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PHY 742 Quantum Mechanics II
12-12:50 PM  MWF  in Olin 103

Notes for Lecture 24
Interaction of quantum electromagnetic fields with matter

Read Professor Carlson’s textbook: Chapter  18. Photons and Atoms

1. Review of quantum theory of electromagnetism
2. Quantum treatment of the interaction of atoms and electromagnetic fields
3. Examples of atomic transitions
4. Some comments on lasers and masers

Presenter Notes
Presentation Notes
This lecture re-examines the interaction of electromagnetic radiation with charged particles, now including the quantum effects of the fields.    This material is treated in Professor Carlson’s text   in Chapter 18 (A&B).
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Presenter Notes
Presentation Notes
There is not a new homework for this lecture.
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Previously, we derived the quantum electromagnetic Hamiltonian 
(omitting diverging term)
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Summary of quantum electromagnetism

Presenter Notes
Presentation Notes
The is a review of equations discussed in Lecture 22 & 23
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Properties of the creation and annihilation operators:

( ) ( )( )†

0

 

Quantum mechanical form of vector potential -

,

-

2
i ii ttit a e a e

V
ωω

σ σ σ
σ ω

− ⋅ −⋅ −= +∑ kk k rk r
k k k

k k

A r ε



Note:  We are assuming that the polarization vector is real.  More generally 
there is a phase factor for each mode which we are ignoring at this moment.

Presenter Notes
Presentation Notes
Continuing review of previous results.
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Presenter Notes
Presentation Notes
Review continued.
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Previously (Lecture 14), we considered a charged particle in the presence of a classical 
electromagnetic field characterized by vector potential A and scalar potential U:

( ) ( )( ) ( ) ( )

( ) ( ) ( )( )

2

2
0 2

1

1Hamiltonian of particle and field:    , = , ,
2

Zero order Hamiltonian of particle and field:   ( )

First order interaction Hamiltonian:   , , , ,

)

2

(
2

H t q t V q t

t

U

m
q

m

H V

q iH t t q
m

U
m

=

⋅

− +

+− ∇

= ⋅ ∇

+

−
+ +

r p A r r r

r

r r

r

AA p r r



 ( )

( ) ( ) ( ),
Time dependent electric field:    , ,U

t

t

t
t t= −

∂
∇

∂
−

r
F

A
r r

We used time dependent perturbation theory to analyze the effects of H1

Presenter Notes
Presentation Notes
Now consider the treatment of the interaction of a particle with a classical electromagnetic field as covered in Lecture 12.
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Presenter Notes
Presentation Notes
Resonant time-dependent perturbation theory lead to Fermi’s Golden rule.
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What is different about the quantum case?

1. Minor differences only for cases of very small or large EM fields?
2. New physics introduced?

Presenter Notes
Presentation Notes
Please weigh in on this question.
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Using our quantum treatment, it is convenient to assume that the scalar field , 0
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What is different about the quantum case?

Presenter Notes
Presentation Notes
Jumping into the quantum case,   we need to modify the previous treatment by adding the Hamiltonian for the quantum electromagnetic field.    We also need to use the electromagnetic potentials.
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We can still use the Fermi Golden rule for transitions between two states of the zero order
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1   corresponding to absorption or emission of a photon
B B A A

n nσ σ⇒ = ±k k

(Here we are suppressing the time dependence 
which should also be taken into account.)

Presenter Notes
Presentation Notes
Now the zero order Hamiltonian includes both the particle states and the photon states.   In writing the matrix element, we leave the portions involving the particle states as in the classical treatment, but the photon states need also be evaluated.
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Some details --
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Presenter Notes
Presentation Notes
First consider the case of the absorption.     We see that the transition rate depends is proportional to the number of photons in the initial state.
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More details --
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Presenter Notes
Presentation Notes
Now consider the case of emission.    The transition rate in this case is proportional to the number of photons in the initial state plus 1.     What do you suppose is the significance of that.
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What is different about the quantum case?

Classical EM field
• Matrix element depends on 

atomic selection rules
• Matrix element depends on 

EM field intensity

Quantum EM field
• Matrix element depends on 

atomic selection rules
• Matrix element depends on 

photon eigenstates; 
absorption different from 
emission 

• Possibility of spontaneous 
emission

Presenter Notes
Presentation Notes
Here are some comments about the differences between the classical and quantum cases.
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Lasers and Masers were developed to make use of the relationship between 
absorption and emission of EM radiation 

Rev. Mod. Phys.  99, S263 (1999)

Presenter Notes
Presentation Notes
The physics discussed here forms the basis of the laser technology.    This is a historical retrospective of some of the ideas used to develop various laser types by some of the key players.
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Phys. Rev.  159, 208 (1967)

Presenter Notes
Presentation Notes
This is one of the early theory developments of laser physics.      It is based on coupling the  transition rate equations with rate equations for the photon populations in such a way as to achieve large field strengths.    
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Summarizing thoughts --
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Quantum electromagnetic Hamiltonian  (omitting diverging term)

Note that omitting diverging terms is not completely correct.
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These diverging terms reappear when we evaluate the variance  of the E or B 
fields for a pure eigenstate of the EM Hamiltonian and is thought to be related 
to the notion of vacuum fluctuations. 

We eluded to the fact the electric and magnetic quantum fields do not commute.
The derivation is complicated and gives the following result:
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Glauber's   coherent state:       based on a single mode 

!n

nec n n n
n

α

α σ
α −

=

∞

≡ →∑ k

More summarizing thoughts --

These coherent states are an example of linear combinations of pure EM 
eigenstates that represent features of observed electromagnetic properties.
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