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Scalar-relativistic treatment

The scalar-relativistic equations were originally developed by Koelling and Harmon[1] as a way to
represent the physics of the Dirac equation, average over spin-orbit components. Another good
reference for these equations is on the NIST website[2]
http://physics.nist.gov/PhysRefData/DFTdata/contents.html. In terms of Rydberg energy units
(where the fine structure constant α is related to the speed of light according to c = 2/α). Explicitly,
the constants expressed in SI units are as follows: α = e2/(4πε0h̄c), the unit of length is the Bohr
radius, aB = 4πε0h̄

2/(mee
2), and the Rydberg energy is εRy = α2mec

2/2 ). In these units, the
differential equation satisfied by upper component of the radial wavefunction (G(r)/r with quantum
number κ is(

d2

dr2
− `(`+ 1)

r2

)
G(r) +M(r)(E − V (r))G(r)− M ′(r)

M(r)

(
d

dr
+
〈κ〉
r

)
G(r) = 0. (1)

Here,

M(r) ≡ 1 +
(α

2

)2
(E − V (r)). (2)

Here we are interested in the spin-orbit splitting pair for each ` > 0, where κ = −`− 1 = −(j + 1
2
)

corresponds to j = ` + 1
2

and κ = ` = (j + 1
2
) corresponds to j = ` − 1

2
. The orbital angular

momentum averaged value of κ is given by

〈κ〉 =
1

2(2`+ 1)
(`(2`) + (−`− 1)(2`+ 2)) = −1. (3)

Shadwick, Talman, and Normand[3] showed that it is possible to transform this equation into a
form without the first derivative so that the Numerov integration scheme can be applied:

y(r) =
G(r)√
M(r)

, (4)

with the resulting differential equation:

d2

dr2
y(r) = A(r)y(r), (5)

A(r) ≡ `(`+ 1)

r2
+ (V (r)− E)M(r) +

3

4

(α
2

)4( 1

M(r)

dV (r)

dr

)2

(6)

+
1

2

(α
2

)2 1

M(r)

d2V (r)

dr2
+
(α

2

)2 1

rM(r)

dV (r)

dr
.
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We have programmed these equations, and find that they work reasonably well with LDA exchange-
correlation functionals, but for GGA functionals their sensitivity to the potential tends to lead to
uncontrolled oscillations. Consequently, with the help of Marc Torrent and Francois Jollet of CEA,
who modified a code of David Vanderbilt, we have developed the following alternate approach. In
the Vanderbilt code, the second-order scalar-relativistic code is written in terms of two coupled
first order equations of the form:

d

dr
G(r) =

G(r)

r
+M(r)F (r). (7)

d

dr
F (r) = −F (r)

r
+

(
`(`+ 1)

r2
1

M(r)
− (E − V (r))

)
G(r). (8)

In these expressions, F (r) is an auxiliary function which is similar to the radial function of the lower
component in the Dirac equation. In this form, the scalar-relativistic equations are much more
stable, since they do not directly use derivatives of the potential. Even with this approach, we find
that the scalar-relativistic equations are sensitive to mesh size for the GGA exchange-correlation
form. For a point nucleus, the electron-nucleus interaction has the singular form −2Z/r. In order
to use the Vanderbilt code, it is necessary to to evaluate the wavefunction at several points at the
origin and in the asymptotic regions. For r → 0, we can make a power series expansion using

M(r) ≈
r→0

1 +
(α

2

)2(2Z

r
+ E − V0 − V ′0r

)
(9)

The corresponding form of the radial wavefunctions near the origin takes the form

G(r) ≈
r→0

rγ
(
C0 + C1r + C2r

2
)

(10)

and, from Eq. (7) the corresponding auxiliary function takes the form

F (r) ≈
r→0

rγ

rM(r)

(
C0(γ − 1) + C1γr + C2(γ + 1)r2

)
. (11)

In these expressions, the coeffients can be determined by analyzing Eq. (1) according to powers of
r. For example,

M(r)(E−V (r)) ≈
r→0

1

r2
α2Z2 +

1

r
Z
(
2 + α2(E − V0)

)
+ r0

(
(E − V0) +

α2

4

(
(E − V0)2 − 4ZV ′0

))
....

(12)

−M
′(r)

M(r)
≈
r→0

1

r
+r0

(
− 2

Zα2

(
1 +

α2

4
(E − V0)

))
+r1

(
4

α2Z2
+
V ′0
Z

+
E − V0
α2Z2

(
2 +

α2

4
(E − V0)

))
+.....

(13)
The leading radial power coefficient is given by

γ =
√
`(`+ 1) + 1− Z2α2. (14)

From the r → 0 behavior of Eq. (1), the relationship between the coefficients Cn takes the general
form:

T (−2)
n Cn + T (−1)

n Cn−1 + T (0)
n Cn−2 = 0, (15)

where
T (−2)
n = n(2γ + n), (16)

T (−1)
n = Z(2 + α2(E − V0))−

2

α2Z

(
1 +

α2

4
(E − V0)

)
(γ + n− 1), (17)
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and

T (0)
n = −α2ZV ′0 +

(
1 +

α2

4
(E − V0)

)
(E − V0) +

(
V ′0
Z

+
4

Z2α4

(
1 +

α2

4
(E − V0)

)2
)

(γ + n− 1).

(18)
With these parameters, we can determine

C1 = −T
(−1)
0 C0

T
(−2)
1

and C2 = −T
(−1)
1 C1 + T

(0)
0 C0

T
(−2)
2

. (19)

The code also implements several finite nuclear models described by Andrae[4] which has no singular
behavior at the origin. For the finite nuclear models, the singular electron-nuclear term is omitted,
while the values of the potential constants V0 and V ′0 are adjusted accordingly. In this case, we
can use the same small r expansions as in Eqs. 10 and 11, using the recursion formulas Eq. (19),
however the parameters are altered to

γ → γ̃ = `+ 1. (20)

T (−2)
n → T̃ (−2)

n = n(2`+ 1 + n). (21)

T (−1)
n → T̃ (−1)

n =
α2

4
V ′0

 1(
1 + α2

4 (E − V0)
)
 (`+ n). (22)

T (0)
n → T̃ (0)

n = (E − V0)
(

1 +
α2

4
(E − V0)

)
+

α2

4
V ′0

 1(
1 + α2

4 (E − V0)
)
2

(`+ n). (23)

Note that these equations are slightly inconsistent with the scalarrelativistic code versions < 4.0.1.0
for the C2 coefficients. In order to find bound states (0 > E ≡ −b2, the solver requires inward
integration from rmax. Here, we assume that the potential vanishes up to a possible (positive)
Coulombic charge of qe so that

V (r) ≈
r→∞

= −2q

r
. (24)

Then the asymptotic form of the radial wavefunctions are

G(r) ≈
r→∞

e−brrg, and F (r) ≈
r→∞

(
−b+

g − 1

r

)
G(r)

M(r)
, (25)

where

b ≡

√
|E|
(

1− α2|E|
4

)
, (26)

and

g ≡ q

b

(
1− α2

2
|E|
)
. (27)

Full Dirac treatment

It is also possible to analyze the full Dirac equation in a similar way. For this, we follow the
convention of Loucks[5] and define the function

cF (r) ≡ 2

α
F (r). (28)
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The function cF (r) is used for input to and within the subroutine unboundD and boundD, but
the output lower component wave function is F (r). The coupled equations for the full Dirac radial
functions in Rydberg energy units then become

(
d

dr
+
κ

r

)
G(r) =

(
1 +

(α
2

)2
(E − V (r)))

)
cF (r) (29)

and (
d

dr
− κ

r

)
cF (r) = − (E − V (r)))G(r) (30)

In order to determine the form of the radial wavefunctions in the limit as r → 0, we again expand
the potential as a power series in r:

V (r) ≈
r→0
−2Z

r
+ V0, (31)

and also represent the upper and lower radial wavefunctions in a power series with leading power
coefficient rs:

G(r) ≈
r→0

rs
∞∑
n=0

Anr
n cF (r) ≈

r→0
rs
∞∑
n=0

Bnr
n. (32)

A recursion formula for the coefficients takes the form(
s+ n+ κ −Zα2/2

2Z s+ n− κ

)(
An
Bn

)
=

(
0 1 + α2(E − V0)/4

−(E − V0) 0

)(
An−1
Bn−1

)
. (33)

The condition for a non-trivial solution fixes the value of the leading power s:

s =
√
κ2 − Z2α2, (34)

and the corresponding ratio of the leading coefficients is given by

B0 =
2(s+ κ)

Zα2
A0. (35)

From evaluating Eq. (19), the first order coefficients can be computed to be

A1 =
4α4Z2 +

(
4α2 + E − V0

) (
(s+ κ)− 2α2Z2

)
2Z(2s+ 1)

A0, (36)

and

B1 = −
(
2α2 + E − V0

)
(2(s+ κ) + (E − V0))

(2s+ 1)
A0. (37)

With these results, we can use the following relationships to initialize the radial wavefunctions near
the origin:

G(r) ≈
r→0

rs(A0 +A1r) and cF (r) ≈
r→0

rs(B0 +B1r). (38)

Note that for the case of a finite potential model or a pseudopotential where Z = 0 in Eq. (31),
this analysis has to be re-examined since the expansion coefficients diverge.

For evaluating the aymptotic form, we can assume that the potential vanishes so that the upper
component satisfies the equation(

d2

dr2
− `(`+ 1)

r2
− b2

)
G(r) = 0, (39)
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where

b =

√
|E|
(

1− α2

4
|E|
)

(40)

and ` = κ for κ > 0 and and ` = −κ − 1 for κ < 0. We can thus assume the asymptotic solution
form:

Gnκ(r) ≈
r→∞

k`(br), (41)

where k`(u) denotes u times a modified bessel function of the third kind, having the values

k0(u) = e−u k1(u) = e−u
(

1 +
1

u

)
k2(u) = e−u

(
1 +

3

u
+

3

u2

)
, (42)

etc. These functions can be generated according to the recurrsion relation[6]

k`+2(u) = k`(u) +
(2`+ 3)

u
k`+1(u). (43)

From the recurrsion relations[6], one can also show that(
d

du
+
`

u

)
k`(u) = −k`−1(u), (44)

which can be used to obtain the asymptotic form of the lower component

cFnκ(r) ≈
r→∞

−|E|
b
k`−1(br). (45)

Note that the text, Atomic Structure Theory: Lectures on Atomic Physics by Johnson[7] gives
many more details on the asymptotic forms and a later version of this code should include those
results. At the moment, the code only includes the leading terms quoted here and will not work
for an ion. Johnson[7] also works out a very clever method of converging the energy eigenvalues
from the inward and outward integration. In particular, he noted that the solutions of Eq. (29)
with labels 1 and 2 corresponding to energies E1 and E2 have the identity:

d

dr
(G1 cF2 −G2 cF1) = (E1 − E2)

(
α2

4
cF1 cF2 +G1G2

)
. (46)

In a similar way that Hartree[8] used the mismatch of the slope of the inward and outward integra-
tion results to adjust the energy, Eq. (46) can be used to correct the energy. At the matching radius
rm, we normalize the upper component so that Gout(rm) = Gin(rm), but the corresponding lower
component will have a discontinuity ∆[cF (rm)] ≡ cFout(rm) − cFin(rm). The first order estimate
of the energy correction is thus given by

∆E = C G(rm)∆[cF (rm)], where C−1 ≡
∫ ∞
0

(
(G(r))2 +

α2

4
(cF (r))2

)
. (47)

In order to test whether the code is working, it is helpful to check the analytic solutions for a H-like
ion with nuclear charge Z, which is given in the textbook by Bethe and Saltpeter[9] and can be
expressed in terms of confluent hypergeometric polynomial (Kummer) functions[6] F (a, b, z), the
principal quantum number

n = |κ|, |κ|+ 1, |κ|+ 2, .... ≡ n′ + |κ|, (48)
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the apparent principal quantum number

N ≡
√
n2 − 2n′(|κ| − s), (49)

the normalization factor

N ≡

√
Γ(2s+ n′ + 1)

(n′!)4N(N − κ)

1

Γ(2s+ 1)

(
2Z

N

)1/2

, (50)

and the length parameter (in Bohr units)

ρ ≡ 2Zr

N
. (51)

In terms of the previously defined parameters, including the energy E relative to the electron rest
mass energy (in Rydberg energy units), the normalized radial wavefunctions take the form (up to
an arbitrary sign convention)

Gnκ(r) = N

√(
2 +

α2

2
Enκ

)
e−ρ/2ρs

(
(N − κ)F (−n′, 2s+ 1, ρ)− n′F (−n′ + 1, 2s+ 1, ρ)

)
− (52)

and

Fnκ(r) = −N

√(
−α

2

2
Enκ

)
e−ρ/2ρs

(
(N − κ)F (−n′, 2s+ 1, ρ) + n′F (−n′ + 1, 2s+ 1, ρ)

)
. (53)

The energy eigenvalue Enκ < 0 is given by:

Enκ =
2

α2

((
1 +

α2Z2

(n− |κ|+ s)2

)−1/2
− 1

)
. (54)

In order to take advantage of the solver properties, it is convenient to calculate all of the bound
states for each κ value. These are called in the order of κ = −1, 1,−2, 2,−3, 3,−4.. corresponding
to orbital angular momenta of the upper component ` = 0, 1, 1, 2, 2, 3, 3, .... If another ordering is
desired, this can easily be accomplished with the use of a mapping algorithm.

Example input and output

At the moment, only graphatom is programmed to use the Dirac equation solver. To run graphatom,
use the following command in a directory containing the “in” file:

[path]/bin/graphatom<in>&out&

An example “in” file for Bi is:

Bi 83

LDA-PW diracrelativistic loggrid 2001

6 6 5 4 0 0

6 1 1 2

6 1 -2 1

0 0 0 0

0
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The corresponding Bi.GA file is:

Completed calculations for Bi

Perdew-Wang LDA -- PRB 45, 13244 (1992)

Radial integration grid is logarithmic

r0 = 8.3003918E-05 h = 6.8893252E-03 n = 2001 rmax = 8.0000000E+01

Dirac-relativistic calculation

AEatom converged in 29 iterations

for nz = 83

delta = 3.313784838079538E-016

Orbital energies

n kappa l occupancy energy

1 -1 0 2.0000000E+00 -6.6480533E+03

2 -1 0 2.0000000E+00 -1.1934355E+03

3 -1 0 2.0000000E+00 -2.8796157E+02

4 -1 0 2.0000000E+00 -6.5980525E+01

5 -1 0 2.0000000E+00 -1.1514073E+01

6 -1 0 2.0000000E+00 -1.0379038E+00

2 1 1 2.0000000E+00 -1.1468243E+03

3 1 1 2.0000000E+00 -2.6688214E+02

4 1 1 2.0000000E+00 -5.6821818E+01

5 1 1 2.0000000E+00 -8.3277130E+00

6 1 1 2.0000000E+00 -4.2545518E-01

2 -2 1 4.0000000E+00 -9.7647279E+02

3 -2 1 4.0000000E+00 -2.2874691E+02

4 -2 1 4.0000000E+00 -4.7404690E+01

5 -2 1 4.0000000E+00 -6.4975188E+00

6 -2 1 1.0000000E+00 -2.8622974E-01

3 2 2 4.0000000E+00 -1.9414140E+02

4 2 2 4.0000000E+00 -3.2493774E+01

5 2 2 4.0000000E+00 -2.0654190E+00

3 -3 2 6.0000000E+00 -1.8605221E+02

4 -3 2 6.0000000E+00 -3.0736387E+01

5 -3 2 6.0000000E+00 -1.8441098E+00

4 3 3 6.0000000E+00 -1.1362662E+01

4 -4 3 8.0000000E+00 -1.0958823E+01

Total energy

Total : -46803.6120503352
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