PHY 742 Quantum Mechanics I

12-12:50 AM MWF Olin 103
Notes for Lecture 26

Quantum mechanics of multiple particle systems

Continue reviewing Professor Carlson’s textbook: Chapter 10.
Multiple particles (Sec. A&B)

1. Non-interacting particles
a. Second quantized formalism for Bose particles
b. Second quantized formalism for Fermi particles

2. Interaction terms
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Presenter Notes
Presentation Notes
In this lecture, we will continue our consideration of multiple particle systems which is discussed in Chapter 10 of your textbook.     We continue to consider the ideal situation in which the multiple particles do not interact with each other.


Tenative plan --

21 |Fri: 03/25/2022  |Chap. 5 & 17

Quantization of the Electromagnetic Field

03/28/2022

22 Mon: 03/28/2022 |Chap. 17 Quantization of the Electromagnetic Field  #18 03/30/2022
23 Wed: 03/30/2022 |Chap. 17 Quantization of the Electromagnetic Field  #19 04/01/2022
24 Fri: 04/01/2022 |Chap. 18 Absorption and emission of photons
25 [Mon: 04/04/2022 |Chap. 10 (review) [“ultiparticle systems and second 40 04/06/2022
quantization
26 \Wed: 04/06/2022 |Chap. 10 (review) [Vultiparticle systems and second
quantization
217 |Fri: 04/08/2022 Multi electron atoms
28 Mon: 04/11/2022 Multi electron atoms
29 Wed: 04/13/2022 Hubbard model with multiple electrons

Fri: 04/15/2022

No class

Holiday

30

Mon: 04/18/2022

Hubbard model with multiple electrons

31

Wed: 04/20/2022

BCS model of superconductivity

32

Fri: 04/22/2022

BCS model of superconductivity
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Quantum mechanical treatment of multiparticle systems

Z

1 D ~

For a non-interacting system:
H(rx,x,,..xy)=h(r)+h(,)+..4A(r,)

>y
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Presentation Notes
This diagram illustrates a general system to be considered where N particles are described by N different coordinates. The lower case “h” is used to emphasize a single particle Hamiltonian.  


Quantum mechanical treatment of multiparticle systems

For a non-interacting system: Here we are using h(r) to denote
H(r,x,,..x,)=h(r)+h(r,)+..h(r,) Single particle contributions.

Energy eigenstates:
H(r,r,,.r,)y(r,r,,..xr,) = Ey(r,r,,..xr,)
Simplification for separable Hamiltonian
For: h(r),(r)=£,0,(r)

hr,)@,(r,) = £,¢,(r,)
Solution to the many particle problem

y(r,r,,..r,) =0 (r)e(r,)..o.(r,) « Does not take into account
E=¢ +& +..& particle symmetry.

z
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Presentation Notes
Here we summarize the equations from Lecture 25.    The non-interacting total Hamiltonian can be written as a sum of single particle Hamiltonian terms.


Refinement of the results for treatment of distinguishable or indistinguishable particles

(-)_ °
For distinguishable particles: J=permutation operator

p (X, 1,,..1) = 0,(1)0,(1,)...0.(ry) 7(2.(1)9,(1,)) = ¢, (1), (1))

Two types of indistinguishable particles:

Fermi particles: . (r,r,,.1;..x,..ry) = =W (F,L,,. X, .X..I)

—>> (-)'®
:WF(rl9r2’ r r I ) \/ﬁ;( ) (¢a(rl)¢b(r2)¢c(r3) (DZ(rN))
Bose particles:  y,(r,r,,..1,..x..1y) =+ (1,1, 1, 1.1 )
]
— l//B(rlﬂrzﬁ“ri“‘rj‘“rN) - fz (rl)@p(rz)(pc(r3)---(pz(rN))
- P
Energy eigenstates: H(r,,r,,..r, W (1, r,,..Iy) = Ey(r,L,,..x,)

E=¢ +¢ +....6

z


Presenter Notes
Presentation Notes
Here we summarize the particle permutation properties of Fermi and Bose particles.    Using the permutation operator.


Treating multiparticle systems using “second” quantization formalism

Consider a non-interacting system:
H(r,rx,,..x,)=h(r)+h(r,)+. ;A,)

For a system of non-interacting identical particles,

the single particle Hamiltonians 4(x,) are also identical.
Eigenstates of the single particle Hamiltonian:
hr)e,(r)=¢,p,(r)

hr)e, (r) = &,0,(r)

h(r)p.(r) = &.9.(r)
We now assume that the single particle eigenstates {gpa (r)}

span the function space available to each particle.


Presenter Notes
Presentation Notes
Defining the basis eigenstates from the single particle Hamiltonian.


Treating multiparticle systems using “second” quantization formalism -- continued

h(r) = Z‘ @, (l’l)>ga <¢a (1'1)‘
<¢a (rl)‘l//(rprz,...l’N» —

=number of times basis function ¢ _(r,)

appears 1n the product representation

Second quantization representation:
5y my)) = |y, ) Here the notation NV _
H(r,r,..1ry)= Z%Na

indicates an operator

where the number operator acts as follows:

nc..na..nz>

nc....nz>=na


Presenter Notes
Presentation Notes
Introducing the notion of “second” quantization.


In general, the number operator can be expressed in terms of a product of two operators.
For the case of Bose particles, these operators are very similar to the raising and lowering

operators of the harmonic oscillator.

N, =b,b,

Bose particle commutation relations:
1b,,b,1=b,b;, —bsb, =0

b,,b;]1=0

:bomb;: = 5aﬂ



Presenter Notes
Presentation Notes
Considering first the case of Bose particles.


Second quantization for Bose particles, continued

b;ba ‘na> = na ‘na>

boln, )=, 1)
b’ na>=«/na "‘1"% +1>

To represent 3 states: ‘nlnzn3

MCINCINCINS


Presenter Notes
Presentation Notes
For Bose particles, we can use the same relationships found for harmonic oscillators and for the quantized electromagnetic fields.


Second quantization for Fermi particles

N, =f.f,

Fermu particle anticommutation relations:

S Ss{ = LS5+ fof, =0
VAMEL
:fa,fﬂ*}:gaﬁ

/\

A\

A\
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Presentation Notes
Now consider the case for Fermi particles.


Second quantized creation and annhilation Fermi operators

Jodalme) =nen.) Th Its follow from th
ese results follow from the
S ‘”a> =4/, ‘1 — na> anti commutator relations of

fTa ‘”a> _ M‘l B ”a> the operators.

Non-trivial operations:
fal0)=0 £ ]l)=0,)
£210.)=[1.)  f2[1.)=0

—>n,=0orl

0)

To represent 3 states: ‘nanbnc> = (fj )n (fbT )nb (f; )n
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Presentation Notes
These results follow from the anti-commutation relations.    Your homework for this lecture is to verify these relationships.


Some details --

Second quantized creation and annhilation Fermi operators

Starting with the result: f £, |n,)=n,|n,)
)= Jrli-n)
n))=f L) = (1= £.1) f,

=(f, =111 1)
This implies that f,|n,)=K|1-n,)

We want to show: f,

Consider: £/ f. (/.

na>=fa(1—na)

Assuming normalized eigenstates <1 —n, ‘1 —-n, > =1

K[ = (n| /)1,

na> :na



Second quantized creation and annhilation Fermi operators
fafuln)=n|n,)

fuln)=ln, |1=n,)

flaln)y=\t-n,[1-n,)

Non-trivial operations:
£.10.)=0  f|L)=]0,)
£10.)=|1)  £I1,)=0

—>n,=0orl

To represent 3 states: |n,n,n, )= ( A )n ( A )nb ( 1 )n 0)



B
Note that the symmetry of the wavefunction is built into the formalism for Bose particles

DA > _ LT ‘ >
Note that the antisymmetry of the wavefunction is built into the formalism for Fermi particles

fanbT‘O>:_befaT O>

In this case, the second quantized forms for the non-interacting system can be written:

H(r,r,..ry)= Zgabotba for Bose particles

H(r,r,..ry)= Zga fTf  for Fermi particles


Presenter Notes
Presentation Notes
What do you think are the advantages/disadvantages of this second quantized formalism?


More general treatment of multiparticle system

N
H(r,xr,,..Iry) = Zh(rl.) +V(r,,r,,..Iy)
i=1

interparticle
interaction

N N
Often: V(r,,x,,..Iy) = Z ZV(I}_I})

i=1 (i>7) j=1

In this case, the second quantized forms can be written

H(r,xy...ry) = > g,blb, + > v, biblbb ~ for Bose particles

afyo
H(r, by xy )= > e, [ f+ D Vs [ fafsf, for Fermi particles
a afyo
Here v, denotes matrix elements such as

Voprs = J.d3r1_‘.d3r2 (Da*(rl )¢ﬂ* (r,)v(r, — r2)¢7/ (r,)@s(r,)


Presenter Notes
Presentation Notes
Next time, we will start to think about what happens when the particles interact.


Pros and Cons for using second quantization —

Pros —
1. Beautiful, compact, ....
2. Worthy of physicists ...

Cons -
1. Does not really introduce new physics
2. Slater determinants and symmetrization/antisymmetrization operators are

good enough



Example of a multi-electron atom — He atom with 2 electrons and Z=2

The Hamiltonian for an He atom (Z=2): (cgs Gaussian units)

2 1 1 2
H(rl,rz):——(Vf+V§)—2€2(—+—j+ ‘
2m A A ‘IH — rz‘
vy 2e° V. 288 €
=— - -+
| 2m Ql‘q—g‘
= a(r) +  h(r,) +v(r-r,)

2m 7

[ | 1l 1

Single particle basis:
h(rl )gpa (rl ) = h(rl )gpnlm (rl ) — gngpnlm (rl )



What is missing?
Electron spin.
1. Electron spin does not appear in this Hamiltonian and therefore cannot

effect the analysis?
2. Electron spin does not appear in this Hamiltonian but can have a profound

effect on the analysis?

Single particle basis with spin:
h(rl)gpams (rl) = h(rl)gpnlmms (rl) — gnlmggnlmms (rl)
Other convenient notations

m=1 =agorT m=-1 =pBorl

S 2 S



Second quantized version of the He atom Hamiltonian

r,) = ngTf "‘ZvyszTfoZﬁ

ijkl

Here v, denotes matrix elements such as

Vi = (0,00, (5)|v(1, = 1) | @, (1), (r,))

The matrix element i=nlmm

In general, we will use n/ = n {Spdf } for n {0123..}



Spectrum of single particle states for He atom (schematic)

&3,63,634

g2sg2p

A)



Ground state configuration for He atom

g3sg3pg3d

&25€2p Y = ﬁZaﬂ:ﬂ |O>



Expectation value of Hamiltonian for ground state of He atom
T T T
H = ng Ji+ 2 Vil 1 T
ijkl

Need to evaluate (y|H|y) for w = f £,

0
First consider the single particle terms; here we assume i # j >
s flw) forw=1'10) oS3} =0
| £ £ )= (0 £, 45 15 17]0) LA =0
VA AN VAN AV AN Y A f 1 } _ 5
=~ SIS = 1A ey
LA LA V=110 1, 110)=10) = (£ lw)=1

/\



Expectation value of Hamiltonian for ground state of He atom
T T T
H = ng /i + szklf ffsz
ijkl

Need to evaluate (y|H|y) for w = f £,

0)

The results on the previous slide evaluate the

single particle terms according to

<W Zgljfjjpz '7”> o glsa T ng,B = 2815




Now consider the interaction term

Here we assume thati # j and k # [

(WA S fiflw) fory=£f!]0)

w1 111wy = (011,411 115 17 10)

Fork=iand/=j: f]flfff;fjﬁfffj:flfff]fjflﬁf]ff
= (O LA LAL S 0) =1 =y,

Fork=jand =i [ ff f 1S ==F1F L 10 f S
= O A L AL 110} ==1 = —vy,




Expectation value of Hamiltonian for ground state of He atom
T T T
H = ng /i + szklf ffsz
ijkl

Need to evaluate (y|H|y) for w = f £,

0)

The results on the previous slide evaluate the

two particle terms according to

4 szjklfjf;flfk l//> = Vi = Vijii

ijki

Here i=lsa j=1sp



Evaluation of two particle term, continued

v = (0,00, (0)|v(x, —1,)|0, (1), (1))
Here i=lsa j=lsf

Vi = [d1dn |00 )] |91 (0] v 1)
V... =0

ijji Why?

Next time, we will analyze this result and consider extension of the analysis to
excited electronic states of He.


Presenter Notes
Presentation Notes
To be continued….
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