
1

PHY 712 Electrodynamics
11-11:50 AM  MWF  Olin 103

Notes for Lecture 33:

Special Topics in Electrodynamics:

Electromagnetic aspects of 
superconductivity

04/25/2022 PHY 712  Spring 2022 -- Lecture 33

Presenter Notes
Presentation Notes
In this lecture we will discuss some of the aspects of superconductivity that involve electromagnetism, without getting into the quantum mechanical mechanisms.
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Important dates:  Final exams available Apr. 29; due May 9
Outstanding work due May 9

Presenter Notes
Presentation Notes
Please note the important dates.
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What will you do after May 9?
Relax a minute or two

Several of you will want to start preparing for the 
Qualifier Exams which will be administered  
(tentative dates):   
Monday, June 13 to Thursday, June 16 during 
the hours 1:00 – 4:00 pm.
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Special topic:   Electromagnetic properties of superconductors

Ref:D. Teplitz, editor, Electromagnetism – paths to research,
Plenum Press (1982); Chapter 1 written by Brian Schwartz 

and Sonia Frota-Pessoa
History:

1908  H. Kamerlingh Onnes successfully liquified He
1911   H. Kamerlingh Onnes discovered that Hg at 4.2 K 
has vanishing resistance
1957 Theory of superconductivity by Bardeen, Cooper, 
and Schrieffer

The surprising observation was that 
electrical resistivity abruptly dropped 
when the temperature of the material 
was lowered below a critical 
temperature Tc.

Presenter Notes
Presentation Notes
These notes are partly based on the Teplitz textbook and other sources.   Interestingly  this is an example of a physical phenomenon stumping the theorists  for nearly 50 years.    The theorists are still arguing.
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https://phy.duke.edu/about/history/historical-faculty/fritz-london

Fritz London 1900-1954

Presenter Notes
Presentation Notes
The ideas we will discuss are largely due to Fritz London who developed a phenomenological  theory before the microscopic materials mechanisms were developed by Bardeen, Cooper, and Schrieffer a few years after he died.

https://phy.duke.edu/about/history/historical-faculty/fritz-london
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Some phenomenological theories < 1957  thanks to F. London
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London model of conductivity in superconducting materials;   

               

From Maxwell's equations:
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Note:  Equations are in 
cgs Gaussian units.

Presenter Notes
Presentation Notes
These equations represent models of idealized electrons in metals, starting with the Drude model which we previously discussed.  The symbol  tau represents a “relaxation” time; n represents the number density.
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Properties of a normal metal
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Does this model allow for any temperature 
dependence on the resistivity?

1. No.
2. Yes.
3. Maybe.
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2

London model of conductivity in superconducting materials;   

               

From Maxwell's equations:
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How is the London model different from the Drude
model?

1. Subtle difference.
2. Big difference.
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Some phenomenological theories < 1957
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London model of conductivity in superconducting materials
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Are these equations 
1. Exact?
2. Approximate?
3. Wrong?

Presenter Notes
Presentation Notes
Following the logic of London’s equations.   Here lambda which comes out of the analysis is a parameter with units of length.
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London model – continued
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Here we assume we know 
the boundary value at x=0.

Presenter Notes
Presentation Notes
Fancy thinking with the time dependence.    The result shows that the B field decays within the material within a distance lambda.   Similarly, the current density also decays within the material.
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London model – continued
2

2
2

/

/

4

Vector potential for 
 

Penetration length for superconductor:    

( , ) (0, )
 and 0 :

ˆ ( )                 ( ) (0)    

L

L

L

x
z z

x
y y L z

m
ne

B x t B t e

A x A

c

x B e

λ

λ

λ
π

λ

−

−

≡

=
∇ ∇⋅ =

= = −

= × A A
A y

B

2
x/

2

( ) B (0Recall ) e    

0     or       =

 form  for current density:  

0

  L
y L z

nex
mc

ne ne em
mc c

J

m

λλ −=

 ⇒ + = + 
 

J A v A

x
λL

7Typically, 10L mλ −≈

x̂

ŷ
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Presenter Notes
Presentation Notes
The conclusion is that the current and magnetic field are excluded from the bulk of the superconductor; they are confined within a length lambda at the surface.
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Behavior of superconducting material – exclusion of 
magnetic field according to the London model
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Presenter Notes
Presentation Notes
Lambda is also called the London penetration length.
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Behavior of magnetic field lines near superconductor

normal
state:

superconducting 
state:

Presenter Notes
Presentation Notes
An illustration of the phenomenon in three dimensions.
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Presenter Notes
Presentation Notes
Demonstration of the magnetic field effects when a small permanent magnetic is put above a superconducting magnetic.   In this case the liquid N2 is needed to produce the superconducting phase of the material.



04/25/2022 PHY 712  Spring 2022 -- Lecture 33 15

Need to consider phase equilibria between “normal” and 
superconducting state as a function of temperature and 
applied magnetic fields.
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Presenter Notes
Presentation Notes
Interesting properties of the magnetization field of a superconductor.
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Magnetization field
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Presenter Notes
Presentation Notes
Here we need to consider thermodynamics of phase change.    The Gibbs free energy of the superconducting state can be estimated.      An applied magnetic field can raise the Gibbs free energy so that the superconducting phase is less favorable than the normal phase.
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Magnetization field (for “type I” superconductor)
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Presenter Notes
Presentation Notes
Plets of fields and Gibbs energy as a function of the applied field H.
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Presenter Notes
Presentation Notes
Briefly, BCS theory estimated the energy of a superconductor relative to a normal metal at room temperature
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Temperature dependence of critical field
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Presenter Notes
Presentation Notes
The energy and critical field depends on temperature in a characteristic way predicted by the theory.
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Type I elemental superconductors
http://wuphys.wustl.edu/~jss/NewPeriodicTable.pdf

Presenter Notes
Presentation Notes
Some elemental super conductors.

http://wuphys.wustl.edu/%7Ejss/NewPeriodicTable.pdf
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Type I superconductors:

Presenter Notes
Presentation Notes
This discussion is relevant to “type I”  superconductors.
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The following slides give a quick look of some of the 
intriguing aspects of superconducting materials and 
their properties --
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Type II superconductors

Presenter Notes
Presentation Notes
Type II superconductors are more complicated.     This model is more consistent with the so called high temperature superconductors.
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Quantization of current flux associated with the superconducting 
state  (Ref:   Ashcroft and Mermin, Solid State Physics)
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Presenter Notes
Presentation Notes
Part of the story is that there can be (quantized) fields (vortices) within type II superconductors.    This slide discusses some aspects of the currents.
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Quantization of current flux associated with the superconducting 
state  -- continued
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Such “vortex” fields can exist within type II superconductors.

Presenter Notes
Presentation Notes
The analysis follows from the notion that the wavefunction of the superconducting “particle” has a non-trivial phase factor.
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Presenter Notes
Presentation Notes
Some superconducting materials listed on the web.
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Crystal structure of one of the high temperature 
superconductors

YBa2Cu3O7

From MS thesis of Brent 
Howe (Minn State U, 2014)

Presenter Notes
Presentation Notes
One of the high temperature superconducting materials.
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Some details of  single vortex in type II superconductor
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Presenter Notes
Presentation Notes
Equations demonstrating that vortex solutions are consistent with London’s model.
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junction.

Presenter Notes
Presentation Notes
Scanning probe techniques can be used to visualize the magnetic vortices.
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