PHY 742 Quantum Mechanics I
12-12:50 PM MWHF in Olin 103

Plan for Lecture 22

Quantization of the Electromagnetic fields

Read Chapter 17: Quantizing Electromagnetic Fields from Professor Carlson’s.
1. Classical Hamiltonian for the electromagnetic fields

2. Quantum Hamiltonian for the electromagnetic fields
3. Photon eigenstates
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Presenter Notes
Presentation Notes
Historically, the notion of quantized radiation in the form of photons came very early in the development of quantum theory.     Our task is to see how this quantization can be derived from the classical equations of Electrodynamics.


Mon: 03/21/2022

Project presentations |

Wed: 03/23/2022

Project presentations I

21 |Fri: 03/25/2022  (Chap. 5 & 17 Quantization of the Electromagnetic Field  #17/  03/28/2022
22 Mon: 03/28/2022 Chap. 17 Quantization of the Electromagnetic Field  #18  03/30/2022
23 Wed: 03/30/2022 Chap. 17 Quantization of the Electromagnetic Field

3/28/2022
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Presenter Notes
Presentation Notes
This is the altered schedule.   Note that there is one homework problem which hopefully you will be able to complete before the next lecture.


PHY 742 -- Assighment #18

March 28, 2022
Continue reading Chapter 17 in Professor Carlson’'s QM textbook..

1. Evaluate the 4 relationships between coherent states given on the last slide of Lecture 22 in order to check whether or

not they are correct. 2
n — 0!

Gauber's coherent state: ‘ca> Z ‘n>

n=0

Here o represents a complex amphtude

It 1s possible to prove the following 1denties for the coherent states:
1. <ca ‘ca> =1
2. <ca ‘ a ‘ ca> =

o
3. <ca ‘aT‘ca>=a*
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- Electromagnetic field energy --

E..= %jd?’r (‘E(r, t)‘2 +c’ ‘B(l‘, t)‘z )
In terms of the vector potential, using the Lorenz gauge with ® =0

D B=VxA
ot

2
12 %?zO and V-A=0
C

_So [ 43
Eﬁeld_zjdr(

where V°A —

OA(r,t)
Ot

2
+? |V x A(r,t)zj



Presenter Notes
Presentation Notes
The final equation here is expressed purely in terms of the vector potential.


.

Plane wave solutions to electromagnetic waves in terms of vector potentials

1 0°A
V'A-——=0  V-A=0

¢’ Ot
A pure plane wave takes the form g,

. 3 mutually
_ iK-r—ioyt _

AkO' (r,t) — Akaekae Wy = ‘k‘ ¢ perpendicular
k-g_=0 €. &, =0_ o0=12 g, vectors

For the pure plane wave, the following relations hold:
0A,, (r,t)
ot
VxA,, (r.t)=ikx A4, g e "

polarization
ik-r—it unit vectors.

= -0 A, &€
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Presenter Notes
Presentation Notes
From the equations for the vector potential, we find that there are two plane wave solutions with two different polarizations as indicated by the index sigma.


B
General form of vector potential as a superposition of plane waves:

1 1 IK-r—iayt
:;gAka(r»t):?kza:Akaakaek ™

Here V denotes the volume of the analysis system;

different treatments put this factor in different ways.
Now we must evaluate the electromagnetic field energy --

€ OA(r,t) ’
Egag :ond3’”(

Ot
Because of the orthogonality of the plane waves, the result can be

+c?|Vx A(r,t)‘z}

expressed as a sum over distinct plane wave modes:

) 21y |2 Note that we can use the identity
Z‘ i (a)k +c” | )

(axb)-(cxd)=(a-c)(b-d)—(a-d)(b-c)

ﬁeld


Presenter Notes
Presentation Notes
From the plane wave terms, we can simplify the form of the energy of the electromagnetic field.


“Some details, with more care to use real functions --
|

S (A (1 AL (1) =S, (A 80

ko

A(r,t)=

Electromagnetic field energy --
2
€ ; | |OA(r,t)
Eﬁeld - Wjd r (

ot
Note that the plane waves are distributed throughout the analysis volume

+7|Vx A(r,z‘)‘zj

: : | S
such that the following orthogonality holds. % I d’r T =6,
Also recall that @, = ‘k‘ ¢ and average out all high frequency contributions

to the field energy -- E. = LO/ Z(A A + Al;/lk(7 )(0)13 +c ‘k‘z)
ko

Eigq = Z Wy (Ako Ay + A A, )


Presenter Notes
Presentation Notes
Here are some details of the derivation.


In the next slide, we will “jump” to quantizing the electromagnetic field using the
analogy of the harmonic oscillator Hamiltonian. In fact, the analogy has nothing to
do with the physics of the harmonic oscillator other than their particle symmetry as
Bose partlcles

Historical importance of the formula for Blackbody radiation

A blackbody means an idealized opaque (non-reflective)
material which can absorb and emit electromagnetic
radiation. If the body has an equilibrium temperature T, the
energy associated with the blackbody is <U>. Using statistical
mechanics and the assumption of quantized electromagnetic
radiation, Planck showed that the black body internal energy
and its distribution is given by in terms of frequency f:

87th 3
.[df ﬂhf —1

Max Planck 1858-1947 <U 2h3 3 jdff P 1 -
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Figure from:

An Introduction to Thermal
Physics, by Daniel V. Schroeder
(Addison Wesley, 2000 and now
Oxford University Press)

Showing frequency distribution

of blackbody radiation from the
big bang.

3/28/2022

u(f) (1072 J/m3/s™h)

foottsTh

Figure 7.20. Spectrum of the cosmic background radiation, as measured by the
Cosmic Background Explorer satellite. Plotted vertically is the energy density per
unit frequency, in SI units. Note that a frequency of 3 x 10t 71 corresponds
to a wavelength of A = ¢/f = 1.0 mm. Each square represents a measured data
point. The point-by-point uncertainties are too small to show up on this scale; the
size of the squares instead represents a liberal estimate of the uncertainty due to
systematic effects. The solid curve is the theoretical Planck spectrum, with the
temperature adjusted to 2.735 K to give the best fit. From J. C. Mather et al.,
Astrophysical Journal Letters 354, L37 (1990); adapted courtesy of NASA /GSFC
and the COBE Science Working Group. Subsequent measurements from this ex-
periment and others now give a best-fit temperature of 2.728 £ 0.002 K. C‘opvrlght
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> . .
Electromagnetic field energy expression:

Here 4,__ represents the amplitude of the vector potential.

Big leap -- Suppose that 4 _ —> C,_a, _ A:U —> Ckaa;ia

where Cka 1s a constant

ﬁeld = Z C() (a CZ + aliaaka )
. Vh
More leaping -- C,_ =
€0 D,

E.. = Zha)( ak(7 +a; _a, ) Zha) (a a, +;j


Presenter Notes
Presentation Notes
Now consider how the EM field energy can be quantized, thinking in terms of the analogy of these equations to those of the Harmonic oscillator.    We introduce a normalization factor and the creation and annihilation operators.


.i.

Here a,_ and q,_ are "borrowed" from the Harmonic oscillator formalism.

: : . ¥ _ _ T l —
Commutation relations: [akg, ak.a,]—5kk.5w, [aka, ak.a.]—O [aka, ak.g.] =0

1
Hﬁeld 2Zha) (akaalia +ak0ak0') Zha) (aka 2)

Fr om the analogy of the Harmonic oscillator, the eigenstates of the

EM Field Hamiltonian are integers n,__ :

1
Hoa )= S hon (a3 )= neun, {222 Yo
Hf?:lzd k0> Z(ha) ali G'ak'a')‘nka> = ha)knka ‘nka>

k'o Uncontrolled

energy shift
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Presenter Notes
Presentation Notes
Reviewing the commutation relations for the creation and annihilation operators.        At the end, we do arrive at an expression that is very much like that of the Harmonic oscillator.    However, in this case, the constant term causes trouble because it represents an uncontrolled energy.      No problem.   If it is unphysical it is strategically  removed.   Unfortunately, it will come back to bother us on occasion…


Some additional comments on the “fixed” solution --

EM Field Hamiltonian acting on eigenstate ‘nk6> ;

)= oo+ ) = b )+ 222 )

k'c'

nka> = Z(ha)k'ali'a'ak'a')‘nka> =haon,, ‘nk0> —

k'c' Troublesome term

ﬁeld

fixed
H field

Comment: For the phonon case which served as our model, the notion of zero point
motion makes physical sense. For the electromagnetic Hamiltonian the role of the
equivalent concept is not quite clear (at least to me). We need to be careful when we
see divergent energies to distinguish physical processes from mathematical issues.



B
Creation and annihilation operators:

aka nk6> — \/nka ‘nka _1>

alia nk6> — \/nka T 1 ‘nkG T 1>

Quantum mechanical form of vector potential 1n real space --

% o e
A(l‘,t) — Z SkO' (akaelk'r_lwkt T aliae (l S ))
o \ 2V €, 0,

Note: We are assuming that the polarization vector is real.


Presenter Notes
Presentation Notes
With these definitions of the vector potential amplitudes, we can now write an expression for the quantum mechanical form of the vector potential.


.

Quantum mechanical form of vector potential --

h iIk-r—i —(ik-r—i
A(r,t) = kz(,:\/2Veoa)k €, (akaek “yal e (ik a"‘t))

Electric field:

oA
E:__ —
o ZZ

Magnetic field:

B=VxA = B = zz \/ 7 kxg, (akaeik-r_iwkt —al e—(ik-r—ia)kt))
€@

ik-r—iayt t  —(ik-r—iogt)
ka ( kae o akae )
2V60



Presenter Notes
Presentation Notes
From the vector potential, we can also write expressions for the electric and magnetic fields.


_’Z

ik-r—imt T —(ikr—iayt)
= ’Z kxeg, _ (akae —a, e )
2V€0

What is the expectation value of the E field for a pure eigenstate |n> of the
electromagnetic Hamiltonian?

1. A complex (non zero) number

2. Zero

3. Infinity
What is the expectation value of the B field for a pure eigenstate |n> of the
electromagnetic Hamiltonian?

1. A complex (non zero) number

2. Zero

3. Infinity

ikr—iot  _+ —(kr-iogt)
( kae akce )

=»In fact, these are non-trivial questions


Presenter Notes
Presentation Notes
What do you think is going to happen?


At this point, we might wonder how the classical and quantum pictures of the EM field
can be reconciled --

An interesting picture comes from a particular linear combination of quantum states of
a single mode (ko) arising for example in a laser



.

VoLuME 10, NUMBER 3

How does a quantum mechanical E or B field exist?
combination of pure photon states --

PHYSICAL REVIEW LETTERS

Consider a linear

1 FEBRUARY 1963

3/20, .88

PHOTON CORRELATIONS*

Roy J. Glauber
Lyman Laboratory, Harvard University, Cambridge, Massachusetts
(Received 27 December 1962)

In 1956 Hanbury Brown and Twiss' reported
that the photons of a light beam of narrow spec-
tral width have a tendency to arrive in correlated
pairs. We have developed general quantum me-
chanical methods for the investigation of such
correlation effects and shall present here re-
sults for the distribution of the number of pho-
tons counted in an incoherent beam. The fact
that photon correlations are enhanced by narrow-
ing the spectral bandwidth has led to a prediction?®
of large-scale correlations to be observed in the
beam of an optical maser. We shall indicate
that this prediction is misleading and follows
from an inappropriate model of the maser beam.
In considering these problems we shall outline

a method of describing the photon field which ap-
pears particularly well suited to the discussion

of experiments performed with light beams, wheth-
er coherent or incoherent.

The correlations observed in the photoioniza-
tion processes induced by a light beam were giv-
en a simple semiclassical explanation by Purcell,®
who made use of the methods of microwave noise
theory. More recently, a number of papers have
been written examining the correlations in con-
siderably greater detail. These papers®*~® re-
tain the assumption that the electric field in a
light beam can be described as a classical Gaus-
sian stochastic process. In actuality, the be-
havior of the photon field is considerably more

FT 7944 == JOYIIIE £LULZ -- LELLUIE 22

17


Presenter Notes
Presentation Notes
In this paper, the notion of a “coherent” state was introduced.    As we will see, the expectation values of the electric and magnetic fields are non-zero for a system in a coherent state.


—|05|2/2

o0

Gauber's coherent state: ‘ca> = Z a’e

2™

Here o represents a complex amplitude

It 1s possible to prove the following identies for the coherent states:
1. <ca ‘ca> =1

2. <ca ‘a‘ca> =a

3. <ca ‘aT ‘ca> =a

(c. Cﬂ>

2 _ e_|a_ﬁ|2

4,



Presenter Notes
Presentation Notes
It is possible to prove these identities (for HW #18).
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