PHY 742 Quantum Mechanics I

12-12:50 AM MWF Olin 103
Notes for Lecture 27

Quantum mechanics of multiple particle systems

Atom example systems -- using second quantization formalism and
focusing on Fermi particles

1. He atom in its ground state
2. He atom in an excited state

3. Other atomic systems -- multiplet splittings
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Presenter Notes
Presentation Notes
In this lecture, we will continue our discussion of multiparticle systems – particularly, multi electron atoms as examples


21 |Fri: 03/25/2022 |Chap. 5 & 17

Quantization of the Electromagnetic Field

#17 03/28/2022
22 Mon: 03/28/2022 |Chap. 17 Quantization of the Electromagnetic Field #18 03/30/2022
23 Wed: 03/30/2022 |Chap. 17 Quantization of the Electromagnetic Field  [#19 04/01/2022
24 |Fri: 04/01/2022 |Chap. 18 Absorption and emission of photons
25 [Mon: 04/04/2022 |Chap. 10 (review) gﬂuﬂﬂﬂigﬂﬁ systems and second 40 (04/06/2022
26 \Wed: 04/06/2022 (Chap. 10 (review) Mﬂ‘i;ﬁﬁ systems and second
27 |Fri: 04/08/2022 Multi electron atoms #21 04/11/2022
28 |Mon: 04/11/2022 Multi electron atoms
29 (Wed: 04/13/2022 Hubbard model with multiple electrons

Fri: 04/15/2022 |No class Holiday

30 [Mon: 04/18/2022 Hubbard model with multiple electrons
31 Wed: 04/20/2022 BCS model of superconductivity
32 |Fri: 04/22/2022 BCS model of superconductivity

04/08/2022

PHY 742 -- Spring 2022 -- Lecture 27




PHY 742 -- Assignment #21

April 8, 2022

Review Notes for Lecture 27.

1. Evaluate the ground state energy of a He atom using the single particle basis of the He* ion, evaluating the
expressions obtained in class. (Hint: some of these evaluations were discussed in Lecture 1.)
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Review -- Multiparticle systems using “second” quantization formalism

Start with a basis of functions that can span the space of our multiparticle
system. Typically, the basis functions are formed from single particle states.

Eigenstates of a single particle Hamiltonian /(r)
h(r)p,(r)=¢&,0,(r)
h(r)@,(r) = &,p,(r)

The states |g0a (r)> represent a "first" quantization.

The occupations of these states in the multiparticle
wave function use the notiont of "second" quantization.
hr)e.(r)=e&.0.(r)

We now assume that the single particle eigenstates {% (r)}

span the function space available to each particle.


Presenter Notes
Presentation Notes
Defining the basis eigenstates from the single particle Hamiltonian.


B
Representing the single particle system within the basis:

h(rl) — Z @, (r1)>5a <(0a (rl)‘

Second quantization for Fermi particles described in this basis

N, =11,

Fermi particle anticommutation relations:

fofk=ffo+ 1o, =0
TAVAIET(
{fa,f;}zé‘ab



Presenter Notes
Presentation Notes
Introducing the notion of “second” quantization.


Second quantized creation and annhilation Fermi operators

fifi|n)=n,|n,)
fi|n)=n,[1-n,)

Non-trivial operations:
£.10.)=0  £|1)=[0,)
faT‘Oa>:‘la> faJr 1a>:O

—>n,=0orl

/. 1-n,)

To represent 3 states: ‘nanbnc> = (fj )n (fbT )nb (f; )n

These results follow from the
anti commutator relations of
the operators.

0)


Presenter Notes
Presentation Notes
These results follow from the anti-commutation relations.    Your homework for this lecture is to verify these relationships.


Some details --

Second quantized creation and annhilation Fermi1 operators

Starting with the result: £ f, n,)

)=, [1-n,)

n)) = f LS ) = (=1 f) )
=(/, - £.111.)

n)=K|l-n,)

Assuming normalized eigenstates <1 —n, ‘1 —n, > =1

na>:n

a

We want to show: f,

Consider:  f,' /. (/.

na>:fa(1—na)

This implies that f,

K| = (n|fifln)=n, = L]n)=n[1-n,)
Similarly, = f na>:w/1—na l—na>




From “first” quantization -- h(r1) — Z‘gpa (r1)>8a <(0a (l‘l)‘

0)

To “second” quantization --

0, ()< f)
h=) flf. e,



More general treatment of multiparticle system (focusing on Fermions)

N
H(r,xr,,..Iry) = Zh(rl.) +V(r,,r,,..Iy)
i=1

interparticle
interaction

N N
Often: V(r,,x,,..Iy) = Z ZV(I}_I})

i=1(i>j) j=I1

In this case, the second quantized forms can be written for Fermi particles

H(r, 5 )= Y e f f+ > v S oS

abcd
Here v, , denotes matrix elements such as

Vaea = | 5[ A1y 9, (1)0, (6)0(H — 1), (1), (x,)


Presenter Notes
Presentation Notes
Next time, we will start to think about what happens when the particles interact.


Example of a multi-electron atom — He atom with 2 electrons and Z=2

The Hamiltonian for an He atom (Z=2): (cgs Gaussian units)

2 1 1 2
H(rl,rz):——(Vf+V§)—2€2(—+—j+ ‘
2m A A ‘IH — rz‘
'V, 2e" KV, 288 e
= — — - - +
| 2m Ql‘q—g‘
= h(r) +  h(r) +v(r-n)

2m 7

[ | 1l 1

Single particle basis: For example:
h(rl )(Da (rl) = h(rl )gonlm (rl) = gngpnlm (rl) h(r) (01S> = (— hzzvz — 282 j
m r

§01s> — gls ¢1S>



More complete considerations --
Single particle basis with spin:
h(r1)¢ams ()= h(r1)¢nlmms (r) = & imPrimm, ()
Other convenient notations

m=1 =>aqgorT m=-1 =por

S S



Second quantized version of the He atom Hamiltonian

r,) = ngTf "‘ZvyszTfoZﬁ

ijkl

Here v, denotes matrix elements such as

Vi = (0,00, (5)|v(1, = 1) | @, (1), (r,))

The matrix element i=nlmm

In general, we will use n/ = n {Spdf } for n {0123..}



Spectrum of single particle states for He atom (schematic)

&3,63,634

g2sg2p

A)



Ground state configuration for He atom

g3sg3pg3d

&25€2p Y = ﬁZaﬂ:ﬂ |O>



Expectation value of Hamiltonian for ground state of He atom
T T T
H = ng Ji+ 2 Vil 1 T
ijkl

Need to evaluate (y|H|y) for w = f £,

0
First consider the single particle terms; here we assume i # j >
s flw) forw=1'10) oS3} =0
| £ £ )= (0 £, 45 15 17]0) LA =0
VA AN VAN AV AN Y A f 1 } _ 5
=~ SIS = 1A ey
LA LA V=110 1 110)=10) = (£ lw)=1

/\



Expectation value of Hamiltonian for ground state of He atom
T T T
H = ng /i + szklf ffsz
ijkl

Need to evaluate (y|H|y) for w = f £,

0)

The results on the previous slide evaluate the

single particle terms according to

<W Zgljfjjpz '7”> o glsa T ng,B = 2815




Now consider the interaction term

Here we assume thati # j and k # [

(WA S fiflw) fory=£f!]0)

w1 111wy = (011,411 115 17 10)

Fork=iand/=j: f]flfff;fjﬁfffj:flfff]fjflﬁf]ff
= (O LA LAL S 0) =1 =y,

Fork=jand =i [ ff f 1S ==F1F L 10 f S
= O A L AL 110} ==1 = —vy,




Expectation value of Hamiltonian for ground state of He atom
T T T
H = ng /i + szklf ffsz
ijkl

Need to evaluate (y|H|y) for w = f £,

0)

The results on the previous slide evaluate the

two particle terms according to

4 szjklfjf;flfk l//> = Vi = Vijii

ijki

Here i=lsa j=1sp



Evaluation of two particle term, continued

v = (0,00, (0)| v —1)| 0, (1)e (1))
Here i=lsa j=1spf

vy = [dnd*n @y, 0] o, ()] v - 1)


Presenter Notes
Presentation Notes
To be continued….


Summary of results of ground state of He atom --

H = 25 fo +sz]klfoT](k]€l

ijkl

Need to evaluate <w‘H ‘gy> for y = f; flzﬁ ‘O>

<w ‘H‘W> - 2813‘ T Vistststs
nve 2 2
(_ 2m - j‘¢1S> ls ¢1S> Visisisls — jd3rd3 ,‘l' (I")‘ ‘(Dls

Note: HW21 asks you to evaluate these expressions and compare the results with a
variational approach discussed in Lecture #1.




Discussion — how accurate is our treatment of the ground state of the He atom?
a. We get a numerical result — it must be correct.
b. The variational approach used in Lecture 1 was more accurate.

If (b) is the conclusion — what is the problem with the second quantization approach?
c. It should only be used for qualitative analysis
d. Second quantization approach is in principle exact, but we can improve our
solution.



Continuing our example of He as an illustration of the second quantization formalism,
but using simple expectation values --

He atom (Z=2) in terms of single particle states representing
excited configurations

v 2s I 2s




Digression of atomic term notation

(2S+1)L

Here we assume no spin-orbit interaction and
total electron spin S and total electron orbital

angular momentum L are "good quantum numbers".

0)

l 2s

‘ql(lg*)> — 99 VAP
l 1s jg;ﬁjflza O> or ]f;;a]fl:ﬂ O>
ls*




What should we do?
a. Use one or the other?
b. Use linear combination of both solutions?

| 2s
Actually, in this case, we can use our knowledge
T 1s of addition of angular momentum to know that
| For S=0, the spatial part of the 2 particle
1 S* wavefunction is symmetric in particle exchange.

('S

gls T 823 T V1S2S1S2S T v1S2S2S1S

w(isy) = H|W('S")=

jfiﬂﬂza ‘O> Or ﬁlaﬁ:ﬂ ‘O>



2s

1s

’S

K

In this case, our knowledge of addition of
angular momentum to know that

For S=1, the spatial part of the 2 particle
wavefunction is antisymmetric in particle
exchange.

(PCSH|H|W(CSY)) =

gls T g2s T V1S2S1S2S o V1S2S2S1S



Summary of results for excited state He atom in this approximation

1 %
S gls T 825 T V1S2S1S2S T Vls252sls

3 ¥
S gls T 825 T V1S2S1S2S o V1S2S2S1S

1
S 28, +V,

slslsls
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ASD

Dara

Informarion

Lines Levels

Listof  Ground Siares &
SpecTrRA  lonization Energirs

Bibliography Help

NIST Atomic Spectra Database Levels Data

He |l 198 Levels Found

Z =2, He isoelectronic sequence

Data on Landé factors and level compositions are not available for this ion in ASD

Some data for neutral and singly-charged ions are available in the Handbook of Basic Atomic Spectroscopic Data

Primary data source

Example of how to refi
Kramida, A., Ralchenko,
Database (ver. 5.9), [On
Institute of Standards an
MAW30F

Morton et al| The energy level data refer to the isotope *He. The 1s%p 'P° levels with 7 = 11 were determined by subtracting 0.12 cm™! from the values re
2006 |systematic difference found to exist between his level values and those of Morton et al 2006 for the members of this series with n = 2 through
Martin 1973 .

182 15 0 0.00000000 0.00000014 L8948
1528 35 1 [19.81961484203 ] 0.00000000025 L8948
1528 15 0 [20.6157751334] ?.000PO0ARR6 L8948
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