PHY 742 Quantum Mechanics I
12-12:50 PM MWF in Olin 103:

Plan for Lecture 23

Quantization of the Electromagnetic fields

Complete the reading of Chap. 17 in your textbook, Quantizing Electromagnetic Fields.

Quantum Hamiltonian for the electromagnetic fields
Eigenstates of the electromagnetic Hamiltonian

Quantum expressions for the electromagnetic fields

Variance of measurable properties of the electromagnetic fields
Properties of a single mode coherent state

newNRE
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Presenter Notes
Presentation Notes
Please  finish reading Chapter 17 of Professor Carlson’s textbook.


Mon: 03/21/2022

Project presentations |

Wed: 03/23/2022

Project presentations I

21 |Fri: 03/25/2022  |Chap. 5 & 17 Quantization of the Electromagnetic Field  [#17  |03/28/2022
22 Mon: 03/28/2022 (Chap. 17 Quantization of the Electromagnetic Field #18  |03/30/2022
23 \Wed: 03/30/2022 |Chap. 17 Quantization of the Electromagnetic Field  [#19  /04/01/2022

24

Fri: 04/01/2022

Chap. 18

Absorption and emission of photons

PHY 742 -- Assighment #19

Finish reading Chapter 17 in Professor Carlson’'s QM textbook..

March 30, 2022

1. Consider a Glauber coherent state for a single photon mode of wavevector k and polarization index o with amplitude
a=Ep exp(iy). Calculate the average and variance of the E and B fields for this coherent state.

3/30/2022
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Presenter Notes
Presentation Notes
The assigned homework for today’s lecture involves verifying some of the equations discussed in this lecture.


Digression — list of possible topics for remainder of the course

» Multiparticle systems; reviewing Chap. 10 and introducing “second
quantization” formalism

» Hubbard model

» Superconductivity

» Hartree-Fock formalism

» Density functional formalism



B
Summary of previous results for the electromagnetic Hamiltonian

In terms of the operators a,_ and a,  operators for wavevector k and polarization o.

With commutation relations: [aka, a,. . } =840, [aka, a,. . } =0 [aﬂa, ai.g.] =0

The eigenstates of the EM Field Hamiltonian (omitting diverging term) are integers #, _ :
fixed . T —
Hﬁeld nk0'> o Z (ha)k'ak’a'ak'o” )‘ nk0> o ha)knka ‘ nk0'>
k'c'
It 1s convenient to define the photon number operator

T _
N, =a,_a, . suchthatN, ‘nkg> =1, ‘nka>



Presenter Notes
Presentation Notes
The is a review of equations discussed in Lecture 22.


B
Properties of the creation and annihilation operators:

aka nk6> — \/nka ‘nka _1>

alia nk6> — \/nka T 1 ‘nkG T 1>

Quantum mechanical form of vector potential --

7 o o
A(r,t) — Z g, (akge’k'r_’“"‘t +a e (ik iy ))
o \ 2V €0,

Note: We are assuming that the polarization vector is real.


Presenter Notes
Presentation Notes
Continuing review of previous results.


.

Quantum mechanical form of vector potential and corresponding fields --

h ik-r—i —(ik-r—1
A(r,t) = kZo':\/ZVeoa)k €, (akge KA 4l e (ik ”“t))

Electric field:

oA
E=_-22 _
ot lz

Magnetic field:

iK-r—iayt ¥ —(ik-r—ia)kt))
e —d, e
kG( ka ko

2V€0

B=VxA = B = ZZ \/2V k x g, (ako_eik-r—ia)kt B alio_e—(ik-r—ia)kt))
€ C()


Presenter Notes
Presentation Notes
From the quantum expression of the vector potential, we can also write expressions for the electric and magnetic fields.


Embarassing/puzzling expectation values --

<nk.6. |A(r,t) > Z Ve < Ny |(akaeik~r—iwkt +azae—(ik.r—iwkt))|nk'6'> ~0
0

Electric field:

@A ; n iK-r—i —(ik-r—i
E = Y = (. |E(r,0)|n. ) = lkzo-: 2;)" € (Mo |(akaek W gl e (i ”“t))|nk.0.> =0
Magnetic field:

B=VxA =(n..|B(r1

Ny o > = lz Ve k X &, <nk'a' |(ako-eik-r—ia)kt . aiae—(ik.r—iwkt))|nk'0'> ~0
0


Presenter Notes
Presentation Notes
Consider evaluating the expectation values of  these fields for a pure photon eigenstate.    Embarrassingly, they are 0.


In order to compare the classical treatment to the quantum approach we need to
calculate expectation values of the observables. In addition to mean value of an
observable, its statistical properties are also of interest, particularly the variance and
the standard deviation (its square root) which is defined in terms of the average of
the squared value of the observable and the average value itself:

Standard deviation: AV = \/ <V2>_ ‘<V>‘2

The next few slides review the relationship of this variance to observables in
quantum mechanics which have non trivial commutation relationships and thus

have built in variance values.



Digression -- Commutator formalism in quantum mechanics

Detinition:

Given two Hermitian operators 4 and B, their commutator 1s
[A,B]= AB — BA

Theorem:

Given Hermitian operators 4, B, C such that
[A4,B]=iC,

it follows that AAAB > %KC >‘


Presenter Notes
Presentation Notes
In order to understand how the previous results can be true, we need to review the notion of variance in quantum mechanics.    In particular, the variance often is controlled by non-trivial commutation relations.     In this slide and the following, the relationship between variance and commutators is reviewed.


Proof --

Note that:
[4,B] =(iC)'
(AB—BA) =B'A" - A'B" = —iC"

=BA— AB =—-iC
Calculation of the variance:
(ad)" = (y|(A=(4)) |w) Define |y, =|(4~(4))v)
(4= (D) |(4-(a)w) v,)=|(B-(B))w)

Similarly,

e ) > <WA‘WA><WB‘V/B>ZKWA‘WBW

=((B-(B))w|(B~-(B))w

Schwarz inequality:



Define |y, )=|(4-(4))y) and |p,)=|(B-(B))y)

Schwarz inequality:

v, l/fA><w )2 |(w, w
<WA ( < >)( )

(4= ()(5-




S .
(walvs)=(wl(4—(4))(B—(B))lw) = Fly)+(w|Clw)

Walval =[P + 2wl = lviclv)

Putting 1t all together:

1

walv ) wslvs)zKwalva)l 2l Iclv)]

= (A (aB) > [(C)

‘ 2

Therefore: [A,B]=iC 1mplies AAABZ%‘<C>‘

Example: A=X, B=P

[X,P]=ih 1mplies AXAP2> g


Presenter Notes
Presentation Notes
Wrapping up the commutator discussion with  the example of the uncertainty principle applied to position and momentum.


What does this have to do with quantum EM fields?
In fact, your textbook shows that although

<nk,0. ‘E(r,t)‘nk.6,> =0 and <nk.a. ‘B(r,t)‘nk.a.> =0,

the variances of the fields are both infinite for a pure eigenstate --

O (D)0 =[EWI0f =325 35 Jmo (s 5 ) (Lo

ko k'c'

d’k

28 Vza)k £, Vzk_ J.(ZJT) k‘ infinite

(17.19a)

rk 1T—ik’1r

k
2€ V;;,/a)a) " Fxe

><ng| ~

(0]B2(r)] 0) =[B(r)[0)]" =

)- (k' )(Lk,o|LK o)

Z j Ik k, (17.19b)

7 k _
=25@V;| o, 25V;mk x (25) * infinite
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Presenter Notes
Presentation Notes
For the E and B fields themselves, the variance is not a result of non trivial commutation relations.    Here we calculate the variances for pure photon states.


It is also possible to show that components of the E and B field have nontrivial
commutation relations, indicating that in general it is not possible to
simultaneously determine E and B at the same point in space to arbitrary

accuracy.

Effects of the phase of each mode.
In deriving these equations, we neglected the phase of each mode. A more

careful treatment of photon number and phase show that these also have
nontrivial commutation relations.

How is this quantum treatment of the electromagnetic fields consistent with the

classical picture?
1. There is no need for consistency.?
2. There should be consistency in certain ranges of the parameters.?


Presenter Notes
Presentation Notes
Summary of what we have learned so far.         What do you think about how the quantum equations could be related to the classical picture?


@ o0 n —|C¥|2/2
a’e
Glauber's coherent state: ‘ca> = Z

n=0 \/;

‘n> based on a single mode n — n,__

Electric field: <Ca ‘E(l‘,t)‘ca> —7 ho, e (akaeik-r—ia)kt _ azae—(ik-r—iwkt))

2We, °
1 . h ik-r—i *  —(ikr—i
Magnetic field: <ca ‘B(r,t)‘ca> — 1\/2V€0wk kxg, (Otk(,e kesiod _ o o (ik cokz))

Note that ¢ 1s a complex number which can be written in terms of a real amplitude and phase: £, and v :

(c,|E
(c.|B

-2 /ha) & Eysin(k-r—at+y) Ny
l
i Let a=FE,e
2V€0 kxg E, sm k ‘r— a)tﬂy)


Presenter Notes
Presentation Notes
Here we introduce the single mode coherent state as a particular linear combination of eigenstates of the electromagnetic Hamiltonian.


Single mode coherent state continued

It can also be shown that

(Cal

Therefore

(o |[E(ro)f Te) = [E(r.0)le,)

E(l‘,t)‘z‘ca>: ZZ“ (4EO2 sin” (k-r—a)kt+w)+1)
0

2 hao,

2Ve,

This means that variance of the E field for the coherent state is independent of
the amplitude E,. Therefore, for large E,the variance is small in comparison.


Presenter Notes
Presentation Notes
For these coherent states, we can evaluate the variance of the quantum mechanical electric field.     You should verify these equations for your homework.


Visualization of coherent state
electric fields for various
amplitudes

The quantized radiation field 151

1
z

Source: Rodney Loudon, “The
Quantum Theory of Light”

Electric field in units of (Awi2e V)

N AL
VAR VAN

Fic. 4.3. Pictorial representation of the electric-field variation in a cavity mode excited to state
|«). Three different values of the mean photon number |2|* are shown, the vertical scales being
different for the three cases. The uncertainties in field vatues are indicated by the vertical widths
ZAE of the sine waves. These widths can also be regarded as combinations of the amplitude
uncertainty associated with An and the phase uncertainty associated with A cos ¢,




B
Single mode coherent state continued

Now consider the expectation values of the number operator and 1ts square:

Nka = aliaaka
(N [e0) =af (e [NGN|€,)= lof +|af

Square of the variance: <ca ‘NkGNk(y ‘ca> — Kca ‘Nka ‘ca>‘2 = ‘a‘z

Fractional uncertainty in the number of photons for the coherent state:
2
1

\/<Ca ‘NkaNka ‘Ca> o Kca ‘Nka ‘Ca> _
(¢a|Nis |, ) ]



Presenter Notes
Presentation Notes
Again using the coherent states, we can evaluate the variance of the photon number.    What do you think is the significance of these results?


Interpretation of a single mode coherent state

" Aaf 12
‘ca> = Z : \/n_a' ‘n> based on a single mode n — n, _

n=0

The probability of finding » photons in this state is given by:

(n]e, ) =12

2

This 1s the form of a Poisson distribution

n!

2
for a mean value of ‘a‘ .


Presenter Notes
Presentation Notes
Here we see that the coherent state is related to a Poisson  distribution, important in statistical analysis.


.

More reading --

REVIEWS OF
MODERN PHYSICS

Vorume 37, NUMBER 2 APRIL 1965

3/30/2022

Coherence Properties of Optical Fields’

L. MANDEL, E. WOLTF
Department of Physics and Asivonomy, Universily of Rochester, Rochester, New York

This article presents a review of coherence properties of electromagnetic fields and their measurements, with special
emphasis on the optical region of the spectrum. Analyses based on both the classical and quantum theories are described.
After a brief historical introduction, the elementary concepts which are frequently employed in the discussion of inter-
ference phenomena are summarized. The measure of second-order coherence is then introduced in connection with the
analysis of a simple interference experiment and some of the more important second-order coherence effects are studied.
Their uses in stellar interferometry and interference spectroscopy are described. Analysis of partial polarization from
the standpoint of correlation theory is also outlined. The general statistical description of the field is discussed in some
detail, The recently discovered universal ““diagonal” representation of the density operator for free fields is also con-
sidered and it is shown how, with the help of the associated generalized phase-space distribution function, the quantum-
mechanical correlation functions may be expressed in the same form as the classical ones. The sections which follow
dealwith the statistical properties of thermal and nonthermal light, and with the temporal and spatial coherence of black-
body radiation, Later sections, dealing with fourth- and higher-order coherence effects include a discussion of the
photoelectric detection process. Among the fourth-order effects described in detail are bunching phenomena, the Hanbury
Brown-Twiss effect and its application to astronomy, The article concludes with a discussion of various transient super-
poeition effects, such as light beats and interference fringes produced by independent light beams.
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page 231

20


Presenter Notes
Presentation Notes
There are many more interesting aspects of the statistical properties of quantum electromagnetic fields.     Here is an example of an interesting review article.
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