

PHY 712 Electrodynamics 11-11:50 AM MWF Olin 103

Notes for Lecture 30:

Finish reading Chap. 14 and start Chap. 15 –

Radiation from scattering charged particles

- 1. Thompson and Compton scattering
- 2. Radiation from particle collisions

21	Fri: 03/25/2022	Chap. 9	Radiation from localized oscillating sources	<u>#18</u>	03/30/2022
22	Mon: 03/28/2022	Chap. 9	Radiation from oscillating sources		
23	Wed: 03/30/2022	Chap. 9 & 10	Radiation and scattering	<u>#19</u>	04/01/2022
24	Fri: 04/01/2022	Chap. 11	Special Theory of Relativity	<u>#20</u>	04/04/2022
25	Mon: 04/04/2022	Chap. 11	Special Theory of Relativity	<u>#21</u>	04/06/2022
26	Wed: 04/06/2022	Chap. 11	Special Theory of Relativity		
27	Fri: 04/08/2022	Chap. 14	Radiation from moving charges	<u>#22</u>	04/11/2022
28	Mon: 04/11/2022	Chap. 14	Radiation from accelerating charged particles	<u>#23</u>	04/18/2022
29	Wed: 04/13/2022	Chap. 14	Synchrotron radiation		
	Fri: 04/15/2022	No class	Holiday		
30	Mon: 04/18/2022	Chap. 14 & 15	Thompson and Compton scattering	<u>#24</u>	04/20/2022
31	Wed: 04/20/2022	Chap. 15	Radiation from collisions of charged particles		

PHY 712 -- Assignment #24

April 18, 2022

Finish reading Chap. 14 and start Chap. 15 in Jackson .

 This problem concerns the Compton scattering of a photon having an initial momentum magnitude of p and a final momentum magnitude p' at an angle θ due to an electron of mass m, initially at rest, as discussed in lecture and on page 696 of **Jackson**. The wavelength of the photon before the collision is λ=h/p and after is λ'=h/p', where h is Planck's constant. Show that

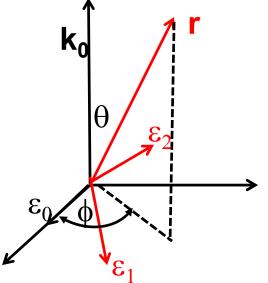
 $\lambda' - \lambda = (h/(mc^2))(1 - \cos\theta).$ 04/18/2022

Note – this week is more or less "normal" except for no classes will be held on Thursday 4/21/2022 (and therefore no physics colloquium this week).

Thompson scattering -- classical picture

Some details of scattering of electromagnetic waves incident on a particle of charge q and mass $m_{\rm q}$

Incident electomagnetic wave:



k₀ propagation direction **\varepsilon** polarization direction **E**(**r**', *t*') = $\Re\left(\mathbf{\epsilon}_0 E_0 e^{i\mathbf{k}_0 \cdot \mathbf{r}' - i\omega t'}\right)$

Scattered radiation: **r** observed position ϵ_1, ϵ_2 polarization directions

Thompson scattering – non relativistic approximation

Power radiated in direction $\hat{\mathbf{r}}$ by charged particle with acceleration $\dot{\mathbf{v}}$: $\frac{dP}{d\Omega} = \frac{q^2}{4\pi c^3} \left| \hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \dot{\mathbf{v}}) \right|^2$

Suppose that the acceleration $\dot{\mathbf{v}}$ of a particle (charge q and mass m_q) is caused by an electric field: $\mathbf{E}(\mathbf{r},t) = \Re\left(\mathbf{\epsilon}_0 E_0 e^{i\mathbf{k}_0 \cdot \mathbf{r} - i\omega t}\right)$

$$V = \frac{q}{m_q} \Re \left(\mathbf{\varepsilon}_0 E_0 e^{i\mathbf{k}_0 \cdot \mathbf{r} - i\omega t} \right)$$

Time averaged power:

$$\left\langle \frac{dP}{d\Omega} \right\rangle = \frac{c}{8\pi} \left(\frac{q^2}{m_q c^2} \right)^2 \left| E_0 \right|^2 \left| \hat{\mathbf{r}} \times \left(\hat{\mathbf{r}} \times \boldsymbol{\varepsilon}_0 \right) \right|^2$$

What assumptions are made to conclude that

$$\dot{\mathbf{v}} = \frac{q}{m_q} \Re \left(\mathbf{\varepsilon}_0 E_0 e^{i\mathbf{k}_0 \cdot \mathbf{r} - i\omega t} \right) \quad ?$$

Is it always true?

Comment on acceleration

Lorentz force:
$$\mathbf{F} = q(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B})$$

For $v \ll c$, the dominate force on a charged particle is from the electric field. According to Newton:

$$m_q \frac{d\mathbf{v}}{dt} \equiv m_q \dot{\mathbf{v}} = q \mathbf{E}(\mathbf{r}, t) = q \mathbf{\varepsilon}_0 E_0 e^{i\mathbf{k}\cdot\mathbf{r} - i\omega t}$$

Thompson scattering - non relativistic approximation -- continued

Time averaged power

۶V

d power:
$$\left\langle \frac{dP}{d\Omega} \right\rangle = \frac{c}{8\pi} \left(\frac{q^2}{m_q c^2} \right)^2 \left| E_0 \right|^2 \left| \hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \boldsymbol{\varepsilon}_0) \right|^2$$

 $\hat{\mathbf{r}} = \sin \theta \left(\cos \phi \, \hat{\mathbf{x}} + \sin \phi \, \hat{\mathbf{y}} \right) + \cos \theta \hat{\mathbf{z}}$

 ~ 2

Polarization of incident light: $\mathbf{\epsilon}_0 = \hat{\mathbf{x}}$ Polarization of scattered light: $\mathbf{\epsilon}_1 = \cos\theta(\hat{\mathbf{x}}\cos\phi + \hat{\mathbf{y}}\sin\phi) - \hat{\mathbf{z}}\sin\theta$ $\mathbf{\epsilon}_2 = -\hat{\mathbf{x}}\sin\phi + \hat{\mathbf{y}}\cos\phi$

Are these polarizations unique?

K

Note that we are associating the vector $\hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \dot{\mathbf{v}})$ with the polarization of the light. Why?

Liénard-Wiechert fields (cgs Gaussian units):

$$\mathbf{E}(\mathbf{r},t) = \frac{q}{\left(R - \frac{\mathbf{v}\cdot\mathbf{R}}{c}\right)^3} \left[\left(\mathbf{R} - \frac{\mathbf{v}R}{c}\right) \left(1 - \frac{v^2}{c^2}\right) + \left(\mathbf{R} \times \left\{ \left(\mathbf{R} - \frac{\mathbf{v}R}{c}\right) \times \frac{\dot{\mathbf{v}}}{c^2} \right\} \right) \right].$$
(19)

$$\mathbf{B}(\mathbf{r},t) = \frac{q}{c} \left[\frac{-\mathbf{R} \times \mathbf{v}}{\left(R - \frac{\mathbf{v} \cdot \mathbf{R}}{c}\right)^3} \left(1 - \frac{v^2}{c^2} + \frac{\dot{\mathbf{v}} \cdot \mathbf{R}}{c^2} \right) - \frac{\mathbf{R} \times \dot{\mathbf{v}}/c}{\left(R - \frac{\mathbf{v} \cdot \mathbf{R}}{c}\right)^2} \right].$$
 (20)

In this case, the electric and magnetic fields are related according to

$$\mathbf{B}(\mathbf{r},t) = \frac{\mathbf{R} \times \mathbf{E}(\mathbf{r},t)}{R}.$$
(21)

PHY 712 Spring 2022 -- Lecture 30

9

Thompson scattering – non relativistic approximation -- continued

Time averaged power:

$$\left\langle \frac{dP}{d\Omega} \right\rangle = \frac{c}{8\pi} \left(\frac{q^2}{m_q c^2} \right)^2 \left| E_0 \right|^2 \left| \hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \boldsymbol{\varepsilon}_0) \right|^2$$
$$\hat{\mathbf{r}} = \sin \theta \left(\cos \phi \, \hat{\mathbf{x}} + \sin \phi \, \hat{\mathbf{y}} \right) + \cos \theta \hat{\mathbf{z}}$$

Polarization of incident light: $\mathbf{\epsilon}_0 = \hat{\mathbf{x}}$ $\Rightarrow \mathbf{y}$ Polarization of scattered light: $\hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \mathbf{\epsilon}_0) = \hat{\mathbf{r}} (\hat{\mathbf{r}} \cdot \mathbf{\epsilon}_0) - \mathbf{\epsilon}_0$ (perpendicular to $\hat{\mathbf{r}}$) denote scattered light polarization by $\mathbf{\epsilon}^*$ $\mathbf{\epsilon}^* \cdot (\hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \mathbf{\epsilon}_0)) = -\mathbf{\epsilon}^* \cdot \mathbf{\epsilon}_0$ Thompson scattering – non relativistic approximation -- continued

Time averaged power:

$$\left\langle \frac{dP}{d\Omega} \right\rangle = \frac{c}{8\pi} \left(\frac{q^2}{m_q c^2} \right)^2 \left| E_0 \right|^2 \left| \hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \boldsymbol{\varepsilon}_0) \right|^2$$
$$\hat{\mathbf{r}} = \sin \theta \left(\cos \phi \, \hat{\mathbf{x}} + \sin \phi \, \hat{\mathbf{y}} \right) + \cos \theta \hat{\mathbf{z}}$$

$$\mathbf{x}_{\mathbf{x}_{1}} = \mathbf{x}_{1} + \mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{$$

Thompson scattering – non relativistic approximation -- continued Time averaged power with polarization ϵ^* :

$$\left\langle \frac{dP}{d\Omega} \right\rangle = \frac{c}{8\pi} \left(\frac{q^2}{m_q c^2} \right)^2 \left| E_0 \right|^2 \left| \mathbf{\epsilon} * \cdot \mathbf{\epsilon}_0 \right|^2$$

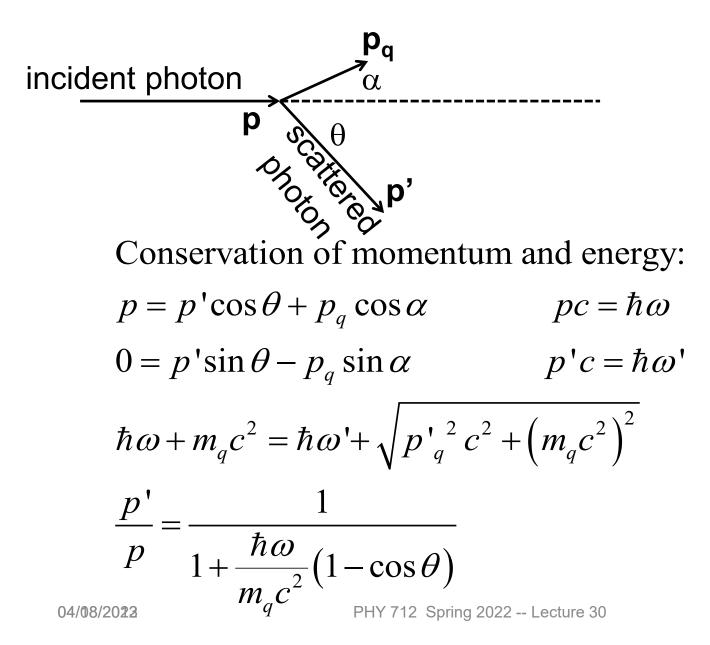
Scattered light may be polarized parallel to incident field or polarized with an angle θ so that the time and polarization averaged cross section is given by:

$$\left\langle \left| \boldsymbol{\varepsilon}^{*} \cdot \boldsymbol{\varepsilon}_{0} \right|^{2} \right\rangle_{\phi} = \left\langle \left| \boldsymbol{\varepsilon}_{1} \cdot \boldsymbol{\varepsilon}_{0} \right|^{2} \right\rangle_{\phi} + \left\langle \left| \boldsymbol{\varepsilon}_{2} \cdot \boldsymbol{\varepsilon}_{0} \right|^{2} \right\rangle_{\phi} = \frac{1}{2} \cos^{2} \theta + \frac{1}{2}$$

Averaged cross section:
$$\left\langle \frac{d\sigma}{d\Omega} \right\rangle = \left(\frac{q^{2}}{m_{q}c^{2}} \right)^{2} \frac{1}{2} \left(1 + \cos^{2} \theta \right)$$

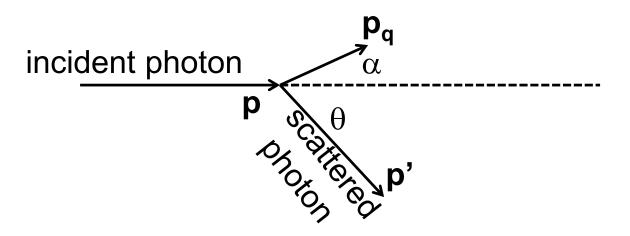
This formula is appropriate in the X-ray scattering of electrons or soft γ -ray scattering of protons

Thompson scattering – relativistic and quantum modifications



13

Thompson scattering – relativistic and quantum modifications

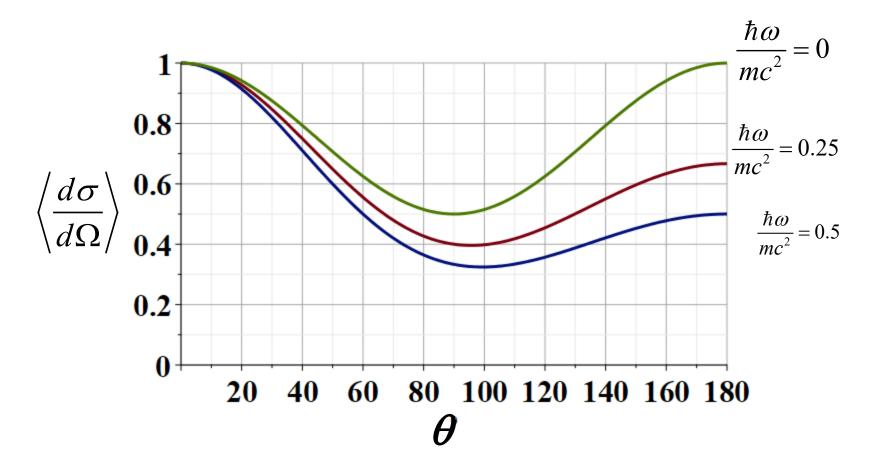


Relativistic and quantum modifications to averaged cross section:

$$\left\langle \frac{d\sigma}{d\Omega} \right\rangle = \left(\frac{q^2}{m_q c^2} \right)^2 \left(\frac{p'}{p} \right)^2 \frac{1}{2} \left(1 + \cos^2 \theta \right)$$

$$\frac{p'}{p} = \frac{1}{1 + \frac{\hbar\omega}{m_q c^2} (1 - \cos\theta)}$$

Modified Thompson scattering cross section



Ē

In fact, the more accurate treatment by Klein and Nishina gives

$$\frac{p'}{p} = \frac{1}{1 + \frac{\hbar\omega}{m_q c^2} (1 - \cos\theta)}$$

Klein-Nishina formula

$$\left\langle \frac{d\sigma}{d\Omega} \right\rangle = \left(\frac{q^2}{m_q c^2} \right)^2 \left(\frac{p'}{p} \right)^2 \frac{1}{2} \left(\frac{p'}{p} + \frac{p}{p'} - \sin^2 \theta \right)$$

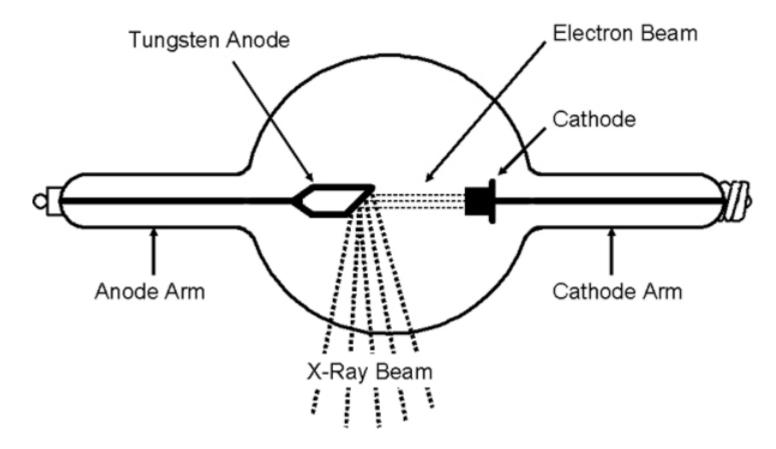
Note that for $\frac{\hbar\omega}{m_q c^2} << 1$ all results are consistent

Up to now, we have been considering (re)radiation due to a charged particle interacting with an electromagnetic field. Next time we will consider radiation due to interactions (collisions) of charged particles themselves.

Radiation produced by collisions of charged particles

Generation of X-rays in a Coolidge tube

https://www.orau.org/ptp/collection/xraytubescoolidge/coolidgeinformation.htm



http://www.ndt-ed.org/EducationResources/CommunityCollege/Radiography/Physics/xrays.htm

