PHY 712 Electrodynamics 11-11:50 AM MWF in Olin 103

Plan for Lecture 7:

Continue reading Chapters 2 & 3

- 1. Methods of images -- planes, spheres
- 2. Solution of Poisson equation in for other geometries -- cylindrical

Physics colloquium this week is TODAY at 4 pm in Salem Hall and virtually.

Chemistry & Physics
Departments
Joint Seminar

Wednesday January 26th, 2021 at 4 p.m.

Yusuf G (Debo) Adewuyi, Ph.D.

Chemical, Biological and Bio Engineering Department
North Carolina A&T State University

Title: "Advances in Ultrasound- and Cavitation-Assisted Catalyzed Conversions of Edible and Non-Edible Biomass to Biorenewable Fuels"

Salem Hall 012

Course schedule for Spring 2022

(Preliminary schedule -- subject to frequent adjustment.)

	Lecture date	JDJ Reading	Topic	HW	Due date
1	Mon: 01/10/2022	Chap. 1 & Appen.	Introduction, units and Poisson equation	<u>#1</u>	01/14/2022
2	Wed: 01/12/2022	Chap. 1	Electrostatic energy calculations	<u>#2</u>	01/19/2022
3	Fri: 01/14/2022		Electrostatic energy calculations	<u>#3</u>	01/21/2022
	Mon: 01/17/2022	& 3	MLK Holiday no class		
4	Wed: 01/19/2022	Chap. 1 & 2	Electrostatic potentials and fields	<u>#4</u>	01/24/2022
5	Fri: 01/21/2022	Chap. 1 - 3	Poisson's equation in 2 and 3 dimensions	<u>#5</u>	01/26/2022
6	Mon: 01/24/2022	Chap. 1 - 3	Brief introduction to numerical methods	<u>#6</u>	01/28/2022
7	Wed: 01/26/2022	Chap. 2 & 3	Image charge constructions	<u>#7</u>	01/31/2022
8	Fri: 01/28/2022	Chap. 2 & 3	Cylindrical and spherical geometries		

PHY 712 -- Assignment #7

January 26, 2022

Continue reading Chap. 2 in **Jackson**.

- Eq. 2.5 was derived as the surface change density on a sphere of radius a due to a charge q
 placed at a radius y > a outside the sphere. Determine the total surface charge on the sphere
 surface.
- 2. Now consider the same system except assume *y* < *a* representing the charge q being placed inside the sphere. What is the surface charge density and the total surface charge in this case?

Survey of mathematical techniques for analyzing electrostatics – the Poisson equation

$$\nabla^2 \Phi(\mathbf{r}) = -\frac{\rho(\mathbf{r})}{\varepsilon_0}$$

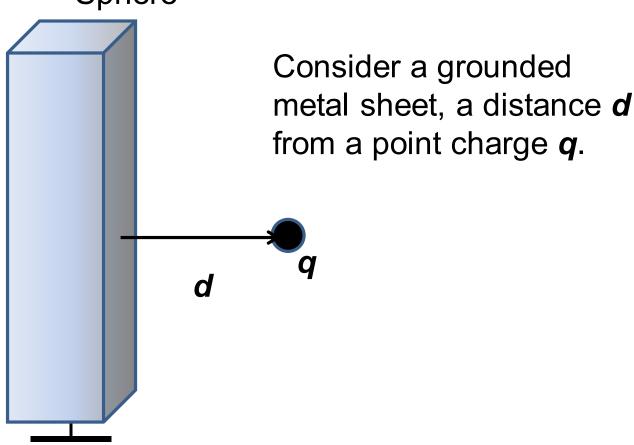
- 1. Direct solution of differential equation
- 2. Solution by means of an integral equation; Green's function techniques
- 3. Orthogonal function expansions
- 4. Numerical methods (finite differences and finite element methods)
- 5. Method of images

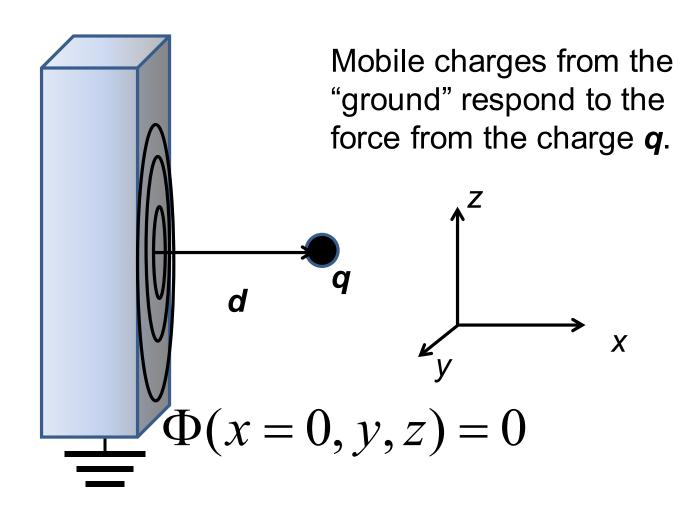
Method of images

Clever trick for specialized geometries:

- > Flat plane (surface)
- Sphere

Planar case:





$$\nabla^2 \Phi = -\frac{q}{\varepsilon_0} \delta^3 (\mathbf{r} - d\hat{\mathbf{x}})$$
$$\Phi(x = 0, y, z) = 0$$

Trick for $x \ge 0$:

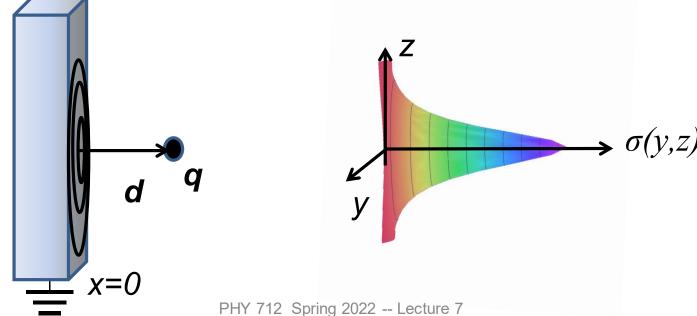
$$\Phi(x \ge 0, y, z) = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{|\mathbf{r} - d\hat{\mathbf{x}}|} - \frac{q}{|\mathbf{r} + d\hat{\mathbf{x}}|} \right)$$

Surface charge density:

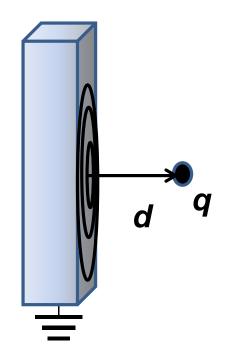
$$\sigma(y,z) = \varepsilon_0 E(0,y,z) = -\varepsilon_0 \frac{d\Phi(0,y,z)}{dx} = -\frac{q}{4\pi} \left(\frac{2d}{(d^2 + y^2 + z^2)^{3/2}} \right)$$

Surface charge density: $\sigma(y,z) = -\frac{q}{4\pi} \left(\frac{2d}{\left(d^2 + v^2 + z^2\right)^{3/2}} \right)$

Note:
$$\iint dy dz \ \sigma(y,z) = -\frac{q^2 d}{4\pi} 2\pi \int_0^\infty \frac{u du}{\left(d^2 + u^2\right)^{3/2}} = -q$$



1/26/2022



Surface charge density:

$$\sigma(y,z) = -\frac{q}{4\pi} \left(\frac{2d}{(d^2 + y^2 + z^2)^{3/2}} \right)$$

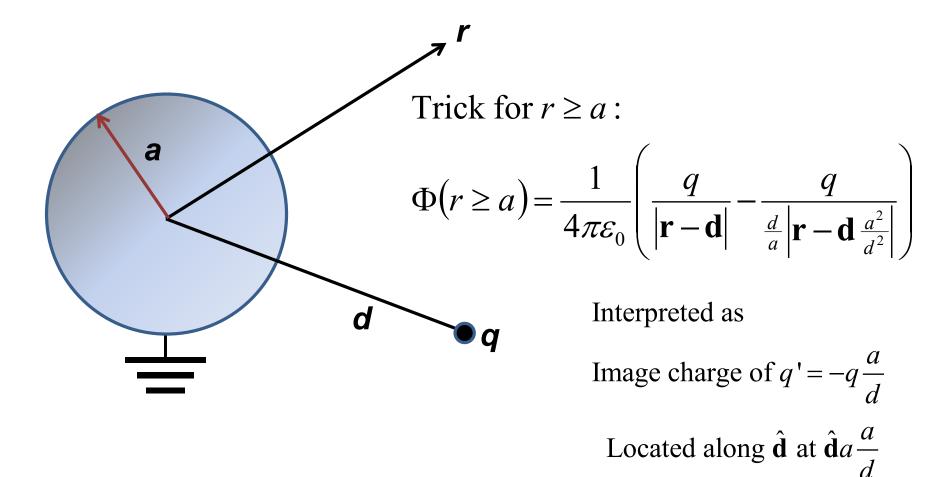
Force between charge and sheet:

$$\mathbf{F} = \frac{-q^2 \hat{\mathbf{x}}}{4\pi\varepsilon_0 (2d)^2}$$

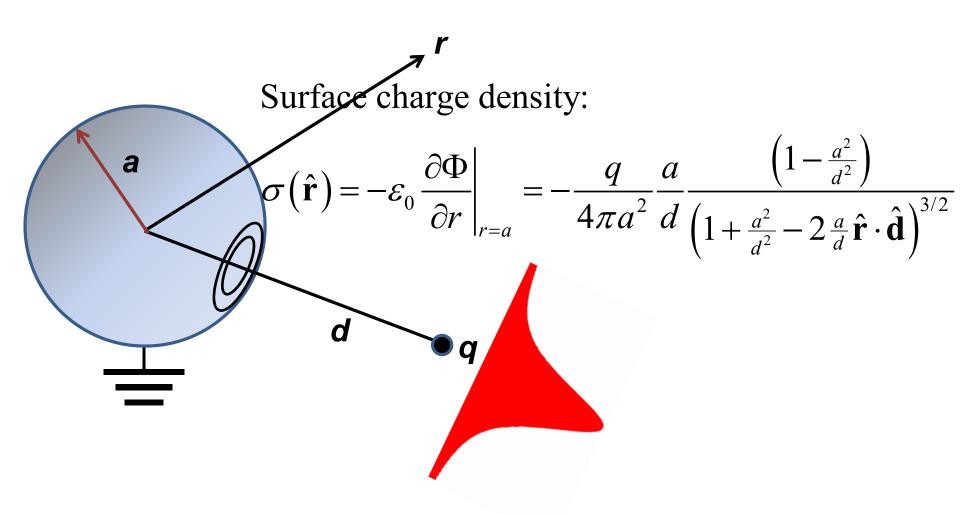
Image potential between charge and sheet at distance x:

$$V(x) = \frac{-q^2}{4\pi\varepsilon_0(4x)}$$

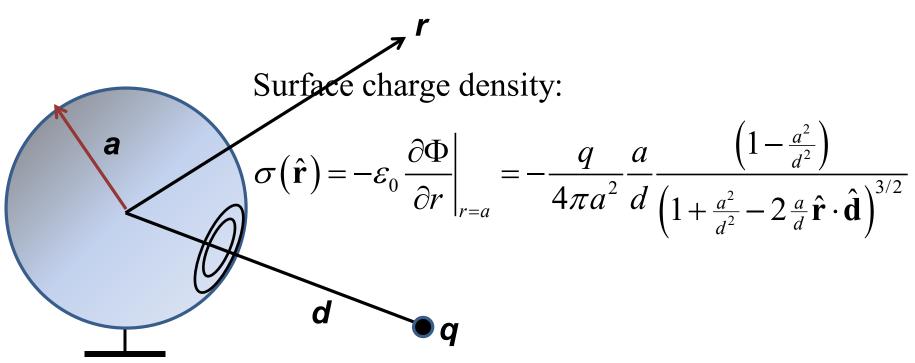
A grounded metal sphere of radius a, in the presence of a point charge q at a distance d from its center.



A grounded metal sphere of radius a, in the presence of a point charge q at a distance d from its center.



A grounded metal sphere of radius a, in the presence of a point charge q at a distance d from its center.



Force between q and sphere

$$|\mathbf{F}| = \frac{1}{4\pi\epsilon_0} \frac{q^2(a/d)}{(d-a^2/d)^2} = \frac{q^2}{4\pi\epsilon_0} \frac{ad}{(d^2-a^2)^2}$$

Use of image charge formalism to construct Green's function

Example:

Suppose we have a Dirichlet boundary value problem on a sphere of radius *a* :

$$\nabla^{2}\Phi = -\frac{\rho(\mathbf{r})}{\varepsilon_{0}} \qquad \Phi(r = a) = 0$$

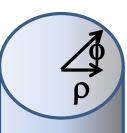
$$\nabla^{2}G(\mathbf{r}, \mathbf{r}') = -4\pi\delta^{3}(\mathbf{r} - \mathbf{r}')$$

$$\Rightarrow \text{For } r, r' > a: \qquad G(\mathbf{r}, \mathbf{r}') = \frac{1}{|\mathbf{r} - \mathbf{r}'|} - \frac{1}{\frac{r'}{a}|\mathbf{r} - \frac{a^{2}}{r'^{2}}\mathbf{r}'|}$$

Analysis of Poisson/Laplace equation in various regular geometries

- 1. Rectangular geometries
- 2. Cylindrical geometries
- 3. Spherical geometries

Solution of the Poisson/Laplace equation in various geometries -- cylindrical geometry with no z-dependence (infinitely long wire, for example): Corresponding orthogonal functions from solution of



Laplace equation : $\nabla^2 \Phi = 0$

$$\nabla^2 \Phi = 0$$

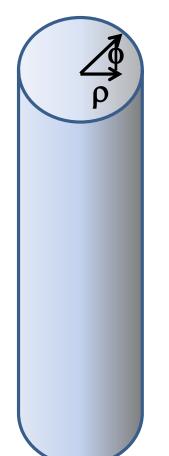
$$\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \Phi}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \Phi}{\partial \phi^2} = 0$$

$$\Phi(\rho,\phi) = \Phi(\rho,\phi + m2\pi)$$

⇒ General solution of the Laplace equation in these coordinates:

$$\Phi(\rho,\phi) = A_0 + B_0 \ln(\rho) + \sum_{m=1}^{\infty} \left(A_m \rho^m + B_m \rho^{-m} \right) \sin(m\phi + \alpha_m)$$

Solution of the Poisson/Laplace equation in various geometries -- cylindrical geometry with no z-dependence (infinitely long wire, for example):

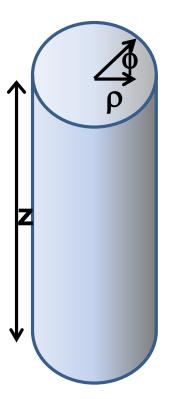


Green's function appropriate for this geometry with boundary conditions at $\rho = 0$ and $\rho = \infty$:

$$\left(\frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\frac{\partial}{\partial\rho}\right) + \frac{1}{\rho^2}\frac{\partial^2}{\partial\phi^2}\right)G(\rho, \rho', \phi, \phi') =
-4\pi \frac{\delta(\rho - \rho')}{\rho}\delta(\phi - \phi')$$

$$G(\rho, \rho', \phi, \phi') = -\ln(\rho_{>}^{2}) + 2\sum_{m=1}^{\infty} \frac{1}{m} \left(\frac{\rho_{<}}{\rho_{>}}\right)^{m} \cos(m(\phi - \phi'))$$

Solution of the Poisson/Laplace equation in various geometries -- cylindrical geometry with z-dependence



Corresponding orthogonal functions from solution of

Laplace equation : $\nabla^2 \Phi = 0$

$$\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \Phi}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \Phi}{\partial \phi^2} + \frac{\partial^2 \Phi}{\partial z^2} = 0$$

$$\Phi(\rho,\phi,z) = \Phi(\rho,\phi+m2\pi,z)$$

$$\Phi(\rho,\phi,z) = R(\rho)Q(\phi)Z(z)$$

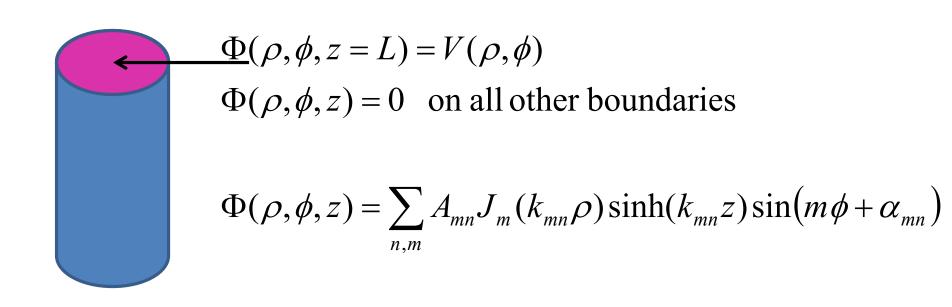
Cylindrical geometry continued:

$$\frac{d^{2}Z}{dz^{2}} - k^{2}Z = 0 \qquad \Rightarrow Z(z) = \sinh(kz), \cosh(kz), e^{\pm kz}$$

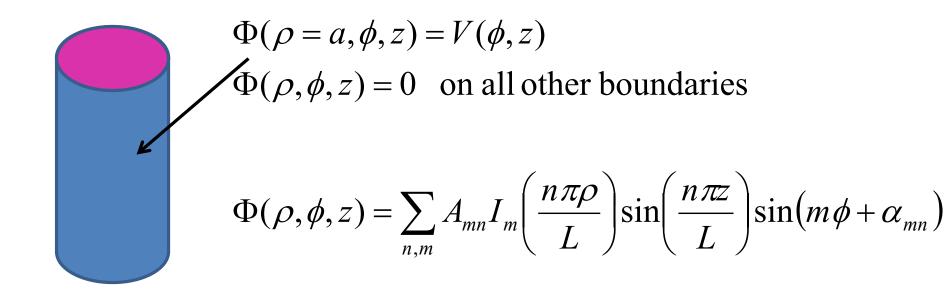
$$\frac{d^{2}Q}{d\phi^{2}} + m^{2}Q = 0 \qquad \Rightarrow Q(\phi) = e^{\pm im\phi}$$

$$\frac{d^{2}R}{d\rho^{2}} + \frac{1}{\rho}\frac{dR}{d\rho} + \left(k^{2} - \frac{m^{2}}{\rho^{2}}\right)R = 0 \qquad \Rightarrow J_{m}(k\rho), N_{m}(k\rho)$$

Cylindrical geometry example:



Cylindrical geometry example:

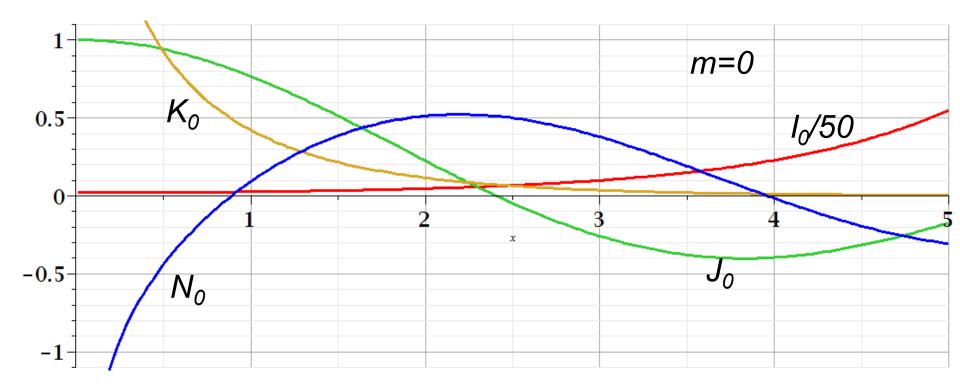


Comments on cylindrical Bessel functions

$$\left(\frac{d^{2}}{du^{2}} + \frac{1}{u}\frac{d}{du} + \left(\pm 1 - \frac{m^{2}}{u^{2}}\right)\right)F_{m}^{\pm}(u) = 0$$

$$F_m^+(u) = J_m(u), N_m(u), H_m(u) \equiv J_m(u) \pm iN_m(u)$$

$$F_m^-(u) = I_m(u), K_m(u)$$



Comments on cylindrical Bessel functions

$$\left(\frac{d^{2}}{du^{2}} + \frac{1}{u}\frac{d}{du} + \left(\pm 1 - \frac{m^{2}}{u^{2}}\right)\right)F_{m}^{\pm}(u) = 0$$

$$F_m^+(u) = J_m(u), N_m(u), H_m(u) \equiv J_m(u) \pm iN_m(u)$$

$$F_m^-(u) = I_m(u), K_m(u)$$

