(r,o) Z47z - [jENe j _L ze s1n(( ‘z‘))

sin(L ka(2N +1)sin & cos ¢)
sin(* kasin @ cos @)

—ikajsin @ cos

\'H'Mz
=


Presenter Notes
Presentation Notes
Analyzing the same equations as before, keeping the leading terms for the limit that krinfinity.   Here we see that the x-axis dependence involves evaluating a geometric series which can be done analytically as shown.


Digression — summation of a geometric series

N
Z e—iAj _ —lA Z e—lAj Le —lA(N—I—l)
j=N

AN _ ZANH) - id]2 AN —id(N+1)

N
o —id A2 —iAd

fyy l—e e l—e

2isin(A(N +1/2))

2isin(A4/2)
sin(A(N +1/2))
sin(A/2)
N | sin (4 ka (2N +1)sin 6 cos ¢)

—ikajsin @ cos
I

= sin (4 kasin @ cos ¢)




.

Radiation from antenna arrays -- continued
In the radiation zone :

~~

B(r,w)=VxA(r,0)~ ikt x A(r, »)
E(r,w)~ —ikcP x (f' X K(r a)))

P _ i i o) B (e o)< Qg( of --Alr.o) |

dQ  2u,

dQ 81’

2u
dP  pu,c ]z[cos(ka’ cos 9)—cos(kd ) { n(!ka(2N +1) sm@cosqﬁ)}
siné

sin(! ka sin 6 cos @)
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dQ)
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Presenter Notes
Presentation Notes
Carrying out the integrations and simplifying the expressions, we get the results.   The plots here refer to phi=0,  which corresponds to the observation of the radiation along the x-axis.


dP _ pC cos(ka’cos@)cos(kd)}z{Sin(éka(zNJrI)Sin9005§0) 2

dQ 8r° sin g sin(1 kasinfcos @)

Example for =0, N =10, kd =7 =2ka

4-
o
>
.-
0 20 40 60 80 100 120 140 160 180

v

Additional amplitude patterns can be obtained by
controlling relative phases of antennas.
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Presenter Notes
Presentation Notes
Plot of the power for another case.    Obviously, there is a lot of variety with antenna arrays which are used extensively for communications and other technologies.


Dipole radiation in light scattering by small (dielectric) particles

/

>
2 @ ~ E.
l — Hsc
Einc
Hinc
A ikk -1 |
Einc = EOEOQ ’ Hinc = —kO X Einc
HoC
In electric dipole approximation :
1 ikr A X 1 X
E_=—k’ e—((rxp)x f) H_=—7%xE_

SC 4
e, F L4, C


Presenter Notes
Presentation Notes
Now consider a different radiation source – that is re-radiation  from matter interacting with light (such as sunlight).   Here we will simplify the analysis and assume that the matter is in the form of uniform sphere.    This topic is covered in Chapter 10 of Jackson.


%ipole radiation in light scattering by small (dielectric) particles

>
—
; . ESC Ja ikﬁo-r
> ~ H Einc = SOEOQ
l sc 0.
Einc Hinc = _kO X Einc
H. HoC
Inc . . . .
In electric dipole approximation:
. . ikr
Scattering cross section : E = 1 PR ((r xp)x f-)
- C dme, v
do A A A rr.<SSC>avg I .
d_Q ,S;kO,SO T HSC:_rXEsc
kO . <Sinc>avg HoC
n 2
7/'2 < ESC k4 R ‘2
R 2 2
g K, ‘ (4728,E,)



Presenter Notes
Presentation Notes
We will assume that the incident light is in the form of an ideal plane wave, and analyze the re-radiated light as a spherical wave far from the particle itself.   The unit vectors epsilon_0 and epsilon reference the incident polarization of the light and the scattered polarization direction of the light, respectively.     The cross section is defined as the scattered power per unit incident power.


®
Recall previous analysis for electrostatsi

C case.

Boundary value problems in the presence of dielectrics

— example:

\AAAAL

>Z



Presenter Notes
Presentation Notes
Analyzing the source of re-radiation, we need to recall how a spherical dielectric of radius a interacts with a constant electric field.   We can use the results we obtained in Chapter 4 when we considered the situation as an electrostatic boundary value problem.     Here the z direction is the direction of the incident electric field, not the wave vector direction.


Boundary value problems in the presence of dielectrics
— example -- continued:

O° , Atr=a: ¢ 6CD<(1‘):80 8CD>(r)
ZAlr B cosH or Oor
5 0D _(r) _ 0@, (r)

i(m A 0 = o

=0 For r — o0 CD>(r): —E,rcost

Solution - - only / =1 contributes
B =-E,

4= 3 E, C = &lg,—1 O,
2+¢/¢g, 2+¢/¢,



Presenter Notes
Presentation Notes
These are the results from the electrostatic case discussed previously.


.

cp<(r>=—[ 3

Boundary value problems in the presence of dielectrics
— example -- continued:

24+¢/

q>>(r):_[r_[

&)

r

_ 3 —4dra’
&lgy—1 a2 E, cos® p =4ra 6‘0[
2+¢/¢g,

&leg,—1

jEO rcos 6 Induced dipole moment:

&l&+2

]Eo

v S

—2- €lgy=
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Presenter Notes
Presentation Notes
Continued results obtained previously for the electrostatic problem.


Estimation of scattering dipole moment:
Suppose the scattering particle is a dielectric sphere
with permittivity € and radius a:

v
0

1

|

\A A/

V
K, \Af.

gle,—1 . s
p=dra, [5 / 50 + 2]Einc E, =V,Ee"™
0

Scattering cross section:

21~ 2
do (~ ~ ¢+ & ro\v-E_
—(r,v,ko,vo): - =
dQ v,-E.

mmc

(47, E, )2

&g, —1
El&y+2

4 6
=k"a



Presenter Notes
Presentation Notes
Jumping back to the scattering problem, assuming that the same mathematics can be translated to this case --     Here we have used bold epsilon to reference the polarization directions.    These directions are always perpendicular to the light propagation directions.     The not bold epsilons indicate the permittivity functions which are functions of the harmonic frequency of the light involved.     The final result was derived by Lord Raleigh.


https://www.britannica.com/biography/John-William-Strutt-3rd-Baron-Rayleigh

WRITTEN BY: R. Bruce Lindsay
See Article History

Alternative Titles: John William Strutt, 3rd Baron Rayleigh of Terling Place

Lord Rayleigh, in full John William Strutt, 3rd Baron Rayleigh of Terling Place, (born November
12, 1842, Langford Grove, Maldon, Essex, England—-died June 30, 1919, Terling Place, Witham,

Essex), English physical scientist who made fundamental discoveries in the fields of acoustics and

optics that are basic to the theory of wave propagation in fluids. He received the Nobel Prize for

Physics in 1904 for his successful isolation of argon, an inert atmospheric gas.
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Presenter Notes
Presentation Notes
Some information about Lord Rayleigh on the web.

https://www.britannica.com/biography/John-William-Strutt-3rd-Baron-Rayleigh

S
Scattering by dielectric sphere with permittivity € and radius a:

A A For E;, . polarized in scattering plane:
k()
0
r d e —1]
O (A A~ A E — A A2
; (r,v,kﬂ,vo)—::k4a6 0 Vv,
ol ~ d() El&y+2
vV
A v 2
V ele,—1
0 =k*a® 0 cos’ &

El&y+2


Presenter Notes
Presentation Notes
In this analysis, we consider the case where the incident wavevector (along the vertical axis) and the polarization  direction (epsilon0) are in the same plane as the observed scattered light (direction of \hat{r}).    In this case , the dot product of the incident and scattered polarizations give a factor of cos(theta) as show.


S
Scattering by dielectric sphere with permittivity € and radius a:

For E;, . polarized perpendicular to

4 ﬁ scattering plane: )
0 &l&,—1

V-V,
Ele,+2

/ } =k*a’ £/~
El&y+2

Assuming both 1ncident polarizations are equally likely,

average cross section 1s given by:

2
_(f‘,f’;f{o,fro) :k42a6 j;:’;; (00826’+1)



Presenter Notes
Presentation Notes
In this case, the incident wavevector (along the vertical axis) and the observed scattered light (direction of \hat{r}) are as before and again define the scattering plane.   However, the polarization  direction of incident light (epsilon0) and the polarization direction of the scattered light (epsilon) are both perpendicular to the scattering plane and thus are parallel to each other, given 1 for their dot product.      The last result indicates the cross section of the total scattered light assuming both polarizations are equally likely.


S
Scattering by dielectric sphere with permittivity € and radius a:

Tk
0 . 4 6 .
9 (1) ~E[28 o
0 d() 2 |elg,+2
r A
80 ) 2.I}—-
/ g .
0
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Presenter Notes
Presentation Notes
The plot shows the angular dependence of the scattered light as a function of the angle theta.
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Presenter Notes
Presentation Notes
In addition to the angular dependence of the scattered light, Raleigh scattering depends of the wavevector as k4 which has the corresponding wavelength dependence indicated on this slide.       The figure from the web shows the variation of wavelength for visible light.   The analysis of Raleigh scattering thus tells us why the sky at mid day is blue and why it tends to be red at sun rise and sunset.


®
Brief introduction to multipole expansion of electromagnetic

fields (Chap. 9.7)

Sourceless Maxwell's equations

—za)t

in terms of E and H fields with time dependence e
VxE=ikZ/H VxH=—kE/Z,

V-E=0 V-H=0

where k=w/c and Z,=./u, /€,

Decoupled equations:

(v2 +k2)E=0 (v2 +k2)H:O
H--_' VxE %oy H
kZ, k


Presenter Notes
Presentation Notes
In the next few slides, we go over material presented in Section 9.7 of your textbook.     I have personally never used this formalism, but recognize it as a powerful tool for analyzing fields from localized sources in terms of the fields themselves rather than using scalar and vector and scalar potentials.  Please review this material as time permits.


Multipole expansion of electromagnetic fields -- continued

Note that:
(V?+ £*)(r-E)=0 (V?+ &) (r-H)=0

Convenient operators for angular momentum analysis

Define: El.(rxV)

i
Notethat r -L=0

l@zr B I’

V? =
2 2
r or v

Eigenfunctions:

: IO T _
L'Y,,(0.9)= Lin > Q(mn@ ae} — 3 ¢2}Ylm<9,¢> (L +1)Y,,(0.9)



Multipole expansion of electromagnetic fields -- continued

Magnetic multipole field:

[([+1
oy =l p e ¥, 0.9
r -EY =0 spherical Bessel function

L-E, =I(l+1)Z,gr)Y,,(0,9)

Electric multipole field:

[([+1
r ‘K, =-Z, (k )f(kr)Yzm(G,@
r -HZ =0 spherical Bessel function
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Multipole expansion of electromagnetic fields -- continued

Vector spherical harmonics: (for / > 0)
1

X, (8,0)= LY, (6,

m(0,9) T m(0,0)

Orthogonality conditions:
.. dQ Xl'm'* (9’ ¢) . le (9’ ¢) = 511'5mm'

[a2X,, (0.9)-(rxX,,(0.4))=0

General expansion of fields:

H :z{amkmxlm(w)—éa%Vx(&(kﬂXm(@»@)}

E = ZZB a,Vx( f,(kr)X,,(0,0))+a,, g ,(kr)X,, (0, ¢)}



Multipole expansion of electromagnetic fields -- continued

Time averaged power distribution of radiation far from source:
2

dP  Z,
aQ 2k’
For a pure multipole radiation with either a,, or a,’ :

> ()" a1 X, (0,8)xF + a1 X, (0.4) ]

Im

dP 7
10 2% a,,[ X, 0. )]

1
X9 = g 2m (e m)(t-me )

2

+(1=m)(l+m+1)|Y,,

)




For example: /=1

X, (8,0) =—sm . X,,(60,0) =|X,,(6,9)| = (1+cos 0 )
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For example: [=2

X, (6, ¢)‘ —s1n >0 cos’0

03/30/2022

X,,(8,0) = (1 3cos® 0+ 4cos' 6)
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