PHY 712 Electrodynamics
11-11:50 AM MWF Olin 103
Notes for Lecture 34:

Review - Part |

1. Motivation of final exam and how to
optimize the experience

2. Some comments on effective use of
Maple or Mathematica

3. Some important mathematical tools
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[Fri: 03/25/2022

Chap. 9 Radiation from localized oscillating sources [#18 03/30/2022

22 Mon: 03/28/2022 |(Chap. 9 Radiation from oscillating sources
23 (Wed: 03/30/2022 |Chap. 9 & 10 Radiation and scattering #19 04/01/2022
24 Fri: 04/01/2022 |Chap. 11 Special Theory of Relativity #20 04/04/2022
25 Mon: 04/04/2022 |Chap. 11 Special Theory of Relativity #21 04/06/2022
26 \Wed: 04/06/2022 |Chap. 11 Special Theory of Relativity
27 |Fri: 04/08/2022 |Chap. 14 Radiation from moving charges H#22 04/11/2022
28 [Mon: 04/11/2022 |Chap. 14 E:r‘flgg‘;” from accelerating charged #23  |04/18/2022
29 Wed: 04/13/2022 |Chap. 14 Synchrotron radiation

Fri: 04/15/2022 |No class Holiday
30 Mon: 04/18/2022 |Chap. 14 & 15 Thompson and Compton scattering #24 04/20/2022
31 \Wed: 04/20/2022 |Chap. 15 Radiation from collisions of charged particles
32 |Fri: 04/22/2022 |Chap. 13 Cherenkov radiation
33 [Mon: 04/25/2022 Sf;;ggﬁdgnﬁé‘ M aspects of
34 Wed: 04/27/2022 Review
35 |Fri: 04/29/2022 Review

Important dates: Final exams available Apr. 29; due May 9
Outstanding work due May 9

04/27/2022
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Honors Presentations and Awards Ceremony — Part Il
Time: Thursday, April 28, 2022 at 4 PM
Location: Olin 101 (video conferencing also available (contact

wfuphys@wfu.edu for link information))
PROGRAM

Honors Theses Presentations:

Caleb Sawyer — “Mechanical Properties of Human Mammary Epithelial Cells
in Colonies during Mitosis” (Mentor: M. Guthold )

Alexander Marshall — “Generating a Three-Dimensional Lattice of Photonic

Spheres to Track Fluorescently Labelled Chromatin” (Mentor: K. Bonin )
Physics Honor Society (SPS) Induction

Honoring Graduating Seniors and Graduate Students

Recognition of New Physics Majors

Physics Awards Ceremony
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Motivation for giving/taking final exam

1.
2.

3.

Opportunity to review/solidify knowledge in the topic
Opportunity to practice problem solving techniques
appropriate to the topic

Assessment of performance. Accordingly, the work you

turn in must be your own (of course).

* You are encouraged to consult with your instructor
(but no one else!) if any questions arise about the
exam questions

« Extra credit awarded if you find
errors/inconsistencies/ambiguities in the exam
guestions



Instructions on exam:

Note: This is a take-home" exam which can be turned in
any time before 5 PM Monday, May 9, 2022. In addition to
each worked problem, please attach ALL Maple (or
Mathematica, Matlab, Wolfram, etc.), work sheets as well as
a full list of resources used to complete these problems. It is
assumed that all work on the exam is performed under the
guidelines of the honor code. In particular, if you have any
questions about the material, you may consult with the
iInstructor but no one else. For grading purposes, each
qguestion in multi-part problems are worth equal weight.
Credit will be assigned on the basis of both the logical steps
of the solution and on the correct answer.



More advice about exam —

 Itis important that the instructor is able to read your
work and understand your reasoning.

« Since you will be using Maple or Mathematica or ?? to
evaluate some of your results, consider integrating
them into your exam paper or perhaps paste snips into
your favorite word processor.

* Your exam paper does not need to be a work of art,
but it does need to be readable. If you prefer to
submit your exam paper electronically, that will be fine.
(I may print it myself.)



Example solution using Maple --

W C\Users\natalie\Activefiles\Coursework\s22phy7T12\homework\ hw9enhanced.mw - [Server 1] - Maple 2021

File Edit View Insert Format Evaluate Tools Window Help

NEEER %56 &4 BT>= == <o W I0%C @ QAR O [
‘ |Text| |Nnnexecutable Mathl |Math| C 20 Output | Times Mew Roman *|| 20 Tl Bu :ZIEIZ: l'ﬂ EE:E

=

Text mode Math mode
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HW 7 PHY 712

PHY 712 -- Assighment #9

January 31, 2022

Complete reading Chapter 3 and start Chapter 4 in Jackson .

1. Consider the charge density of an electron bound to a proton in a hydrogen atom - p(r) = (1/mag3) e-2720, where ag
denotes the Bohr radius. Find the electrostatic potential ®(r) associated with p(r). Compare your result to HW#1.

In this case, we are given the charge density and need to find the electrostatic potential. The basic equations from
lecture are --
Example for isolated charge density p(r)with

electrostatic potential vanishing for » — oo

1 p(r')
D(r)= a’r
(r) 4re, '[ } ‘r—r“ |

1 a7 7' *
; jd%'p(r'{ 1,00, (9:@')}

- ~7 1 I
dre, 20+l
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HW #9 continued --

In our case, the charge density is 1sotropic and only Im=00 contributes. The angular integration gives
an extra factor of 4 P1 and we need to perform the radial integral.

> assume(a > 0);
> Phi:i=r—- 1 Prg -(L-mt(xz-exp(— 2 ],xZO..r} + z'm(x-exp(— 2x ],er..inﬁnif}’N;

Pi-a”-4-Pi- epsilon0 \ T a a

rooo_2Zx

2 a
[x ‘€ dx o 23

(~1) g | - b xe e
r
D:=rr 3 r
ma mel

> simplify (Phi(r) );

_2r
anu

q((r—l—am]e —am]
4da-1melr
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HW #9 continued --

> simplify(Phi(r));

_2r
i~
q((r—l—a~]e — a~

J

da-melr
Result from problem #1:
: 2r
. s
> Phil == r— : : 114+ —1:
I i 4-Pi-epsilon0 r ( i a]"
2T
q-e ¢ (l—l—L
Ol =7+ £
4-m-€0r
> simplify(Phi(r) — Phil (r)):
9
AmTelr
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More advice — accumulated trusted

equations/mathematical relationships and know how to
use them

Jackson
pg. 783

Table 4 Conversion Table for Given Amounts of a Physical Quantity -

The table is arfanged so that a gn:en amount of some physical quantity, expressed as so

many SI or Gaussian units of that quantity, can be expressed as an equivalent number
of units in the other system. Thus the entries in each row stand for the same amount,
expressed in different units. Al factors of 3 (apart from exponents) should, for accurate
work, be replaced by (2.997 924 58), arising from the numerical value of the velocity of
light. For example, in the row for displacement (D), the entry {127 X 10°) is actually
(2.997 924 58 % 47 % 10%) and * 9"‘isaq'."c|.|zlllgrriIII"""':1 = §.987 55.... Where a name
for a unit has been agreed on or is in common usage, that name is Ewerl Otherwise,
one merely reads so many Gaussian units, or ST units.

04/27/2022 PHY 712 Spring 2022 -- Lecture 34
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Jackson

04/27/2022

Pg.

783

Physical Quantity ~ Symbaol ‘SI ' Gaussian

Length ! 1 meter (m) 10° centimeters (cm)

Mass m 1 kilogram (kg) 1P grams (g)

Time . lsecond (s) 1 second (s)

Frequency v 1 hertz (Hz) 1 hertz (Hz)

Force F 1 newton (N) 10° ~ dynes

gﬂ;; ﬁ} Liowe@ 107 ergs

Power P 1watt (W) S0 ergs s~

Charge q 1 coulomb (C) ~ 3IxX 1P statcoulombs

Charge density p 1Cm™ 3% 1P  statcoul'cm™®

Current I 1 ampere (A) - 3Ix10° statamperes

Current density J 1Am? 3x10°  statamp cm”*

Electric field E - lvoltm™ (Vm™") §x107* staivolt em™!

Potential &,V 1volt (V) = statvolt

Polarization P 1Cm™ 3x10°  dipole moment em™?

Displacement D 1Cm™? 127 % 107 statvolt cm™
(statcoul cm™?)

Conductivity o 1 mho m™! 9x10° s

Resistance R 1 ohm (1) FRX 107" gem™!

Capacitance C 1 farad (F) 9x10" cm

Magnetic flux &, F 1 weber (Wh) 10* gauss cm?® or maxwells

Magnetic induction B 1 tesla (T) 10 gauss (G)

Magnetic ficld H 1Am™! 47 % 107 oersted (Oe)

Magnetization M 1Am™ 103 magnetic moment cm™>

Inductance* L  1henry (H) §x 101

*There s some confusion about the unit of inductance in Gowssinn units. This stems from the use
by some authors of o modified system of Gauvssian units in which current is measured in
electromagnetic units, so that the connection between charge and current &s I, = (1ic)(dig/dr).
Since inductance is defined through the induced voltege V = L({dl/dr) or the energy U = 4LP, the
choice of current defined in Section 2 means that our Gaussian vnit of inductance is equal in
magnitude and dimensions (©1™") to the electrostatic unit of inductance, The electromagnetic
eurrent [, is related to our Gaussian current [ by the relation [, = (Le)l. From the energy
definition of inductance, we see that the electromagnetic inductance L. is related to our Gauasian
inductance L through L., = ¢’L. Thus L., has the dimensions of length. The modified Gaussian
sysiem generally uses the electromagnetic unit of inductance, as well as current. Then the voltage
relation reads V = (L, /eWdl./dr). The numerical connection between units of inductance is

1 henry = § x 107" Gaussian (es) unit = 10° emu

PHY 712 Spring 2022 -- Lecture 34 12



Source for standard measurements —
https://physics.nist.gov/cuu/Constants/index.html

The NIST Reference on Information at the foundation of modern science and

Constants, Units, and Uncertainty Leg_lr_'loiogy from the Physical Measurement Laboratory of

CODATA Internationally recommended 2018 values of the
Fundamental Physical Constants

Constants Version history and disclaimer
Topics:
Values
- Search by name | | [ search
Equivalents

Searchabl - a1 -
il Display ® alphabetical list, © table (image), or © table (pdf)

(e.g., electron mass, most misspellings okay)

Background

by clicking a category below

Universal

Defined constants
Frequently used
constants
Electromagnetic
Conversion factors for
Atomic and nuclear energy equivalents

Physico-chemical

Extensive listings

All values (ascii)

Find the correlation coefficient between any pair of constants

See also
Detailed articles on the 2018 adjustment of the values of the constants
Wall Chart and Wallet Card of the 2018 constants
Background information related to the constants
Links to selected scientific data
Previous Values (2014) (2010) (2006) (2002) (1998) (1986) (1973) (1969)
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https://physics.nist.gov/cuu/Constants/index.html

a-(bxc)=b-(cxa)=c-(axbh)

Vector ax(bxc)=(a-c)b— (a-b)e
relations (@axb)-(cxd) =(a-c)b-d) — (a-d)b-c)
VX V=0
V.(Vxa)=0

VX (Vxa)=V(V-a)— Va

V.(ga) =a-Vy + ¢V -a

VX (gpa)=Vyxa+ ¢V xa

Va-b)=(a-V)b+(b-V)a+ax(Vxbhb)+bx(VXxa)
V-(axbh)=b-(Vxa)—a-(Vxbh)
Vx(axb)=aV-b)—b(V-a)+(b-V)a—(a-V)b

If x is the coordinate of a point with respect to some origin, with magnitude
r = |x|, m = x/r is a unit radial vector, and f(r) is a well-behaved function of r,

then
V-x=3 Vxx=0
of
Vel =2 f+ % v x [nf)] - 0
(- Vufe) = 1 fa — na-m) + 0w L

V(x-a) =a+ x(V-a) +iL X a)

1 .
where L = - (x X V) is the angular-momentum operator.
i

04/27/2022 PHY 712 Spring 2UZ2Z2 -- Lecture 34 14



In the following ¢, i, and A are well-behaved scalar or vector functions, V is a
three-dimensional volume with volume element d’x, S is a closed two-
dimensional surface bounding V, with area element da and unit outward normal

n at da.

J-v V:-Adx = J- A -nda (Divergence theorem)

s

j Vi d’x = f yn da
v 5
f?xAd3x=J-nxAda

v s

J (pV: + Vo - Vi) d'x = L ¢n - Vi da (Green’s first identity)
v

L (VY — YY) d'x = J’S (VY — YVod) - nda (Green’s theorem)

In the following S is an open surface and C is the contour bounding it, with line
element dl. The normal n to S is defined by the right-hand-screw rule in relation
to the sense of the line integral around C.

L (VX A)-nda= i A -dl (Stokes’s theorem)

J-nx‘?uirda:fﬁ g dl
s c

04/27/2022 PHY 712 Spring 2022 -- Lecture 34
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Explicit Forms of
Vector Operations

Let e, e,, e; be orthogonal unit vectors associated with the coordinate directions
specified in the headings on the left, and A,, A,, A5 be the corresponding com-
ponents of A. Then

W, O

— V = g — 4 e
N 4 1 0x4 ? X5 : X4
= .
. dA dA dA
§ = V-A=—+ "4+
2 |l 0Xy 0X- X4
B 0A, A dA, A dA, A
ﬁa 75‘-1‘\—3;( 3 2)+ez( 1 3+ej 2 1
= X5 X x5 X X X
= iy Py P
b, Py Ty

Ve =

2
0X ﬂx% &x%
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Cvlindrical
(p, b. 2)

04/27/2022

Vi=e —+e-— +e —
v Er?p ezpﬂ(ﬁ Ec'r'z
14 |
voa-12 16A3+&A3
p dp p dd 0z
1 7A
vA(_ﬂ)+(£ﬂ
p dp a7 07 ap

pﬂ_w)+1f?2¢+w

pz &q.)z 372

PHY 712 Spring 2022 -- Lecture 34
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v{f;=e1&—¢+ _1_6_1}1+E L 9

€2 3T
dar r df rsin 6 dg
1 4 d . 1 dA
VoA S5O (PA) L (sin A+
redr rsin 6 76 rsinf de
1 |4 A, |
o -~ VXA-=e—|—(sinfd;) — —
L% rsmé | do dd |
Y T -
= 1 dA, 194 1|4 dA,
= + ———(rA + e; — | — - —
- Ez[r sinfl dp  r or (r 3)_ . r [ﬁr (rA2) a0 ]

1d(,0d 1 a(. 4 1 &
Vi = - rz_—l'b + -— = smﬁ-—w + 55— !i;
re oar ar r= sin 6 76 a8 resm- 6 dg
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Comment on cartesian unit vectors versus local (cylindrical
or spherical) unit vectors

r =sind cosg X+sinf sing y +cosf z
0 =cosf cos¢ Xx+cosl sing y—sinf z
@= —sing X+cos¢gy

Note that V°A = (VzAx)iJr (Vsz)y - (VzAZ)i

Also note that V£ (r) = 828f(r) 2 5];(’”)



Special functions -- many are described in Jackson
Additional source -- https://dimf.nist.gov/

mey of

athematical
URCHOnS
Index

MNotations

Search
Help?
Citing
Customize

L
About the Project

04/27/2022

NIST Digital Library of Mathematical Functions

Praoject News

2022-03-15 DLMF Update; Version 1.1.5
2022-01-15 DLMF Update; Version 1.1.4
2021-09-15 DLMF Update; Version 1.1.3
2021-07-19 Brian D. Sieeman, Associate Editor of the DLMF, dies at age §1

More news
Fareword 20 Theta Functions
Preface 21 Multidimensional Theta Functions
Mathematical Introduction 22 Jacobian Elliptic Functions

1 Algebraic and Analytic Methods 23 Weierstrass Elliptic and Modular Functions

2 Asymptotic Approximations 24 Bernoulli and Euler Polynomials

3 Numerical Methods 25 Zeta and Related Functions

4 Elementary Functions 26 Combinatorial Analysis

5 Gamma Function 27 Functions of Number Theory

6 Exponential, Logarithmic, Sine, and Cosine 28 Mathieu Functions and Hill’s Equation
Integrals 29 Lamé Functions

7 Error Functions, Dawson’s and Fresnel 30 Spheroidal Wave Functions
Integrals 31 Heun Functions

8 Incomplete Gamma and Related Functions 32 Painlevé Transcendents

9 Airy and Related Functions 33 Coulomb Functions

10 Bessel Functions 34 3j, 6j, 9j Symbols

PHY 712 Spring 2022 -- Lecture 34
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https://dlmf.nist.gov/

Basic equations of electrodynamics

CGS (Gaussian) ]|
D=E+47P =¢E V- -D=dnp V-D=p D=€0E+P=€E
H=B-47M =B H-'B-M-18B
H vV-B=0 v.B =0 n 7
1 0B JB
VXE=———m VYE=——
c Ot ot
vxH=5,10 | g m=342
xH=— S x H = -
c c Ot ot
F=g(E+ Y xB) F =g(E+vxB)
C
1 1
u=—(E-D+B.H) | u= ~(E-D+B-H)
8 2
S = —(E x H) S = (E x H)
4
04/27/2022 21




More relationships

CGS (Gaussian) MKS (SI)
D=E+47P =¢cE D=¢E+P=¢cE
H:B—47zM:lB H:LB—M:iB
H Hy H
E--vo-1A E--vo-2
c Ot ot

B=VxA B=VxA

€ < €/ €

H g M,
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More SI relationships: More Gaussian relationships:
D=¢E+P D=c¢E D=E+4~P D=¢E
H-LB_-M) B=uH B = F(H) H=B-47M) B=yH B=F(H)
Ky for ferromagnet
for ferromagnet

elementary charge: €=1.6021766208 x 10-19C
=4.80320467299766 x 10-10 statC



Energy and power (Sl units)

: . |
Electromagnetic energy density: u = > (E-D+H-B)

Poynting vector: S=ExH

Equations for time harmonic fields :

Er) =R (E(r, w)e )E %(E(l‘, we ™™ +E(r, w)em)

<u(r,t)>t e =iﬂ%((ﬁ(r,a})oI~)*(r,a))+]§(r,a))-ltl*(r,a))))

<S(r,t)>t e = %iﬁ((ﬁ(r, w)<H (r, a))))



Solution of Maxwell's equations:

1 OE
V-E=p/¢g, VxB——zﬁ—:,uOJ
c” Ot
VxE+a—B:O V-B=0
Ot

Introduction of vector and scalar potentials:

V-B=( — B= VxA
VxE+a—B:O :>V><(E+5—Aj:0
ot ot
E+8—A:—VCD or E:—VCD—a—A

ot Ot



Scalar and vector potentials continued:

V-E=plg,:
o(V-A
~-V*® - (8t )=p/50
1 OE
VxB-— = u,J
: ¢’ ot .
2
VX(VXA)—I— 12[8(VCD)+8?
C ot ot



Analysisof the scalar and vector potential equations :

o(V-A)
VD - =ple
Py P&
1 (6(VD) &°A
Vx(VXxA)+ + = u,d
( ) cz[ ot Gtzj Ho
. 1 00
Lorentz gauge form --require V- A, +—; 8@; =(
C
1 0°0®
2
-V CI)L+C2 atzL:p/go
1 0°A
~V’A, + g L=ud

¢t ot



Solution methods for scalar and vector potentials

and their electrostatic and magnetostatic analogs:

1 o’

~-V’0, + . 8t2L =pleg,
1 0°A

~V’A, + = 812L = u,J

In your “bag” of tricks:
U Direct (analytic or numerical) solution of
differential equations
4 Solution by expanding in appropriate
orthogonal functions
d Green’s function techniques



How to choose most effective solution method --
4 In general, Green’s functions methods work well when
source is contained in a finite region of space

Consider the electrostatic problem:

VD, =p/ e,
Define: V°G(r,r") =475 (r—r")
1 o ,
D, (r)= d’r p(r YG(r,r )+
() WOJV p(r)G(r,r)
1

— | d*r | Gr,r )W Or) - o)WV G(r,r) | -F.
A7 <



For electrostatic problems where p(r) 1s contained in a small
1

region of space and § -,  G(r,r )=

_1 ‘Z i rz-lu v, (0.0), (0.0)

20+1 7




Electromagnetic waves from time harmonic sources
Charge density : ,0(1', { ) = 93(5(1', a))e_iwt)
Current density : J (r, t) = 9?(3(1‘, a))e_m )

Note that the continuity condition :

apg’t)+V-J(r,t)=0 e iwp(r. @)+ V(o) =0

For dynamic problems where A(r,)and J(r,®) are

contained in a small region of space and § — oo,

@
i—Jr—r/
e C

G(r,r', ) =

‘r—r'



Electromagnetic waves from time harmonic sources —
continued:

For scalar potential (Lorentz gauge, k = 2)
C

zk|r r'

D(r,w)=D,(r,0)+ jaﬂ '

dre, p(r ’ a))

‘l‘l‘

. 1
For vector potential (Lorentz gauge, k = —)
C

zk|r—r'

n~~/

Alr,0)=A,(r, (0)+Ejd3 r'

3(r', a))

‘l’l‘



Electromagnetic waves from time harmonic sources —
continued:

Useful expansion :

ik|r—r'|

— =ik j (ke oy (ke )Y, (B)Y " ()

Im

Spherical Bessel function : j, (k)
Spherical Hankel function : &, (k) = j,(kr)+ in, (kr)

&)(r, a)) = &)O(r, a))+ Z%m (r, a))Y,m (f')

¢lm(r W Id3r'pr a))]l(kr )h (kr) (')



Electromagnetic waves from time harmonic sources —
continued:

Useful expansion :

=ik Y ji (ke o (ke )Y, (B)Y "1 ()

Im

ik|r—r'|

4ﬂh—r'
Spherical Bessel function : j, (k)
Spherical Hankel function : &, (k) = j,(kr)+ in, (kr)

m~~/

A(r,a)): Ko (raa))"' zalm (r,a) Im (f)
Im

a, (r,0)=iku, j d*r'I(e', o), (ke Y, (ke )Y i (£)



Electromagnetic waves from time harmonic sources —
continued:

E(r,0)=-VO(r,0)+ioA(r,0)

B(r,w)=Vx A(r,a))

Power radiated :

7 A
9 =), = e (B (r0)<B (r0)




Example of dipole radiation source

J(r,o)=2J """ plr,m)= ol

—r/R
cosBGe"’

— iR

o0

n~~/

A(r,w)=12J, (iky, )j rdrte " hy(kr. )j, (kr.)

0

D(r,m)=— ok COS Hj rdrte” " (kr. )j (kr.)
£, WR g
Evaluation forr» >> R :

N X ikr 2R3
Ar,0)=2J 41, er (1 N szz)z

ikr . 3
D(r,w)= Jok cos6 = (1+ l j 215 —~
N r kr (1+k R )




Example of dipole radiation source -- continued
Evaluation forr >> R :

N X ikr 2R3
A(r,0)=2J,u, er (1+k2R2)2

ikr . 3
D(r,w)= ok cos6 = (1+ l j ( =L
1

&y r +k2R2)2
Relatlonshlp to pure dipole apprOX|mat|on (exactgvhen kR=>0)
RJ, .
EJCPVI‘,O r, :—.—J‘d?’rJ (r,m)=— ﬂ. 07
L L

Corresponding dipole fields:  A(r,w)=— fall p(w) ©

4 r
. . ikr
Blr.0)=— L plo) {14 |
r

drwe, kr



Electromagnetic waves from time harmonic sources — for
dipole radiation --:

~

E(r,0)=-VO(r,0)+ ia)A(r,a))

dQ)




Radiation from a moving charged particle

Variables (notation) :

X
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Liénard-Wiechert potentials —(Gaussian units)




Electric and magnetic fields far from source:

E(e.)- (R—z'RT SIS

c
B(r,t)— in(r,t)
Let AE% BE% BEX
= c Rx||IR =P )x
B0 T R (R -p)<s]



Poynting vector:

S(r,t) = i(E ><B)

t)= i Rx||[R—P Jx [
wle0)= gy Rl
B(r, t) =R x E(r, t)

A o [Rx|(R-p)xp]
S(r)=  RIEE = 3 X(l[(ls.ﬁ);
A /A . 2
AP Rx_(R—ﬁ)xp]
dQ dze [1_B,ﬁ)6
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