PHY 742 Quantum Mechanics Il
12-12:50 PM MWEF Olin 103

Plan for Lecture 15

Matrix elements and selection rules
Ref: Chapter 15 and others in E. Carlson’s textbook

1. Selection rules for electric dipole transitions
between spherically symmetric states

2. Rotations of eigenstates of angular momentum
3. Other symmetry related issues
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Course schedule for Spring 2022

(Preliminary schedule -- subject to frequent adjustment.)

| | Lecture date | Reading | Topic IHW| Due date

1 Mon: 01/10/2022 |Chap. 12 Approxima_\te solutions for stationary states -- #1 |01/14/2022
The variational approach

2 |Wed: 01/12/2022 |Chap. 12 C Approxim_ate solutions for stationary states -- #2 |01/19/2022
Perturbation theory

3 |Fri- 01/14/2022 Chap. 12 D Approximate soluti-:::ns‘_.-, for stationary states -- #3 |01/21/2022
Degenerate perturbation theory

| |[Mon: 01/17/2022 | IMLK Holiday -- no class | |

4 |wWed: 01/19/2022 |Chap. 12 C & D Approximate solutions for stationary states — ||y, g4/24/2022
Additional tricks

|5 ||Fri: 01/21/2022  |Chap. 13 I[Examples of of the use of perturbation theory |[#5 |01/26/2022

6 |Mon: 01/24/2022 |Chap. 13 & 12 B Hyperfine perturbation and also the WKB #6 |01/28/2022
approximation

|7 |Wed: 01/26/2022 |Chap. 14 |Scattering theory | |

|8 |Fri: 01/28/2022  |Chap. 14 |Scattering theory #7 ||02/04/2022

9 |Mon: 01/31/2022 |Chap. 14 |Scattering theory #8 |02/07/2022

| |wed: 02/02/2022 |No class [Fire caution | |

| ||Fri: 02/04/2022  |No class IFire caution | |

10 |[Mon: 02/07/2022 |[Chap. 11 (A-C) Time evolution and Feynman path integrals #9 ||02/09/2022

11 |Wed: 02/09/2022

|Chap. 11 (A-C)

|Time evolution and Feynman path integrals

#1D|02f1112022

Approximation methods for time evolution of

‘12 Fri: 02/11/2022 Chap. 15 A #11/02/14/2022
quantum systems
13 |[Mon: 02/14/2022 ||Chap. 15 /Approximate time evolution [#1202/16/2022
14 |Wed: 02/16/2022 |Chap. 15 IFermi Golden Rule [#13/|02/18/2022
15 |Fri: 02/18/2022  |Chap. 15 IMatrix elements and selection rules | |
L

IMon: 02/21/2022

|IChaps. (11-15)

|Hc:mework review & presentations

2/18/ 2022
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We will discuss “selection rules” for transitions between
E,° spherically symmetric states in due to interaction with
an electromagnetic field in the dipole approximation --

~S

Hl

<f0 ]O>:<f0‘—eForcos(9‘Io>

Symmetry analysis of the matrix element finds non-trivial matrix elements

for{,—¢,=%x1 and m,—m, =0,%1l.



Digression on matrix elements --

For transition matrix elements between states of spherically symmetric systems, we

typically must evaluate "Gaunt" coefficents:

(£ |1°) o [dQ ¥, (0.9)Y,,,(0.9)Y,,, (6,)
D, —

e [ [ 7 @901 0000, 000500 a0

Notations 34.3.22 0 o

o _ ((211 +D2L + D2l + 1))5(31 L, Ig)( L L I )
o 41 00 0/\my my mg/

Annotate

L |
About the Project

NST 3j symbols


https://dlmf.nist.gov/34.3#vii

g;lll ;122 ?J;lgz) = (DR Uljzj?*)(ul +m)(j; —m)!U, + m)lG, —ma)l(; + ma)!(; — mz)!)z
34.2.

(—1)°
iU, ¥, = s =G, —my —5)I(j, t my —8)!I(J, — j, t my +5)!(j, —j, —my +5)!

5

where

1
(jl+j2_jg)!ol_jg—l_jg)!(_jl—'_jg—l_jg)! :
Uy +Jp + s+ D! '

The quantities j T j o’ j 3 in the 3 symbol are called angular momenta. Either all of them are nonnegative integers, or one is a nonnegative integer

and the other two are half-odd positive integers. They must form the sides of a triangle (possibly degenerate). They therefore satisfy the friangle
conditions

34.2.1 U, —Jl =i =), Y s @

where 1, 5, t is any permutation of 1, 2, 3. The corresponding projective quantum numbers mq, Mo, My are given by

34.2.2 m.-=—j,—j.tL..j —Lj,

r=1,2,3, @
and satisfy
34.2.3 my+m, +my = 0. @
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For transition matrix elements between states of spherically symmetric systems, we

typically must evaluate "Gaunt" coefficents:

([ 1) = (1" |-eF x| 1) [dQ ¥, (0.9)Y,,(0.6)Y,, (0.9)

Recall that r=xsiné cos¢g+ysind sing+zcosd

ar ([ K O.D+Y,0.9)), of 1u(0.9)+Y . (0.9)
E( [ 5 ] y[ 5 ]+zw ¢>)

where Y11(¢9,¢)=—,/Sisin6’ e’, Y_(0,4)= ism&’ e, Y. (0,0)= icosé’
T

87T 4

lfmf

(f°|=R, (MY, (0.4) 1°)=R.(r)7,, (6.0)



More details given in Chapter VIll of your textbook -- for example, from Pg. 131:

The coefticients < Ji ]y mm, | jmf} are called Clebsch-Gordan coefficients,' (CG coefficients for

short) and are useful in a variety of settings. I have included a Maple routine called “Clebsch”
that computes them on my web page if you ever need them. There are several constraints that

they must satisfy to be non-zero:
() —j<m<j,—j<m<j,and —j, <m, < J,, by integers:

() |y = jo| £ J < Jy + J,» by integers; and
(3) m=m;+m,.

Writing Clebsch-Gordan coefficients in terms of 3j symbols —
https://dIimf.nist.geov/search/search?qg=Clebsch-Gordan

P .. An often used alternative to the 3 ] symbol is the Clebsch—Gordan coefficient

. . . . . i — g -|—-ﬂ--;|_3 . 1 ..Fi j j
3411 (s s Jyma |y Jy Jams) = (1) 772 (2;3+1)z<m11 . _,;13):
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https://dlmf.nist.gov/search/search?q=Clebsch-Gordan

Gaunt coefficients in terms of Clebsch-Gordan coefficients (Pg. 139 of your textbook)

Substituting this back into Eq. (8.35), we have!

(27, +1)(21,+1)

8.37
47 (21 +1) (837

[ Y7 (6.6) 1™ (6.0) 1™ (6.4)dQ2 = (Im|1,:m,m, }{11,:00]10) \/

! Note that the matrix element </I??|f1/2; I??lf??2> 1s often written as </lf 55y, f???> in this expression. This 1s

permissible since it 1s real.
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Summary of results for dipole transition matrix elements --

(L 1) = (f|-eFx[1°) o [aQ ¥, (0.9)%,,(0.9)Y,, (0,)
(f°|=R, (MY, (6.0) 1°)=R(1)Y,, (6.9)

=l =L+l and m, =m +m

~gB— Depends on orientation of

sample and polarization of
EM field

Example -- Is the following transition between states of a H-like ion an “allowed”
dipole transition?
P [O> nlm>—‘520>

11 l

(A) yes (B) no

f0> — \nfzfmf> =|621)



Further abstraction of matrix element analysis using Group Theory

Consider <f0 ‘O‘]O> = jaﬁr‘lf; (r)O(r)¥. (r)

We want to find out which combinations give non-trivial results

Group theory enables the determination of the “distilled essence” of
the initial and final states and of the operator to determine which
transitions are non-trivial



(\W,|0|Y,) = |d’r¥, (0P, (r)

=0 if Z(rf(R))* I/(RI*(R)=0

ZN (7(@) 7/@x@)=0

Jg 3 3

Initial Operator Final
state state
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R here represents symmetry
rotations™ of the system

Crepresents “classes” of
rotations of the system

*This can include the
continuum of angles or
discrete angles.

11



Example of the use of a character table for the case of discrete angles

E A,B,C D,F C
7 1 1 1
7 1 -1 1
7 2 0 -1

Suppose O = y’
Non-trivial matrix elements:

Initial state — Final state

Zl — ZZ
ZZ — Zl

3 3

£ 4



For the spherical coordinates, we have used a particular coordinate system,
standardized to the orientation of the z-axis. ¥ What happens if we want to use
another orientation?

7 Any rotation can be described by at
most 3 successive rotations by a, 3,
and y.

FIGURE A.1. Rotations used in the definition of the Euler angles.
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Note that, in Chap. 6, the notion of the rotation operator for angular moment L
is presented as

A rotation by an arbitrary amount about an arbitrary axis I is then given by
R(R(r.0))=exp(-i6r-L/h). (6.44)

The angular momentum operators L do #of commute with each other, which you can deduce
directly from Eq. (6.43), or by noting that rotations around different axes do not commute.

More generally, 1t follows that the rotation operator for total angular momentum

J is given by R(ZR2(r,0)) =exp(—iOr-J/ h)

Even more generally, three successive Euler angle rotations is represented by:
R(Z(r,,a))R(2(x;, £)R(R(X,,y)) = exp(—iad, [ h)exp(=ifT, [ h)exp(—iyJ. /1)



What are the effects of rotation?

Typically, we are interested in the effects of rotation on the eigenstates of total angular

momentum: | jm), where J*|jm)="n’j(j+1)| jm) andJ_|jm)=hm|jm)

In general R(R(E,0))|jm) = 2 (jm|R(R(F,0))| jm")

m'=—j

jm')

Note that < jm | exp(—i6J_ / h) | jm '> = exp(—imb)o,, ,,.
= (jm|exp(=iaJ, | hyexp(—ifJ, | h)exp(—iyJ, | h)| jm") = e ™d} (B)e™™"
According to Eugene Wigner --

(—D* (cos('gjj N [—sin(fj) _
e (B = =) = e e it m =)



For example j=1/2:

dl/z(ﬂ) :(

cos(f/2) —sin(f/2)
sin(f/2) cos(f/2)
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