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PHY 712 Electrodynamics
11-11:50 AM  MWF  Olin 103

Discussion for Lecture 31:
Start reading Chap. 15 –

Radiation from collisions of charged particles

1. Overview

2. X-ray tube

3. Radiation from Rutherford scattering

4. Other collision models
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Presenter Notes
Presentation Notes
In this lecture we will discuss some examples of radiation due to charged particles colliding.  It is a complicated topic which quite a few famous physicists have worked on.     
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Presenter Notes
Presentation Notes
This is the revised schedule, subject to your input.
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Generation of X-rays in a Coolidge tube
https://www.orau.org/ptp/collection/xraytubescoolidge/coolidgeinformation.htm

Invented in 1913.   Associated with the German word 
“bremsstrahlung” – meaning breaking radiation.

https://www.orau.org/ptp/collection/xraytubescoolidge/coolidgeinformation.htm
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http://www.ndt-ed.org/EducationResources/CommunityCollege/Radiography/Physics/xrays.htm

Quantum effects – due 
to the release of core 
electrons

http://www.ndt-ed.org/EducationResources/CommunityCollege/Radiography/Physics/xrays.htm


Radiation during collisions of charged particles

β(t) β(t+∆t)
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Presenter Notes
Presentation Notes
Starting from the intensity analysis for radiation due to a charged particle moving in a trajectory with beta representing its velocity/c.    We will consider the velocity changing due to a collision process and analyze the radiation at small frequencies.
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Note that in the following slides we are taking the limit ω0
but keeping the notation of the differential intensity….

Results from previous analyses:
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Spectral intensity of radiation from accelerating charged particle :
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For a collision of duration  emitting radiation with polarization  and frequency
 0;    
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Note that ε is 
perpendicular to r.
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Radiation during collisions -- continued
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For a collision of duration  emitting radiation with polarization
 and frequency 0:    
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We will evaluate this expression for two cases:
Non-relativistic 

t td I q
d d c t t

τ
ω

τ
ω π τ

→

 +
= ⋅ − 

Ω − ⋅ + − ⋅ 

ε

β β
ε

r β r β

( ) ( ) ( )

( ) ( )

( )
( )

2 2
2

2

2
2 2

22

limit:

           
4

Relativistic collision with small     :
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In the limit β0, this 
is the same as the 
non-relativistic case.

Presenter Notes
Presentation Notes
For beta<<1, we can neglect the denominator of the expression and obtain the non-relativistic expression.   It is also convenient to analyze the relativistic case when the change in velocity is small.
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Radiation during collisions -- continued
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Relativistic collision with small     :
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Expressions (averaging over ) for || or  polarization:
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Presenter Notes
Presentation Notes
It is convenient to consider two different polarizations of the radiation – parallel (meaning in the plane of the observation point r and the initial velocity of the particle) and perpendicular (meaning perpendicular to that plane).
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Some details:
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Note:  This is a wild 
assumption!

(using geometry of 
Fig. 15.2 in Jackson)

Presenter Notes
Presentation Notes
Showing the detailed geometry of the scattering process.
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Consistent with 
radiation from 
charged 
particles.

Convenient geometry

Wild guess

Presenter Notes
Presentation Notes
Evaluating the vectors.
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Radiation during collisions -- continued
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Intensity expressions:  (averaging over 
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Presenter Notes
Presentation Notes
It is possible to analytically integrate over all solid angles.
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Some more details:
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Presenter Notes
Presentation Notes
Some details of the analysis.    With all of these considerations,   we still need to estimate delta beta.
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β(t) β(t+∆t)

q q

Estimation of ∆β

∆β
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Momentum transfer:

Qc t t c Mcτ γ≡ + − ≈p p Δβ

2
32

2
22

2

3
2 

3
2 Q

cM
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c
q 

d
dI

π
γ

πω
≈∆= β

mass of particle 
having charge q

What are the conditions for the validity of this result?

Need to consider the mechanics of collision; 
it is convenient to parameterize in terms of 
momentum --
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What are possible sources for the momentum transfer Q?
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β(t) β(t+∆t)

q q

Estimation of ∆β  or Q -- for the case of Rutherford scattering
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Assume that target nucleus (charge ) has mass M;
Rutherford scattering cross-section in center of mass analysis: 
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Presenter Notes
Presentation Notes
Delta beta will depend on the particular system.    As an example, consider the case of Rutherford scattering..    Here are some of the equations we used in classical mechanics class.
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Case of Rutherford scattering -- continued
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Rutherford scattering cross-section: 
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Does the algebra 
work out?

Presenter Notes
Presentation Notes
It is convenient to express the results in terms of the momentum transfer Q.
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Case of Rutherford scattering -- continued

Q

q

Ze
θ’

( )
QMc

q
c

Ze

Qc
ZeqQ
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Presenter Notes
Presentation Notes
It is of interest to estimate the probability of the radiation occurring which depends on the product of the radiation intensity for a given momentum transfer and the cross section as a function of momentum transfer. 
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Differential radiation cross section -- continued
Integrating over momentum transfer

16 1 ln
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d d dQ c Mc Q

χ χ
ω ω β

  
= =   

   
∫

How do the limits of Q occur?

Jackson suggests that these come from the limits of 
validity of the analysis.

1. Seems like cheating?
2. Perhaps fair?

Presenter Notes
Presentation Notes
But we are not done.     Thinking of the case of the charged particle moving through the target material, there will be a range of momentum transfers that should be integrated as indicated here.     Note that we have assumed that the frequency of the radiation is very small.    Here we consider how frequency might ener this analysis.
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Original expression for radiation intensity:    
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In the previous derivations, we have assumed that 
ˆ / 1.
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In the non-relativistic case, this means    1.
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≈ − ⋅r β



Comment on frequency dependence --

Here τ is the effective collision time.
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How to estimate the collision time?

Jackson uses the following analysis in terms of the 
impact parameter b:

2min
max

Using classical mechanics and assuming :
1 2    and   

2 2Assume that 
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Differential radiation cross section -- continued
Radiation cross section in terms of momentum transfer
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Note that:  2 1 cos '     2
In general,  is determined by the collision time
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process icrelativist-non classicalfor section  crossRadiation 

λ= “fudge factor” 
of order unity

Presenter Notes
Presentation Notes
Hans Bethe considered this problem and also introduced a “correction” for quantum effects.
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What could be the origin of the fudge factor?

What do you take away from this analysis

1. Disgust?
2. Admiration?
3. Motivation to avoid charged particles?
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