PHY 742 Quantum Mechanics Il
1-1:50 PM MWF Olin 103

Plan for Lecture 10

Path integral approach to quantum analysis
Ref: Chapter 11 A-C of Professor Carlson’s text

Some background/motivation

Review of classical action

Quantum action for a free particle

Path integral vs Schrodinger formulation of QM
Examples
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Course schedule for Spring 2022

(Preliminary schedule -- subject to frequent adjustment.)

Lecture date Reading Topic HW Due date
1 |Mon: 01/10/2022 |Chap. 12 Appruxi_me_lte solutions for stationary states -- #1 101/14/2022
The variational approach
2 |Wed: 01/12/2022 |Chap. 12 C Appruxim_ate solutions for stationary states -- 42 101/19/2022
Perturbation theory
3 |Fri- 01/14/2022 Chap. 12 D Approximate snlutiuns_ for stationary states -- 43 101/21/2022
Degenerate perturbation theory
Mon: 01/17/2022 MLK Holiday -- no class
4 |Wed: 01/19/2022 |Chap.12C &D Approximate solutions for stationary states — |1 |o4/24/2022
Additional tricks
9 |[Fri: 01/21/2022 Chap. 13 Examples of of the use of perturbation theory [#5 (01/26/2022
6 |Mon: 01/24/2022 |Chap.13&12B [1yperfine perturbation and also the WKB 46 01/28/2022
approximation
7 |Wed: 01/26/2022 |Chap. 14 Scattering theory
8 |Fri: 01/28/2022 |Chap. 14 Scattering theory #7 02/04/2022
9 [Mon:01/31/2022 |Chap. 14 Scattering theory #8 (02/07/2022
Wed: 02/02/2022 |No class Fire caution
Fri: 02/04/2022 No class Fire caution
10 |Mon: 02/07/2022 |Chap. 11 (A-C) Time evolution and Feynman path integrals #9 02/09/2022
11 (Wed: 02/09/2022 |Chap. 11 (A-C) Time evolution and Feynman path integrals
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PHY 742 -- Assighment #9

Febrary 04, 2022
Read Chapter 11 (A-C) in Carlson's textbook.

1. Carry out the intermediate steps to verify the result for propagator given in Eq. 11.11 of your textbook.
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EMENDED EDITION

Quantum
Mechanics
aml Path

- Emended by Daniel F. Styer

Dover reprinted version of classic text.
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From: https://www.britannica.com/biography/Richard-Feynman

Richard Feynman, in full Richard Phillips Feynman, (born May 11, 1918, New York, New York, U.S.—

died February 15,1988, Los Angeles, California), American theoretical physicist who was widely

regarded as the most brilliant, influential, and iconoclastic figure in his field in the post-World War

Il era.

Undergraduate project — Feynman-Hellman theorem

AUGUST 15, 1939 PHYSICAL REVIEW VOLUME 56

Forces in Molecules

R. P. FEYNMAN
Massachusetts Institute of Technology, Cambridge, Massachusetts

(Received June 22, 1939)

Formulas have been developed to calculate the forces in a molecular system directly, rather
than indirectly through the agency of energy. This permits an independent calculation of the
slope of the curves of energy vs. position of the nuclei, and may thus increase the accuracy, or
decrease the labor involved in the calculation of these curves. The force on a nucleus in an
atomic system is shown to be just the classical electrostatic force that would be exerted on this
nucleus by other nuclei and by the electrons’ charge distribution. Qualitative implications of
this are discussed.
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https://www.britannica.com/biography/Richard-Feynman

Ph. D. Thesis of R. P. Feynman —
“Principle of least action in Quantum Mechanics”, Princeton 1942.



REVIEWS OF
MODERN PHYSICS

Vorume 20, NuMmser 2 ArriL, 1948

Space-Time Approach to Non-Relativistic
Quantum Mechanics

R. P. FEYNMAN

Cornell University, Ithaca, New York

Non-relativistic quantum mechanics is formulated here in a different way. It is, however,
mathematically equivalent to the familiar formulation. In quantum mechanics the probability
of an event which can happen in several different ways is the absolute square of a sum of
complex contributions, one from each alternative way. The probability that a particle will be
found to have a path x(#) lying somewhere within a region of space time is the square of a sum
of contributions, one from each path in the region. The contribution from a single path is
postulated to be an exponential whose (imaginary) phase is the classical action (in units of &)
for the path in question. The total contribution from all paths reaching x, ¢ from the past is the
wave function ¢(x, ). This is shown to satisfy Schroedinger’s equation. The relation to matrix
and operator algebra is discussed. Applications are indicated, in particular to eliminate the
coordinates of the field oscillators from the equations of quantum electrodynamics,
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PHYSICAL REVIEW VOLUME 97, NUMBER 3 . FEBRUARY 1, 1955

Slow Electrons in a Polar Crystal

R. P. FEYNMAN
California Institute of Technology, Pasadena, California

(Received October 19, 1954)

A variational principle is developed for the lowest energy of a system described by a path integral. It is
applied to the problem of the interaction of an electron with a polarizable lattice, as idealized by Fréhlich.
The motion of the electron, after the phonons of the lattice field are eliminated, is described as a path
integral. The variational method applied to this gives an energy for all values of the coupling constant.
It is at least as accurate as previously known results, The effective mass of the electron is also calculated,
but the accuracy here is difficult to judge.

PHYSICAL REVIEW B VOLUME 1, NUMBER 10 15 MAY 1970

Velocity Acquired by an Electron in a Finite Electric Field in a Polar Crystal

K. K. THORNBER*] AND RICHARD P. FEYNMAN
California I'nstitute of Technology, Pasadena, California 91109
(Received 24 November 1969)

The expectation value of the steady-state velocity acquired by an electron interacting with the longi-
tudinal, optical phonons of a polar crystal in a finite electric field is analyzed quantum mechanically for

2107/ 2%,21'21)11:1:'::1,ry coupling strength, field strengthP,ng}g Eeélg}gggglzgll_l_'(f.ed{u‘%elgate of loss of momentum by an electron



Review of classical Now consider the Lagrangian defined to be:

Lagrangian mechanics:

y(t)

Ay f P |

(t.,y:) Kinetic otentia

energy
energy
\/ (tyyy)
. Hamilton's principle states:
>

Ly
S = jL({ y(t),%},tjdt 1s minimized for physical y(¢)

Euler-Lagrange relations:

oL d oL _
dy dr oy
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Feynman’s idea

Probability of quantum system to evolve from (z,,y, ) <> (t Y f)

KG. [y D exp(iS(it,)/h)
All paths i— f In classical mechanics, the action
is optimized for the physical path.

(t,y) In Feynman’s notion of path

integrals, the probability
(t,y amplitude is obtained from

constructive interference of all
> possible actions.




In order to develop Feynman’s idea, we need to think about the time evolution of
quantum systems. Ref. 11 A & B in Professor Carlson’s text

oF¥(r.1) = H(r,t)¥Y(r,?)
ot

For the case that the Hamiltonian 1s time independent:
H(r,t) = H(r), the partial differential equation 1s
separable 1n time and the solutions may take the form
(r,0) > ¢,(r)e ™" if H(r)g,(r)=E,¢,(r).

¢n> form a complete set of basis

=1.

Schrodinger Equation: i

The eigenstates ¢ (r) —
functions such that ) |4 (g,




Now consider the time evolution operator - U(t,t,)
“P{r > U(t.t, “P >
Ul(t,.t,)=1,
U (t.1,)U (1,1,) =
Ulty.t,)U(t.1,)=U(1,.1,).

0
ih—| (1 ) =H|¥(1)).
> fﬁgU(r,rﬂ)“P(rﬂ»:HU(r,rﬂ)“P(rﬂ))
rh{%U(rr) HU (t.1,).
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(11.22)
(11.2b)
(11.2¢)

(11.3)

12



From these properties, we can conclude that for a time independent H(r):

U(t.ty)=exp| —iH (t—1,)/h |. (11.4)

This can be evaluated in terms of the eigenstates:

=2 ‘ é,) o Enlt=t0)/7 (¢, | (11.5)

U(t.t,) :Ze:{p[—fﬂ(f—fﬂ )/h]‘!‘*’ﬁ(‘?ﬁn

Now consider the example where H(r) represents the Hamiltonian of a free particle —
for simplicity, we will take assume the motion is only in the x direction

o ik
mo-m=i )=



<x,t

U(t,t,)|xy,t,) = K(x,2,%,,8,) =

Z ¢n>e—iEn(t—tO)/h <¢n

n

K(x.r:xﬂ._rﬂ)—\/ ” cXp

2xili(1—1,)

2/07/2022

f:ﬁ(x—xﬂ)g

2h(t—1,) |

] J‘ Tl o~k Crx0) =i (WK 12m)(i~1y)
21

(I1.11)



Summary -- the time evolution of a free quantum particle

Time dependent Schrodinger equation:  i# 8‘1’5, ) = H(x,t)¥Y(x,t)
Formal integral solution: W (x,?) = j dx'K (x,x",t)¥(x',0)
where: (zh% — H(x, t)j K(x,x t)=0(x—x")
n o’
For H(x,t)=H(x)=- >
2m Ox

m \° m(x—x")’
K(x,x',t)z( : j exp| — :
2iht 2iht



Application of Feynman’s path integral idea to the free particle in one dimension -- need
scheme to evaluate all possible paths --

Use discretization to evaluate paths

(t,x;)
| Z oC j dx,dx,.....dx,
X1' i All paths i— f
X X5-
X3-
X4—

2/07/2022 PHY 742 -- Spring 2022 -- Lecture 10 16



Application of Feynman’s path integral -- continued
t,—t,
N
Discretization over position; N —1 variable positions x,, x,,...x,_,

S@, ) = fL(x, %,0)dt

Discretization over time: €

. . m .,
In this case, L(x,x,t)=—Xx
2
. y xn o xn—l
We can approximate x = where x,=x, and x, =x,
€

: N
For any given choice of path:  S,(7, f) = exp (%Z(Xn — X, )ZJ
€ n=1



Application of Feynman’s path integral -- continued

2he T3

In order to perform path integral, need to consider all values of the interior

N
For any given choice of path:  §,(i, f) = exp( m Z(xn =X, )2]

points x,, x,,...X_,

For example [/ (x,)= ja’xl exp(zl’;_; ((x — X, )2 +(x, = x, )2 )j

_ (4 12 im Y here A — m
(24) (A’Xl{zhe(z)(x2 %) | whered=—"



Application of Feynman’s path integral -- continued

Continuing next: 71,(x;) = J- dx, 1, (XZ)GXP(ZU;: ( — X )zj
€

2\ 12 im 2
:(BA ) exp(2h€(3) (x — X ) j

Continuing last: 7, (xy) = _[ dxy_Iy_,(xy_)exp ( 2”;:6 (x Ay )2 j

No1\ 12 Im 2
:(NA ) eXp(Zhe(N) (xN —xo) j




Application of Feynman’s path integral -- continued

e =007 e g o=,

Note that 7, —¢,=Ne and x, —x,=x,—x

K, fyoe Y explS(.t,)/h) K@, f)=C(NA") " exp

All paths i— f

m
2ihe

where 4 =

1/2
Previous results for free particle kernel:  K(x,x',7) = ( " j exp (—

2riht

1/2 5

nx.—Xx
= K(x,,x,,t,—1,)=| — " exp| — _(’ )
2mih(t, —t,) 2ih(t, -t

g

\

im(xf —xl.)z )

2h(t, —t.
(f l) )

m(x—x")’
2iht



Application of Feynman’s path integral — continued
Reconciling the constants --

Previous results for free particle kernel:

1/2 5

mx. —Xx
K(x,x,,t,~t)= : e exp| — .(’ 2
2min(t, ) 2ih(t, —t,)

Result of integration over N —1 intermediate points

. 2
i im(x, —x,
K(i,f):C(NAN_I) " exp ( ! l) where A=—""
2n(t, —t,) 2rihe
= (C= AN/z N/2 o o o
o [ m .
General formula: K(i, f) = ( . j [O dx, [O dxszo.o dx,_, exp(iS(t;,t,)/ h)

Note that the accuracy of the evaluation converges as N — .



Feynman’s path integral

m
2ihe

Note that the accuracy of the evaluation converges as N — .

General formula: K(i, f) = (

N/2 «© 00 o0
j j dx, j dx, ... j dx,_, exp(iS(t,,t,)/ 1)

In terms of the propagation kernel K(x,x',¢), the time evolution of the

wavefunction is given by W(x,?) = j dx' K (x,x", )P (x',0)

How is the path integral formulation related to the Schrodinger equation?



How is the path integral formulation related to the Schrodinger equation?

Consider a small increment of time: ¢, =0 ¢, =€

f
Y(x,e)= Idx'K(x,x',e)‘P(x',O)
Lagrangian: L(x,X,t) = %mxz —V(x)
Action: S(x,x',0,6) = [ L(u,ii,t)dt  where u(0)=x and u(c)=x'

0

" 2 '
S(x,x',O,e)zlm{(x X) j—eV(x +.Xj
2 € 2
m 1/2
In this case: K(x,x',¢)= : exp(iS(x,x',0,€)/ h).
27ihe



How is the path integral formulation related to the Schrédinger equation -- continued

K(x,x"e)= (27:}_16

Y(x,e) = j dx'K (x,x",€)¥(x’,0)

v im ie [ x'+x
N(zmhej [deW(x O)exp(zhe(x x) jexp(—%V( , D

1/2
j exp(iS(x,x",0,€)/ h).

Since € 1s small, we can expand all terms about €=0:

. : . - \ .
Z—EV(erszl—eV(x) exp —’—GV(“’CJ ~1-57(x)
n\ 2 ) A h

et u=x"-x

2
Y(x',0)~V(x,0)+u oF(x,0) +lu2 & \P(f’ 0)
OxX 2 OX




How is the path integral formulation related to the Schrédinger equation -- continued

W(x,6) = [dx' K(x,x',0)¥(x',0)

12 o L, . i
jdu exp tmu l_l_EV(x) T(X,O)—I—uaqj(x’o) _*_luz 0 LI"(JzC,O)
J e h o 20 ox

(2721/%

Integral values:

m 1/2 oo imu2 1/2 « lmu2
( j J.duexp =1 ( j jdu u exp =0
2rihe ) 7 2he 2rihe ) 7 2he
. 2 .

= Y(x,e) = Idx'K(x,x',e)‘P(x',O)

ilie 0°¥(x,0)

2m  Ox’ " 0(62)

S (1 — % V(x)j Y(x,0)+



How is the path integral formulation related to the Schrédinger equation -- continued

Y(x,e)= jdx'K(x,x', e)¥(x',0)
ilie 0°¥(x,0)

o2m  ox*

~ (1 — % V(x)j Y(x,0)+

Y(x,e)—¥(x,0) 0JY¥(x,1)
€ T o
So that the path integral results are consistent with:
oY (x, t) he 07 (x,t)
ot 2m ax’

Note that:

in +V (x)¥Y(x,1)



Summary of results —

Feynman path integral can be used to evaluate the time propagation of a quantum
system based on evaluations of the action function.

Next time — some examples.



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

