

PHY 712 Electrodynamics 11-11:50 AM MWF Olin 103

Discussion for Lecture 31:

Start reading Chap. 15 –

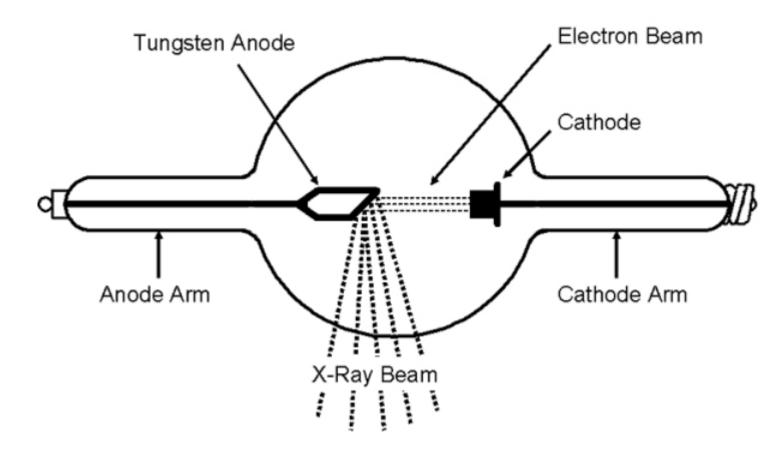
Radiation from collisions of charged particles

- 1. Overview
- 2. X-ray tube
- 3. Radiation from Rutherford scattering
- 4. Other collision models

	L	L	· ·		
21	Fri: 03/25/2022	Chap. 9	Radiation from localized oscillating sources	<u>#18</u>	03/30/2022
22	Mon: 03/28/2022	Chap. 9	Radiation from oscillating sources		
23	Wed: 03/30/2022	Chap. 9 & 10	Radiation and scattering	<u>#19</u>	04/01/2022
24	Fri: 04/01/2022	Chap. 11	Special Theory of Relativity	<u>#20</u>	04/04/2022
25	Mon: 04/04/2022	Chap. 11	Special Theory of Relativity	<u>#21</u>	04/06/2022
26	Wed: 04/06/2022	Chap. 11	Special Theory of Relativity		
27	Fri: 04/08/2022	Chap. 14	Radiation from moving charges	<u>#22</u>	04/11/2022
28	Mon: 04/11/2022	Chap. 14	Radiation from accelerating charged particles	<u>#23</u>	04/18/2022
29	Wed: 04/13/2022	Chap. 14	Synchrotron radiation		
	Fri: 04/15/2022	No class	Holiday		
30	Mon: 04/18/2022	Chap. 14 & 15	Thompson and Compton scattering	<u>#24</u>	04/20/2022
31	Wed: 04/20/2022	Chap. 15	Radiation from collisions of charged particles		
32	Fri: 04/22/2022	Chap. 13	Cherenkov radiation		

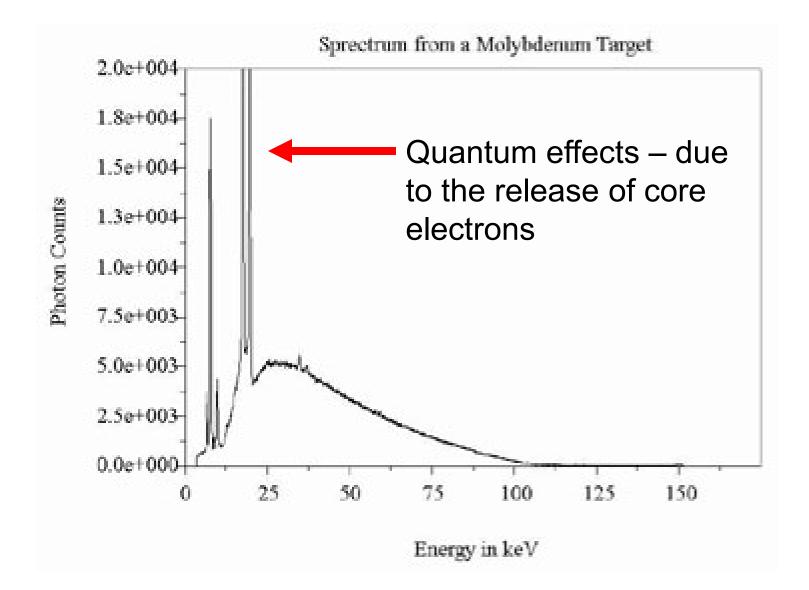
Generation of X-rays in a Coolidge tube

https://www.orau.org/ptp/collection/xraytubescoolidge/coolidgeinformation.htm

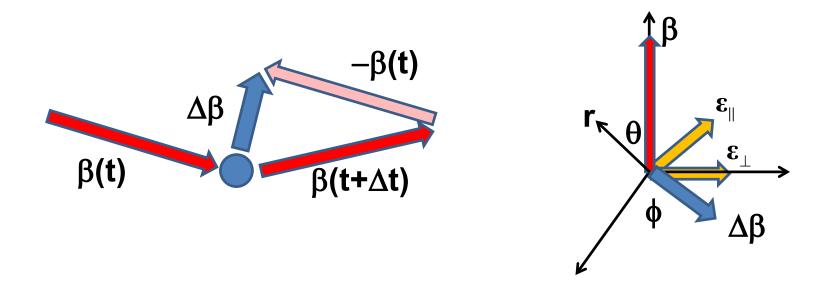


Invented in 1913. Associated with the German word "bremsstrahlung" – meaning breaking radiation. PHY 712 Spring 2022 -- Lecture 31

http://www.ndt-ed.org/EducationResources/CommunityCollege/Radiography/Physics/xrays.htm



Radiation during collisions of charged particles



$\boldsymbol{\epsilon}_{\scriptscriptstyle \|}~$ is in the plane of $\boldsymbol{\beta}$ and \boldsymbol{r}

 $\boldsymbol{\epsilon}_{\!\perp}\,$ is perpendicular to the plane of $\boldsymbol{\beta}$ and \boldsymbol{r}

Results from previous analyses:

Spectral intensity of radiation from accelerating charged particle :

$$\frac{d^2 I}{d\omega d\Omega} = \frac{q^2}{4\pi^2 c} \left| \int dt \ e^{i\omega \left(t - \hat{\mathbf{r}} \cdot \mathbf{R}_q(t)/c\right)} \frac{d}{dt} \left[\frac{\hat{\mathbf{r}} \times \left(\hat{\mathbf{r}} \times \boldsymbol{\beta}\right)}{1 - \hat{\mathbf{r}} \cdot \boldsymbol{\beta}} \right] \right|^2$$

Note that in the following slides we are taking the limit $\omega \rightarrow 0$ but keeping the notation of the differential intensity....

For a collision of duration τ emitting radiation with polarization ε and frequency $\omega \rightarrow 0$;

$$\frac{d^{2}I}{d\omega d\Omega} = \frac{q^{2}}{4\pi^{2}c} \left| \boldsymbol{\varepsilon} \cdot \left(\frac{\boldsymbol{\beta}(t+\tau)}{1-\hat{\boldsymbol{r}} \cdot \boldsymbol{\beta}(t+\tau)} - \frac{\boldsymbol{\beta}(t)}{1-\hat{\boldsymbol{r}} \cdot \boldsymbol{\beta}(t)} \right) \right|^{2}$$

Note that ε is perpendicular to **r**.

Radiation during collisions -- continued For a collision of duration τ emitting radiation with polarization ε and frequency $\omega \rightarrow 0$:

 $\frac{d^{2}I}{d\omega d\Omega} = \frac{q^{2}}{4\pi^{2}c} \left| \boldsymbol{\varepsilon} \cdot \left(\frac{\boldsymbol{\beta}(t+\tau)}{1-\hat{\mathbf{r}} \cdot \boldsymbol{\beta}(t+\tau)} - \frac{\boldsymbol{\beta}(t)}{1-\hat{\mathbf{r}} \cdot \boldsymbol{\beta}(t)} \right) \right|^{2}$

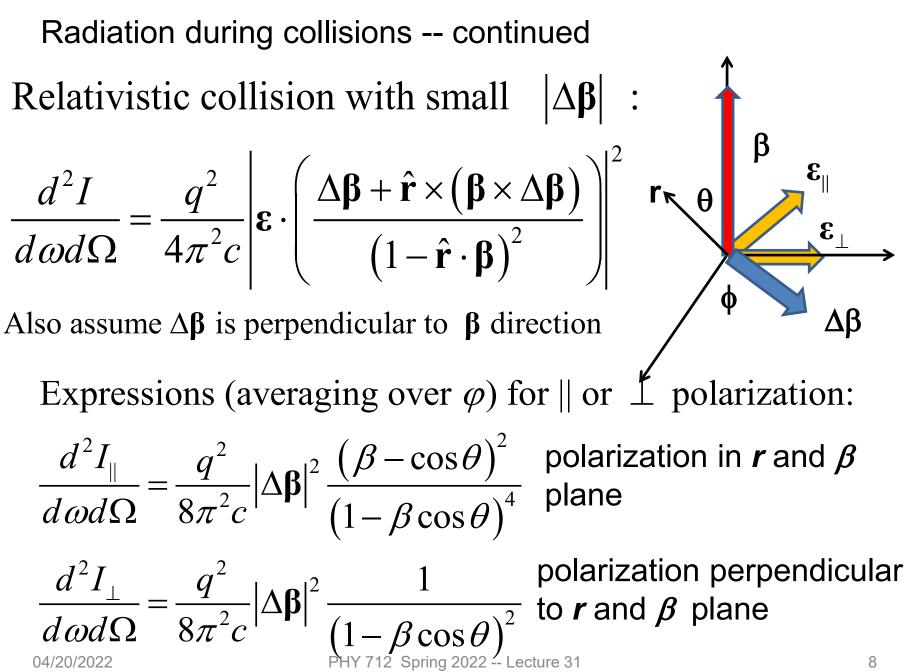
We will evaluate this expression for two cases: Non-relativistic limit:

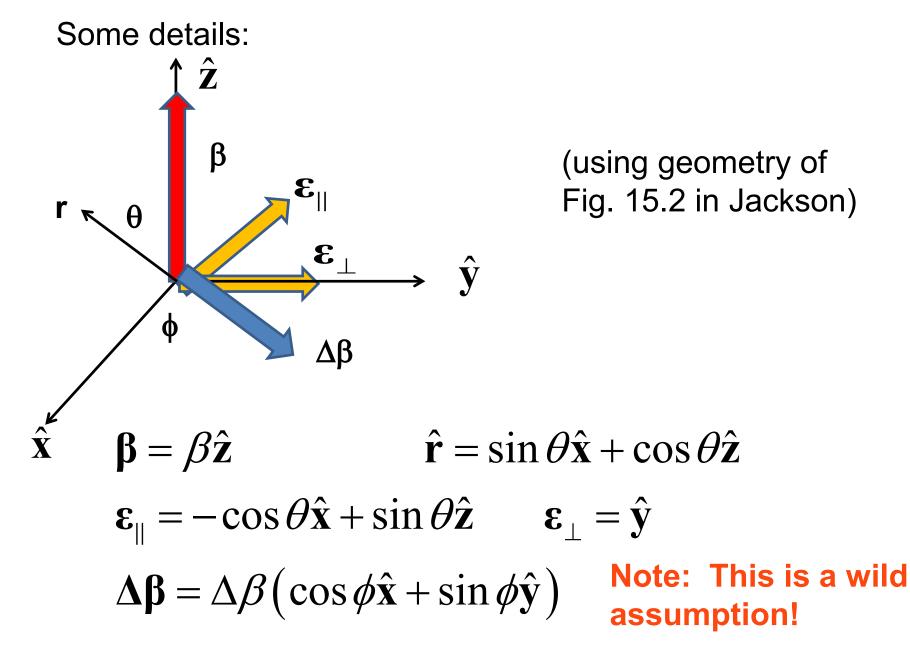
 $\frac{d^2 I}{d\omega d\Omega} = \frac{q^2}{4\pi^2 c} \left| \boldsymbol{\varepsilon} \cdot \left(\Delta \boldsymbol{\beta} \right) \right|^2 \qquad \Delta \boldsymbol{\beta} \equiv \boldsymbol{\beta} \left(t + \tau \right) - \boldsymbol{\beta} \left(t \right)$

Relativistic collision with small $|\Delta \beta| \equiv \beta(t+\tau) - \beta(t)$:

$$\frac{d^{2}I}{d\omega d\Omega} = \frac{q^{2}}{4\pi^{2}c} \left| \boldsymbol{\varepsilon} \cdot \left(\frac{\Delta \boldsymbol{\beta} + \hat{\boldsymbol{r}} \times (\boldsymbol{\beta} \times \Delta \boldsymbol{\beta})}{\left(1 - \hat{\boldsymbol{r}} \cdot \boldsymbol{\beta}\right)^{2}} \right) \right|$$

 $\left| \begin{array}{c} \text{In the limit } \beta \rightarrow 0, \text{ this} \\ \text{is the same as the} \\ \text{non-relativistic case.} \end{array} \right|^2$





Some details -- continued: Consistent with $\hat{\mathbf{r}} = \sin\theta \hat{\mathbf{x}} + \cos\theta \hat{\mathbf{z}}$ radiation from charged $\mathbf{\epsilon}_{\parallel} = -\cos \theta \hat{\mathbf{x}} + \sin \theta \hat{\mathbf{z}}$ $\mathbf{\varepsilon}_{\perp} = \hat{\mathbf{y}}$ particles. $\boldsymbol{\beta} = \beta \hat{\mathbf{z}}$ **Convenient geometry** $\Delta \mathbf{\beta} = \Delta \beta \left(\cos \phi \hat{\mathbf{x}} + \sin \phi \hat{\mathbf{y}} \right)$ Wild guess $\Delta \boldsymbol{\beta} + \hat{\boldsymbol{r}} \times (\boldsymbol{\beta} \times \Delta \boldsymbol{\beta}) = \Delta \boldsymbol{\beta} (1 - \hat{\boldsymbol{r}} \cdot \boldsymbol{\beta}) + \boldsymbol{\beta} (\hat{\boldsymbol{r}} \cdot \Delta \boldsymbol{\beta})$ $\boldsymbol{\varepsilon}_{\perp} \cdot (\Delta \boldsymbol{\beta} + \hat{\mathbf{r}} \times (\boldsymbol{\beta} \times \Delta \boldsymbol{\beta})) = \Delta \boldsymbol{\beta} \sin \phi (1 - \boldsymbol{\beta} \cos \theta)$ $\boldsymbol{\varepsilon}_{\parallel} \cdot \left(\Delta \boldsymbol{\beta} + \hat{\mathbf{r}} \times (\boldsymbol{\beta} \times \Delta \boldsymbol{\beta}) \right) = \Delta \boldsymbol{\beta} \cos \phi (\boldsymbol{\beta} - \cos \theta)$

Radiation during collisions -- continued Intensity expressions: (averaging over ϕ) β $\frac{d^2 I_{\parallel}}{d\omega d\Omega} = \frac{q^2}{8\pi^2 c} \left| \Delta \beta \right|^2 \frac{\left(\beta - \cos \theta\right)^2}{\left(1 - \beta \cos \theta\right)^4}$ θ $\frac{d^2 I_{\perp}}{d\omega d\Omega} = \frac{q^2}{8\pi^2 c} \left| \Delta \boldsymbol{\beta} \right|^2 \frac{1}{\left(1 - \beta \cos \theta \right)^2}$ φ ٩R Relativistic collision at low ω and with small $|\Delta \beta|$ and $\Delta \beta$ perpendicular to plane of $\hat{\mathbf{r}}$ and β ,

as a function of θ where $\hat{\mathbf{r}} \cdot \mathbf{\beta} = \beta \cos \theta$;

Integrating over solid angle:

$$\frac{dI}{d\omega} = \int d\Omega \left(\frac{d^2 I_{\parallel}}{d\omega d\Omega} + \frac{d^2 I_{\perp}}{d\omega d\Omega} \right) = \frac{2}{3\pi} \frac{q^2}{c} \gamma^2 \left| \Delta \beta \right|^2$$

$$_{\text{PHY 712 Spring 2022 -- Lecture 31}}$$

Some more details:

 $\int d\Omega \frac{d^2 I_{\parallel}}{d\omega d\Omega} = \frac{q^2}{8\pi^2 c} \left| \Delta \beta \right|^2 2\pi \int_{-1}^{1} d\cos\theta \frac{\left(\beta - \cos\theta\right)^2}{\left(1 - \beta\cos\theta\right)^4}$ $=\frac{q^2}{4\pi c}\left|\Delta\beta\right|^2\frac{2}{3}\frac{1}{\left(1-\beta^2\right)}$ $\int d\Omega \frac{d^2 I_{\perp}}{d\omega d\Omega} = \frac{q^2}{8\pi^2 c} \left| \Delta \beta \right|^2 \int_{-1}^{1} d\cos\theta \frac{1}{\left(1 - \beta\cos\theta\right)^2}$ $=\frac{q^2}{4\pi c}\left|\Delta\beta\right|^2\frac{2}{\left(1-\beta^2\right)}$ $\frac{dI}{d\omega} = \int d\Omega \left(\frac{d^2 I_{\parallel}}{d\omega d\Omega} + \frac{d^2 I_{\perp}}{d\omega d\Omega} \right) = \frac{2}{3\pi} \frac{q^2}{c} \gamma^2 \left| \Delta \beta \right|^2$

PHY 712 Spring 2022 -- Lecture 31

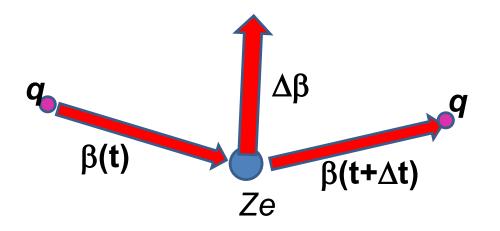
Estimation of
$$\Delta\beta$$

Need to consider the mechanics of collision;
it is convenient to parameterize in terms of
momentum ---
 \mathbf{q}
 $\mathbf{\beta}(\mathbf{t})$
 $\mathbf{A}\beta$
 $\mathbf{\beta}(\mathbf{t}+\Delta\mathbf{t})$
Momentum transfer:
 $Qc \equiv |\mathbf{p}(t+\tau) - \mathbf{p}(t)|c \approx \gamma Mc^2 |\Delta\beta|$
 $\frac{dI}{d\omega} = \frac{2}{3\pi} \frac{q^2}{c} \gamma^2 |\Delta\beta|^2 \approx \frac{2}{3\pi} \frac{q^2}{M^2 c^3} Q^2$
mass of particle
having charge q

What are the conditions for the validity of this result?

What are possible sources for the momentum transfer Q?

Estimation of $\Delta\beta$ or Q -- for the case of Rutherford scattering



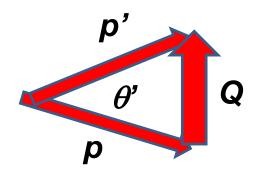
Assume that target nucleus (charge *Ze*) has mass >>M;

Rutherford scattering cross-section in center of mass analysis:

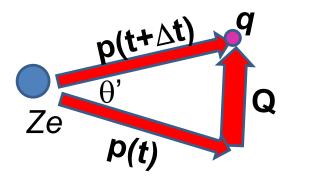
$$\frac{d\sigma}{d\Omega} = \left(\frac{2Zeq}{pv}\right)^2 \frac{1}{\left(2\sin\left(\frac{\theta}{2}\right)\right)^4}$$

Assuming elastic scattering:

$$Q^{2} = \left(2p\sin\left(\theta^{\prime}/2\right)\right)^{2} = 2p^{2}\left(1-\cos\theta^{\prime}\right)$$



Case of Rutherford scattering -- continued Rutherford scattering cross-section:



$$\frac{d\sigma}{d\Omega} = \left(\frac{2Zeq}{pv}\right)^2 \frac{1}{\left(2\sin\left(\frac{\theta}{2}\right)\right)^4}$$
$$\frac{d\sigma}{dQ} = \int_{\varphi'} \frac{d\sigma}{d\Omega} \left|\frac{d\Omega}{dQ}\right| d\varphi'$$
$$d\Omega = d\varphi' d\cos\theta'$$
$$= 2p^2 \left(1 - \cos\theta'\right)$$

$$dQ = -\frac{p^2}{Q}d\cos\theta'$$

 $Q^2 = \left(2p\sin\left(\theta \, \frac{1}{2}\right)\right)^2$

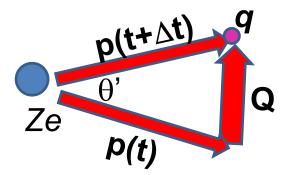
$$\Rightarrow \frac{d\sigma}{dQ} = 8\pi \left(\frac{Zeq}{\beta c}\right)^2 \frac{1}{Q^3}$$

Does the algebra work out?

04/20/2022

PHY 712 Spring 2022 -- Lecture 31

Case of Rutherford scattering -- continued



Differential radiation cross section :

$$\frac{d^2 \chi}{d\omega dQ} = \frac{dI}{d\omega} \frac{d\sigma}{dQ} = \left(\frac{2}{3\pi} \frac{q^2}{M^2 c^3} Q^2\right) \left(8\pi \left(\frac{Zeq}{\beta c}\right)^2 \frac{1}{Q^3}\right)$$
$$= \frac{16}{3} \frac{(Ze)^2}{c} \left(\frac{q^2}{Mc^2}\right)^2 \frac{1}{\beta^2} \frac{1}{Q}$$

Differential radiation cross section -- continued

Integrating over momentum transfer

$$\frac{d\chi}{d\omega} = \int_{Q_{\min}}^{Q_{\max}} dQ \frac{d^2\chi}{d\omega dQ} = \frac{16}{3} \frac{(Ze)^2}{c} \left(\frac{q^2}{Mc^2}\right)^2 \frac{1}{\beta^2} \ln\left(\frac{Q_{\max}}{Q_{\min}}\right)$$

How do the limits of Q occur?

Jackson suggests that these come from the limits of validity of the analysis.

- 1. Seems like cheating?
- 2. Perhaps fair?

Comment on frequency dependence --Original expression for radiation intensity:

$$\frac{d^2 I}{d\omega d\Omega} = \frac{q^2}{4\pi^2 c} \left| \int dt \ e^{i\omega \left(t - \hat{\mathbf{r}} \cdot \mathbf{R}_q(t)/c\right)} \frac{d}{dt} \left[\frac{\hat{\mathbf{r}} \times \left(\hat{\mathbf{r}} \times \boldsymbol{\beta}\right)}{1 - \hat{\mathbf{r}} \cdot \boldsymbol{\beta}} \right] \right|^2$$

In the previous derivations, we have assumed that

$$\omega \left(t - \hat{\mathbf{r}} \cdot \mathbf{R}_{q}(t) / c \right) \ll 1.$$

$$\omega \left(t - \hat{\mathbf{r}} \cdot \mathbf{R}_{q}(t) / c \right) = \omega \left(t - \hat{\mathbf{r}} \cdot \int_{0}^{t} dt' \mathbf{\beta}(t') \right) \approx \omega \tau \left(1 - \hat{\mathbf{r}} \cdot \left\langle \mathbf{\beta} \right\rangle \right)$$

In the non-relativistic case, this means $\omega \tau \ll 1$.

Here τ is the effective collision time.

How to estimate the collision time?

Jackson uses the following analysis in terms of the impact parameter *b*:

Using classical mechanics and assuming $v \ll c$: $\tau \approx \frac{b}{v} \ll \frac{1}{\omega}$ and $Q \approx \frac{2Zeq}{bv}$ Assume that $Q_{\min} = \frac{2Zeq}{b_{\max}v} = \frac{2Zeq\omega}{v^2}$

Differential radiation cross section -- continued

Radiation cross section in terms of momentum transfer

$$\frac{d\chi}{d\omega} = \int_{Q_{\min}}^{Q_{\max}} dQ \frac{d^2\chi}{d\omega dQ} = \frac{16}{3} \frac{(Ze)^2}{c} \left(\frac{q^2}{Mc^2}\right)^2 \frac{1}{\beta^2} \ln\left(\frac{Q_{\max}}{Q_{\min}}\right)$$

Note that:
$$Q^2 = 2p^2(1 - \cos\theta') \implies Q_{\max} = 2p$$

In general, Q_{\min} is determined by the collision time
condition $\omega \tau < 1 \implies Q_{\min} \approx \frac{2Zeq\omega}{v^2}$

Radiation cross section for classical non - relativistic process

$$\frac{d\chi}{d\omega} = \frac{16}{3} \frac{(Ze)^2}{c} \left(\frac{q^2}{Mc^2}\right)^2 \frac{1}{\beta^2} \ln\left(\frac{\lambda Mv^3}{Zeq\omega}\right)$$

 λ = "fudge factor" of order unity What could be the origin of the fudge factor?

What do you take away from this analysis

- 1. Disgust?
- 2. Admiration?
- 3. Motivation to avoid charged particles?