PHY 742 Quantum Mechanics Il
12-12:50 PM MWEF Olin 103

Plan for Lecture 11

Path integral approach to quantum analysis
Ref: Chapter 11C of Professor Carlson’s text

1. Review of path integral formulation and example

for free particle
2. Role of classical trajectory
3. Examples
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Course schedule tor Spring 2022

(Preliminary schedule -- subject to frequent adjustment.)

Lecture date Reading Topic HW| Due date
_ Approximate solutions for stationary states --
1 |Mon: 01/10/2022 |Chap. 12 The variational approach #1 01/14/2022
_ Approximate solutions for stationary states --
2 (Wed: 01/12/2022 |Chap.12C Perturbation theory #2 01/19/2022
. Approximate solutions for stationary states --
3 |Fri: 01/14/2022 |Chap.12D Degenerate perturbation theory #3 01/21/2022
Mon: 01/17/2022 MLK Holiday -- no class
_ Approximate solutions for stationary states --
4 (Wed: 01/19/2022 |Chap.12C&D Additional tricks #4 101/24/2022
9 |Fri: 01/21/2022 Chap. 13 Examples of of the use of perturbation theory [#5 [01/26/2022
_ Hyperfine perturbation and also the WKB
6 |Mon: 01/24/2022 |Chap.13 & 12B approximation #6 01/28/2022
7 (Wed: 01/26/2022 |Chap. 14 Scattering theory
8 |Fri: 01/28/2022 |Chap. 14 Scattering theory #7 02/04/2022
9 |Mon: 01/31/2022 |Chap. 14 Scattering theory #8 02/07/2022
Wed: 02/02/2022 |No class Fire caution
Fri: 02/04/2022 No class Fire caution
10 Mon: 02/07/2022 |Chap. 11 (A-C) Time evolution and Feynman path integrals #9 02/09/2022
11 \Wed: 02/09/2022 |Chap. 11 (A-C) Time evolution and Feynman path integrals #10(02/11/2022
. Approximation methods for time evolution of
12 |Fri: 02/11/2022 |Chap. 15 A quantum systems
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PHY 742 -- Assignment #10

Febrary 09, 2022
Read Chapter 11 (A-C) in Carlson's textbook.

1. Consider the time dependent wave function ¥(x;t) derived for the one dimensional harmonic oscillator system with

mass m and frequency w and presented on slide 15 of the lecture notes. While it is difficult to perform the integral to
derive this result, it is possible to check that it makes sense in several ways. Write down the Hamiltonian for this
system and work through at least one of the following.

a. Check that the result reduces to the known form when a=0.

b. Check that ¥(x ) satisfies the time dependent Schédinger equation for the one-dimensional harmonic oscillator.
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Feynman’s idea

Probability of quantum system to evolve from (z,,x, ) <> (t X f)

K(i, f)ox Z exp(iS(¢;,t,)/ h)

All paths i— f

( t;, X i)

k}\ (t;, %)

»

S, )= jiL(x, x,t)dt L(x,%,t)=—mx> =V (x)




For free particle, V' (x)=0 :

1/2 2\
m m(xi _xf)

2mih(t, ) P _Zih(tf—tl.)/

K(x,,x,,t,—t)=

1?2 f?

General formula for evaluating path integral using (N —1) intermediate points:

N/2 « 00 00
j | dx, | dx,...| dxy exp(iS(t,t,)/ 1)

—00

KG.1)= (27zzhe

Note that the accuracy of the evaluation converges as N — .



Relationship of path integral to time evolution of probability amplitude:

1

¥ (x ,tf)zjdx,.K(x Xt P (X, 1,)
Consider a small increment of time: ¢, =0 ¢, =€
Y(x,e)= jdx'K(x,e,x', 0)¥(x',0)

: : |
Lagrangian: L(x,x,t)= mez —V(x)

Action: S(x,e,x',0) = jL(u,a,t)dt where u(0)=x"' and u(e)=x

0

! 2 '
S()C,E,X',O)zln’I((x_x) j_eV(X'FXJ
2 € 2
- 1/2
In this case: K(x,e,x',0) = ( ) exp(iS(x,e,x',0)/ h).
2rihe



Relationship of path integral to time evolution of probability amplitude:

Considering intermediate kernels
K(x,,t,,x,t)= jde_lK(x ,tf,xN_l,tN_l)j de_zK(xN_l,tN_l,xN_z,tN_z)...j dx K(x,,t,x,,t,)

m

1/2
In the limit e <1: K(x,6,x,0)= ( j exp(iS(x,e,x',0)/ h)

2ihe

!2 !
where S(x,e,x',O)zlm (x—x) —eV(erx j
2 € 2

Result consistent with path formulation given previously for same N intervals:

. m .
K(l’f):(zm‘hej Ja’xl j dx2...j dx,_ exp(iS(t;,t,)/ h)

In both cases, the accuracy of the evaluation converges as N — .



Role of the “classical” trajectory
1 (t,x)
)
(t;,X7)
»
l‘f 1
S, ) = j L(x,%,0)dt L(x,%,1) = mez —V(x)
i
Classical trajectory:
0S8 =0 Euler-Lagrange equation: oL_d 8L. =0
Ox dt ox

x,(¢) 1s a solution to the Euler-Lagrange equation



Role of the “classical” trajectory -- continued

by
. . . |
S, f)= jL(xCl, X, ,t)dt L(x,x,t)= mez -V (x)
i
Example of a free particle --
X, —X,
L(x,%.0) =~ mi” X, (1) =x, +—L—=(t-1,)
2 t,—t,
2
. 1 [ x,—x
L(x,,x, ,t)y=—m (constant)
2\ t, -1,

Scl(iaf) :%m



I"

Role of the “classical” trajectory -- example of free particle -- continued

Applying Feynman’s idea

Probability of quantum system to evolve from (7,,x, ) <> (z‘ X f)

K(i, f) Z exp(iS(¢;,t,)/ h)

All paths i— f

For this case, suggest that K(i, /)= K (i, f) cc exp(iS (i, f)/ h)

(xr—%f KQM(XW‘%Y\

t,—t, 2h t,—t,

. 1
For this case, S,(i, f)= Em =K (@, f)=Cexp

\ J

1/2
. . m m(xi o xf )2
Previously derived result:  K(x;,x,,t, —t,)= exp| —
27in(t, —1,) 2in (¢, —t,)



Recap — For free particle, classica

Kcl(iaf) — CeXp

m

2

\

im (xf _xi)

5 Rath gives exactresult!

2h 1, —t,

For C =
[27zih(tf ~t

J

)] Kcl (ia f) — KPath Integral (l,f)

More generally, when can we expect:  K(i, f) = K (i, f) = Cexp(iS (G, )/ h) ?

Feynman showed that the classical trajectory approximation is valid for all Lagrangians
which depend on its variables up through quadratic order.

Form for Lagrangians for which K(i, /) =K ,(i, f)
L(x,x;t)= A@t)+ B(O)x+C(t)x+ D()x" + E(t)x” + F(t)xx



Importance of classical trajectory in analysis of path integrals

Consider free particle case 1n a small increment of time: €

Define a deviation from the classical trajectory u(#) = x () —x(¢)

2 . 2
Action: s~ Kernel: K = Cexp my
2€ 2he

LA

'\ﬂ

“f

222222222




Kernel for the one-dimensional harmonic oscillator

This 1s a case for the classical analysis:  K(i, /)= K (i, f) = Cexp(iS,, (i, 1)/ h)

: | 1
L(x,%;t)=—mx’ ——ma’x’
2 2
Classical trajectory: x(t) = Asin(wt + @)

with x, = Asin(wt, +¢) and x, = Asin(wt, +¢) T=t, -t

L(x,(t)) = mew 4 (0032 (ot + @) —sin” (ot + ¢)) = mew 4 cos(2(wt +¢))
(00 ok
== si?(ac)oT) ((xl2 +x; ) cos(wl') —2x,x, ) (Feynman magic)



Kernel for the one-dimensional harmonic oscillator -- continued

K, f) =K, (i, ) = Cexp(S,, i, )/ 1)

mao
Scl — .
2sim(wT)

((xl.2 + X7 ) cos(wT') —2x,x, )

Determining constant C' by recalling free particle result

1/2 2
m(x, —x
For free particle: K(xl.,xf,T):( m j exp[— (x; —x,) }

2wihT 2ihT

For harmonic oscillator:

1/2
mae mao s 2
K(x,x.,T)= exp| — : x; +x,)cos(wl')—2x.x

(oo 1) (Zﬂihsin(a)T)] p( 2ihs1n(a)T)(( f) (@) f)j

Note that the two results are consistent.



How is this useful?

LIJ(.)C ’tf) — jdxl-K(xl'atl'axfatf)T(x'9ti)

1

For the harmonic ocillator with mass m and frequency w:

Choose ¢, =0 and ¢, =1

1/2
K(x.0.x..0) = [ mao ] exp[ ma ((xl.z +x; ) cos(awr)—2x,x, )J

2rihsin(wt) ik sin(wt)

Feynman shows that for W(x,,0) =exp (—n;—;) (x, —a)’ j ;

2
B . mw| —it , A4 Diwt
Y(x, ,t)= exp(—za)t/2) exp(—ﬁtxf —2ax e +7(1+e )D



Examples of using path integrals in research

PHYSICAL REVIEW VOLUME 97, NUMBER 3 . FEBRUARY 1, 1955

Slow Electrons in a Polar Crystal

R. P. FEYNMAN
California Institute of Technology, Pasadena, California

(Received October 19, 1954)

A variational principle is developed for the lowest energy of a system described by a path integral. It is
applied to the problem of the interaction of an electron with a polarizable lattice, as idealized by Frohlich.
The motion of the electron, after the phonons of the lattice field are eliminated, is described as a path
integral. The variational method applied to this gives an energy for all values of the coupling constant.
It is at least as accurate as previously known results. The effective mass of the electron is also calculated,
but the accuracy here is difficult to judge.
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Examples of using path integrals in research

VOLUME 127,

PHYSICAL REVIEW

NUMBER 4 AUGUST 15, 1962

Mobility of Slow Electrons in a Polar Crystal

R. P. FEyNMAN
California I'nstitute of Technology, Pasadena, California

R. W. HELLWARTH
Hughes Research Laboralories, Malibu, California

C. K. Ibppings
Enrico Fermi Institute for Nuclear Studies, University of Chicago, Chicago, Illinois

AND

P. M. PrLaTzMAaN
Bell Telephone Laboratories, Murray Hill, New Jersey
(Received March 26, 1962)

We have obtained an approximate expression for the impedance
function at all frequencies, temperatures, and coupling strengths
of an electron coupled to a polar lattice (a system commonly called
a polaron). The starting point for the calculation is the quantum
mechanical expression for the expected current. The phonon co-
ordinates are eliminated from this expression by well-known field-
theory techniques. The resulting exact “influence functional” is
then approximated by a corresponding quadratic “influence func-
tional” which, it is hoped, imitates the real polaron. Correction
terms are computed to account for the difference between the
approximate impedance and the exact polaron impedance in a
manner closely analogous to Feynman’s treatment of the polaron
self-energy. In fact, the analytic evaluation of the expression for
the impedance obtained here is carried out using the approximate

“influence functional” that was successfully employed in minimiz-
ing the binding (and free) energy of the polaron in earlier calcula-
tions. However, the accuracy obtained using this approximation,
for the impedance calculation, is less satisfactory and its limita-
tions are discussed. Nevertheless, beginning at intermediate
coupling strengths, the approximate impedance produces a level
structure of increasing complexity and narrowing resonances as the
coupling strengthens. This suggests that further refinements may
be fruitful. Methods for finding a better quadratic influence func-
tional for use in our impedance expression as well as ways of
improving the expression further are suggested. A comparison of
our results with those of the Boltzmann equation points up
interesting differences which arise from reversing the order of
taking limits of zero frequency and coupling.
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Examples of using path integrals in research

PHYSICAL REVIEW B VOLUME 1, NUMBER 10 15 MAY 1970

Velocity Acquired by an Electron in a Finite Electric Field in a Polar Crystal

K. K. THORNBER*} AND RicHARD P. FEYNMAN
California I'nstitute of Technology, Pasadena, California 91109
(Received 24 November 1969)

The expectation value of the steady-state velocity acquired by an electron interacting with the longi-
tudinal, optical phonons of a polar crystal in a finite electric field is analyzed quantum mechanically for
arbitrary coupling strength, field strength, and temperature. The rate of loss of momentum by an electron
drifting through the crystal in the applied field is expressed in a form in which the lattice coordinates (the
phonons) have been eliminated exactly by path-integral methods. This expression is then evaluated by a
path-integral approach similar to that used to calculate the impedance of electrons in polar crystals. We
present numerical calculations of field (loss of energy per unit distance) versus velocity for three coupling
strengths using the Frohlich polaron model. In a single curve, all the expected phenomena appear, including
a threshold field for producing hot electrons and a decreasing rate of energy loss with velocity for very fast
electrons. Using only the experimentally measured values of the reststrahlen energy and the static and optical
dielectric constants, we find an energy loss of 0.025 eV /A for electrons near the threshold in Al;Os, which
compares favorably with the experimental value of about 0.03 eV/A. We conclude that optical-phonon
scattering can indeed produce the high rate of energy loss that is present in tunnel-cathode structures.
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Model Hamiltonian
Phonons

H=p?/2m—F -xtH>_ fwiaitax
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More recent extensions -- https://doi.org/10.1063/1.471221

Ab initio path integral molecular dynamics: Basic ideas

Dominik Marx and Michele Parrinello - o
Max-Planck-Institut fur Festkoperforschung, Heisenbergstr. 1, 70569 Stuttgart, Germany T
(Received 12 October 1995; accepted 6 December 1995) | |

The essential ideas underlying ab inin'g)' path integral molecular dynamics and its efﬁcieﬁt'humériclz'il )
implementation are discussed. In this approach the nuclei are treated as quantum particles within the '
‘path integral formulation of quantum statistical mechanics. The electronic degrees of freedom are
~ treated explicitly based on state-of-the-art electronic structure theory. This renders ab initio
simulations of quantum systems possible without recourse to model potentials. A combined
‘extended Lagrangian for both quantum nuclei and electrons defines a dynamical system and yields .
molecular dynamics trajectories that can be analyzed to obtain quantum statistical expectation
values of time-independent operators. The methodology can be applied to a wide range of fields :
addressing problems in molecular and condensed matter chemistry and physics. © 1996 American
Institute of Physics. [S0021-9606(96)03410-2]

K]
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