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PHY 742 Quantum Mechanics II
12-12:50 PM  MWF  in Olin 103

Plan for Lecture 22
Quantization of the Electromagnetic fields

Read Chapter 17: Quantizing Electromagnetic Fields from Professor Carlson’s. 

1. Classical Hamiltonian for the electromagnetic fields
2. Quantum Hamiltonian for the electromagnetic fields
3. Photon eigenstates

Presenter Notes
Presentation Notes
Historically, the notion of quantized radiation in the form of photons came very early in the development of quantum theory.     Our task is to see how this quantization can be derived from the classical equations of Electrodynamics.
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Presenter Notes
Presentation Notes
This is the altered schedule.   Note that there is one homework problem which hopefully you will be able to complete before the next lecture.
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Electromagnetic field energy --
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Presenter Notes
Presentation Notes
The final equation here is expressed purely in terms of the vector potential.
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Plane wave solutions to electromagnetic waves in terms of vector potentials

( )

2

2
2

2

'

1 0       

A pure plane wave takes

 

 the for

  0

,                     
0                  1, 2

m
i ti

c t

t A e cω
σ σ σ

σ σ σ σσ

ω
δ σ

⋅ −

′

∇ ∇ ⋅ =

=

⋅ = ⋅ =

∂
− =

∂

=

=kk r
k k k k

k k kε

A A

A kr ε
ε ε

A

k

k1kε

2kε

3 mutually 
perpendicular 
vectors

( )

( )  

For the pure plane wave, the followin

 

g relations hol :
,

d

      

,

i

ti i

tit
i A e

t
t i A e

σ ω
σ σ

ω
σ σ σ

ω ⋅ −

⋅ −

∂
= −

∂
∇× = ×

k

k

k k r
k k k

k r
k k k

A r
ε

A r k ε

polarization 
unit vectors.

Presenter Notes
Presentation Notes
From the equations for the vector potential, we find that there are two plane wave solutions with two different polarizations as indicated by the index sigma.
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General form of vector potential as a superposition of plane waves:
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Presenter Notes
Presentation Notes
From the plane wave terms, we can simplify the form of the energy of the electromagnetic field.
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Some details, with more care to use real functions  --
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Presenter Notes
Presentation Notes
Here are some details of the derivation.
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In the next slide, we will “jump” to quantizing the electromagnetic field using the 
analogy of the harmonic oscillator Hamiltonian.    In fact,  the analogy has nothing to 
do with the physics of the harmonic oscillator other than their particle symmetry as 
Bose particles.

Max Planck  1858-1947

Historical importance of the formula for Blackbody radiation
A blackbody means an idealized opaque (non-reflective) 
material which can absorb and emit electromagnetic 
radiation.  If the body has an equilibrium temperature T, the 
energy associated with the blackbody is <U>. Using statistical 
mechanics and the assumption of quantized electromagnetic 
radiation, Planck showed that the black body internal energy 
and its distribution is given by in terms of frequency f:
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Figure from:
An Introduction to Thermal 
Physics, by Daniel V. Schroeder 
(Addison Wesley, 2000 and now 
Oxford University Press)

Showing frequency distribution 
of blackbody radiation from the 
big bang.



3/28/2022 PHY 742 -- Spring 2022 -- Lecture 22 10

( )* *
fi l

20
e d

Electromagnetic field energy expression:

            
2

Here  represents the amplitude of the vector potential.

E A A A A
V

A

σ σ σ σ
σ

σ

ω= +∑ k k kk k
k

k



Big leap --

( )

( )

* †

2
field

fiel

2 † †0

d

0

† † †

Suppose that                  
where  is a constant

2

More leaping --       

1 1
2 2

A C a A C a
C

E C a a a a
V

C

E a a a a a a

V

σ σ σ σ σ σ

σ

σ σ σ σ σ
σ

σ

σ σ σ σ σ σ
σ σ

ω

ω

ω ω

→ →

= +

=

 = + = + 
 

∑

∑ ∑

k k k k k k

k

k k k k k
k

k

k k k k k k
k

k

k
k

k

k



 





Presenter Notes
Presentation Notes
Now consider how the EM field energy can be quantized, thinking in terms of the analogy of these equations to those of the Harmonic oscillator.    We introduce a normalization factor and the creation and annihilation operators.
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Presenter Notes
Presentation Notes
Reviewing the commutation relations for the creation and annihilation operators.        At the end, we do arrive at an expression that is very much like that of the Harmonic oscillator.    However, in this case, the constant term causes trouble because it represents an uncontrolled energy.      No problem.   If it is unphysical it is strategically  removed.   Unfortunately, it will come back to bother us on occasion…
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Comment:    For the phonon case which served as our model, the notion of zero point
motion makes physical sense.    For the electromagnetic Hamiltonian the role of the 
equivalent concept is not quite clear (at least to me).    We need to be careful when we 
see divergent energies to distinguish physical processes from mathematical issues.
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Some additional comments on the “fixed”  solution --

Troublesome term
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Presenter Notes
Presentation Notes
With these definitions of the vector potential amplitudes, we can now write an expression for the quantum mechanical form of the vector potential.
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Presenter Notes
Presentation Notes
From the vector potential, we can also write expressions for the electric and magnetic fields.
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What is the expectation value of the E field for a pure eigenstate |n> of the 
electromagnetic Hamiltonian?

1. A complex (non zero) number
2. Zero
3. Infinity

What is the expectation value of the B field for a pure eigenstate |n> of the 
electromagnetic Hamiltonian?

1. A complex (non zero) number
2. Zero
3. Infinity

In fact, these are non-trivial questions
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Presenter Notes
Presentation Notes
What do you think is going to happen?
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At this point, we might wonder how the classical and quantum pictures of the EM field 
can be reconciled     --

An interesting picture comes from a particular linear combination of quantum states of 
a single mode (kσ) arising for example in a laser 
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How does a quantum mechanical E or B field exist?     Consider a linear 
combination of pure photon states --

Presenter Notes
Presentation Notes
In this paper, the notion of a “coherent” state was introduced.    As we will see, the expectation values of the electric and magnetic fields are non-zero for a system in a coherent state.
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Presenter Notes
Presentation Notes
It is possible to prove these identities (for HW #18).
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