PHY 742 Quantum Mechanics I
12-12:50 PM MWF in Olin 103

Notes for Lecture 24

Interaction of quantum electromagnetic fields with matter

Read Professor Carlson’s textbook: Chapter 18. Photons and Atoms

Review of quantum theory of electromagnetism

Quantum treatment of the interaction of atoms and electromagnetic fields
Examples of atomic transitions

Some comments on lasers and masers
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Presenter Notes
Presentation Notes
This lecture re-examines the interaction of electromagnetic radiation with charged particles, now including the quantum effects of the fields.    This material is treated in Professor Carlson’s text   in Chapter 18 (A&B).


Mon: 03/21/2022

Project presentations |
Wed: 03/23/2022 Project presentations I
21 Fri: 03/252022  (Chap. 5 & 17 Quantization of the Electromagnetic Field  #17  03/28/2022
22 Mon: 03/28/2022 Chap. 17 Quantization of the Electromagnetic Field  #18  03/30/2022
23 \Wed: 03/30/2022 (Chap. 17 Quantization of the Electromagnetic Field  #19  104/01/2022
24 \Fri: 04/01/2022  |Chap. 18 Absorption and emission of photons

4/01/2022

PHY 742 -- Spring 2022 -- Lecture 24



Presenter Notes
Presentation Notes
There is not a new homework for this lecture.


B
Summary of quantum electromagnetism

Previously, we derived the quantum electromagnetic Hamiltonian

(omitting diverging term)

_ f
H,, = Z(ha)k.ak.g.ak.o_.)

k'G'
This is expressed in terms of operators a,_ and @,  operators for

wavevector k and polarization o.

With commutation relations: [akg, aﬂ.a.]Zékkﬁw, [akg, ak.g.}ZO [ala, aﬂ.a.} =0
It 1s convenient to define the photon number operator

N, =a,_a,_ with eigenvalues/eigenstates N, ‘nk0> =N, ‘nk6>

Note that each wavevector k and polarization o 1s independent (separable) in the

EM Hamiltonian so that the system eigenstates are products of eigenstates for each mode:

nklal nk202 nk3a3 nk40'4 > = ‘nklo'l >‘ nkzaz > nk30'3 > nk404 >



Presenter Notes
Presentation Notes
The is a review of equations discussed in Lecture 22 & 23


B
Properties of the creation and annihilation operators:

aka nkc7> — \/nka ‘nka _1>

alia nk6> — \/nka T 1 ‘nka T 1>

Quantum mechanical form of vector potential --

7 o o
A(r,t) — Z g, (akge’k'r_"“"t +a e (ik iy ))
o \ 2V €0,

Note: We are assuming that the polarization vector is real. More generally
there is a phase factor for each mode which we are ignoring at this moment.


Presenter Notes
Presentation Notes
Continuing review of previous results.


.

Quantum mechanical form of A, E, and B fields --

h ik-r—i —(ik-r—i
A(r,t) = kzal\/2V€060k €, (akae KA 4l e (ik ”“t))

Electric field:

oA
E=_-22 _
ot ZZ

Magnetic field:

iK-r—iayt T —(ik-r—ia)kt) )
€ —da, e
ka ( ka ko

2V€O

B=VxA = B = ZZ\/2V k x g, (ako_eik-r—ia)kt B alio_e—(ik-r—ia)kt))
€ C()


Presenter Notes
Presentation Notes
Review continued.


Previously (Lecture 14), we considered a charged particle in the presence of a classical
electromagnetic field characterized by vector potential A and scalar potential U:

Hamiltonian of particle and field: H(r,t)ZZL(p - qA(r,t))2 +V (r)+qU(r,¢)
m
2

Zero order Hamiltonian of particle and field: H’(r) = —2—V2 +V(r)
m

First order interaction Hamiltonian: H'(r,t)= _—qA(r,t) p+ lzh—q(v -A(r, t)) +qU (r,t)
m m

OA (r,t)

Time dependent electric field: F(r,7)=-VU(r,t)- >

We used time dependent perturbation theory to analyze the effects of H?


Presenter Notes
Presentation Notes
Now consider the treatment of the interaction of a particle with a classical electromagnetic field as covered in Lecture 12.


Fermi Golden rule for the rate of transition between states / and f:
272- 10>

R, = 7|<fo

H' 25(—ha)+E19—Ef)

0
Ef

ha



Presenter Notes
Presentation Notes
Resonant time-dependent perturbation theory lead to Fermi’s Golden rule.


What is different about the quantum case?

1. Minor differences only for cases of very small or large EM fields?
2. New physics introduced?


Presenter Notes
Presentation Notes
Please weigh in on this question.


B
What is different about the quantum case?

Using our quantum treatment, it 1s convenient to assume that the scalar field U (r, t) =0

and V-A(r,t)=0 -
Hyy = Z(ha)k'ali'a'ak'a')

k'c'
o 1
Hamiltonian of system: H (r,¢) =2—(p —gA(r, t))2 +V (r)+Hyy,
m
2
Hamiltonian of separate particle and EM systems: H'(r)=——V’>+V(r)+ H_,,

2m

First order interaction Hamiltonian: H'(r,¢)= T A (r,7)-p
m

Time dependent vector potential: A (r,z)=)" \/ £ ( a, & 1 gl e—(ik-r—iwkt))

ko


Presenter Notes
Presentation Notes
Jumping into the quantum case,   we need to modify the previous treatment by adding the Hamiltonian for the quantum electromagnetic field.    We also need to use the electromagnetic potentials.


We can still use the Fermi Golden rule for transitions between two states of the zero order

system A% &<->Bf 2 T ) ) ) )
Ry o ~—\B'|H'|A) 6(+hoF E,+E))
g A B h
B
B0 Now the states ‘AO> and ‘B°> include both the eigenstates of the isolated

0 particle and of the 1solated EM system. For example we can denote
S )=lpins) 8=l

In these terms the matrix elements can be evaluated --

ol =11 .0 q h (Here we are suppressing the time dependence
(5|7 )=~ x . |
m\| 2Ve, @, which should also be taken into account.)
(VnkAGA <pB |eik'rp .Sko' |pA><nkBO'B kAO'A _1> \/nkAO'A +1<pB |e_ik'rp .Sko' |pA><nkBO'B nkAO'A +1>
=Ny 5 = o +1 corresponding to absorption or emission of a photon



Presenter Notes
Presentation Notes
Now the zero order Hamiltonian includes both the particle states and the photon states.   In writing the matrix element, we leave the portions involving the particle states as in the classical treatment, but the photon states need also be evaluated.


Some details -- assume £, > E|,

27

Ry ~ N | 4 5(~he+ E - E)
Eg n =n__ —1
E} n

, 4
absorption 494

2

.27T q ;171 iK-r
R = A m\/ZVel;a)k <PB‘ek P‘Ska‘PA> 5(—ha)+E§—Ej)

2
q
m-Ve,m,

k, o,

<pB‘elkrp 8ka‘p/1>‘ ( hw_I'Eg_Eg)


Presenter Notes
Presentation Notes
First consider the case of the absorption.     We see that the transition rate depends is proportional to the number of photons in the initial state.


'S
More details -- assume £, > E'

R ad =4 A" ‘B°>

N

0 0
B —>A4 h

0 _
l E, n o =My o +1

S(ho+ES—E,)

ho

2

9 h nAGA-I-l o
% % q\/ (2;eowk )<pA‘ek P&, |Ps) 5(hw+Ej_Eg)

Ny o, T )KPA‘elkrp eka‘pB>‘ (ha)+ES1_Ez(3))


Presenter Notes
Presentation Notes
Now consider the case of emission.    The transition rate in this case is proportional to the number of photons in the initial state plus 1.     What do you suppose is the significance of that.


What is different about the quantum case?

Classical EM field Quantum EM field
* Matrix element depends on * Matrix element depends on
atomic selection rules atomic selection rules
* Matrix element depends on * Matrix element depends on
EM field intensity photon eigenstates;
absorption different from
emission

* Possibility of spontaneous
emission


Presenter Notes
Presentation Notes
Here are some comments about the differences between the classical and quantum cases.


Summary of results --

2
Absorption: R, ., =~ 4 <pB|e"k’rp°8ka|PA>‘25(_ha)+Eg —EZ)

~ n
2 k4o,
m-Ve,m,

Happens onlyif n, =~ >0

kAA

Emission: R, , = m;IT/Z - (nkm +1)‘<pA e™"p °£k0|p3>‘2 5(ha)+Ej —Eg)
077k

Can happens evenif n, ~ =0

K, o,



.

Lasers and Masers were developed to make use of the relationship between
absorption and emission of EM radiation

Rev. Mod. Phys. 99, S263 (1999)
Laser physics: Quantum controversy in action

W. E. Lamb

Optical Sciences Center, University of Arizona, Tucson, Arizona, 85721

W. P. Schleich

Abteilung fur Quantenphysik, Albert-Einstein Allee 11, Universitat Ulm,
D-89069 Ulm, Germany

M. O. Scully

Department of Physics, Texas A&M University, College Station, Texas 77843
and Max-Planck-Institut fur Quantenoptik, Hans-Kopfermann Stral3e 1,
D-85748 Garching, Germany

C. H. Townes
Department of Physics, University of California at Berkeley, Berkeley, California 94720

We summarize the history and discuss quantum subtleties of maser/laser physics from early days until
the present. [S0034-6861(99)03302-4]
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Presenter Notes
Presentation Notes
The physics discussed here forms the basis of the laser technology.    This is a historical retrospective of some of the ideas used to develop various laser types by some of the key players.


S
Phys. Rev. 159, 208 (1967)

PHYSICAL REVIEW VOLUME 159, NUMBER 2 10 JULY 1967

Quantum Theory of an Optical Maser.* I. General Theory

MarLAN O. Scurryf anp WicLis E. Lame, Jr.
Department of Physics, YVale University, New Haven, Connecticut
(Received 9 February 1967)

A quantum statistical analysis of an optical maser is presented in generalization of the recent semiclassical
theory of Lamb. Equations of motion for the density matrix of the quantized electromagnetic field
are derived. These equations describe the irreversible dynamics of the laser radiation in all regions of opera-
tion (above, below, and at threshold). Nonlinearities play an essential role in this problem. The diagonal
equations of motion for the radiation are found to have an apparent physical interpretation. At steady
state, these equations may be solved via detailed-balance considerations to yield the photon statistical
distribution ps... The resulting distribution has a variance which is significantly larger than that for co-
herent light. The off-diagonal elements of the radiation density matrix describe the effects of phase diffusion
in general and provide the spectral profile | E(w) |? as a special case. A detailed discussion of the physics
involved in this paper is given in the concluding sections. The theory of the laser adds another example
to the short list of solved problems in irreversible quantum statistical mechanics.
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Presenter Notes
Presentation Notes
This is one of the early theory developments of laser physics.      It is based on coupling the  transition rate equations with rate equations for the photon populations in such a way as to achieve large field strengths.    


Photo from the Nobel Foundation Photo from the Nobel Foundation Photo from the Nobel Foundation
archive. archive. archive.
Charles Hard Townes Nicolay Aleksandr
Prize share: 1/2 Gennadiyevich Basov Mikhailovich
Prize share: 1/4 Prokhorov

Prize share: 1/4

R JAVE YAV VoA FT 7944 == JOYIIIE £ULZ -- LELLUIE 24

The Nobel Prize in Physics 1964 was
divided, one half awarded to Charles Hard
Townes, the other half jointly to Nicolay
Gennadiyevich Basov and Aleksandr
Mikhailovich Prokhorov "for fundamental
work in the field of quantum electronics,
which has led to the construction of
oscillators and amplifiers based on the
maser-laser principle."”

17



Summarizing thoughts --

Quantum electromagnetic Hamiltonian (omitting diverging term)
Hyy, = Z (ha)k'al:a'ak'a')

k'c'
Note that omitting diverging terms 1s not completely correct.

These diverging terms reappear when we evaluate the variance of the E or B
fields for a pure eigenstate of the EM Hamiltonian and is thought to be related
to the notion of vacuum fluctuations.

We eluded to the fact the electric and magnetic quantum fields do not commute.
The derivation 1s complicated and gives the following result:

[E.(r,0), B, (r',1)]= —iEi o(r—r’)

My Oz



More summarizing thoughts --

o0 n —|C¥|2 /2

Glauber's coherent state: ‘ca> = Z <

)
n=0 \/;

These coherent states are an example of linear combinations of pure EM
eigenstates that represent features of observed electromagnetic properties.

based on a single mode n — n, _
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