PHY 742 Quantum Mechanics I
12-12:50 PM MWEF Olin 103

Notes for Lecture 33

Continuation of introduction to the quantum theory of superconductivity
Bardeen, Cooper, Scrieffer, Phys. Rev. 108, 1175 (1957)
1. Summary of Fritz London’s theory and of Cooper pair concept

2. Gap equation
3. Estimate of T

4. Comparison with London analysis
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PHYSICAL REVIEW

VOLUME 108,

NUMBER 5 DECEMBER 1, 1957

Theory of Superconductivity™

J. BarpeeN, L. N. Coorer,f AND J. R. SCHRIEFFER]
Department of Physics, University of Illinois, Urbana, Illinois

(Received July 8, 1957)

A theory of superconductivity is presented, based on the fact
that the interaction between electrons resulting from virtual
exchange of phonons is attractive when the energy difference
between the electrons states involved is less than the phonon
energy, 7iw. It is favorable to form a superconducting phase when
this attractive interaction dominates the repulsive screened
Coulomb interaction. The normal phase is described by the Bloch
individual-particle model. The ground state of a superconductor,
formed from a linear combination of normal state configurations
in which electrons are virtually excited in pairs of opposite spin
and momentum, is lower in energy than the normal state by
amount proportional to an average (#iw)? consistent with the
isotope effect. A mutually orthogonal set of excited states in

one-to-one correspondence with those of the normal phase is
obtained by specifying occupation of certain Bloch states and by
using the rest to form a linear combination of virtual pair con-
figurations. The theory yields a second-order phase transition and
a Meissner effect in the form suggested by Pippard. Calculated
values of specific heats and penetration depths and their temper-
ature variation are in good agreement with experiment. There is
an energy gap for individual-particle excitations which decreases
from about 3.54T, at T=0°K to zero at T,. Tables of matrix
elements of single-particle operators between the excited-state
superconducting wave functions, useful for perturbation expan-
sions and calculations of transition probabilities, are given.

Some of you may wish to read the paper which is available from zsr.wfu.edu
https://doi.org/10.1103/PhysRev.108.1175
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Overview of superconductivity --

Ref:D. Teplitz, editor, Electromagnetism — paths to research,

Plenum Press (1982); Chapter 1 written by Brian Schwartz and Sonia Frota-Pessoa

History:

1908 H. Kamerlingh Onnes successfully liquified He

1911 H. Kamerlingh Onnes discovered that Hg at 4.2 K has
vanishing resistance
1957 Theory of superconductivity by Bardeen, Cooper, and

Schrieffer

The surprising observation was that
electrical resistivity abruptly dropped

when the temperature of the material was
lowered below a critical temperature T..
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Some thoughts related to the statistical mechanics of Bose particles

For Bose particles, many particles can occupy the same state. This means that for
non-interacting Bose particles, according to statistical mechanics, at very low
temperature, it is possible for a macroscopic number of particles to occupy the
lowest single particle state and produce a “Bose condensate”. “He is not a good
example of this, since the particles have significant interactions, but the superfluid
behavior is logically related. A better example was demonstrated in 1995 with 2.5 x
1012 8’Rb atoms cooled to 1.7 x 107K.

For superconductivity, electrons are the particles. How is possible for Fermi
particles to behave with Bose-like statistics?

Introduced the notion of a Cooper pair of electrons that behave somewhat like
electrons and that are stabilized by an attractive interaction.



Some phenomenological theories < 1957 thanks to F. London

Drude model of conductivity in "normal" materials

dv \%
m—=—ek—-m—
dt T
., €Et
v(t)=v,e S —
m
J = —nev; fort>r =

London model of conductivity in superconducting materials;

dv
m—=
dt
dv ¢k 2

—eKE

J=

2
nert

m

av ne’E

— = — =—ne
dt m dt dt
From Maxwell's equations:

VxB:4—ﬂJ+la—E
C c Ot

VxE:_la_B

c Ot
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Note: Equations are in cgs
Gaussian units.
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London model of conductivity in superconducting materials; 7 — o

mﬂ = —ek
dt
dv _ €eE ﬂ__nedv_nezE
dt m dt dt m
From Maxwell's equations:
c c Ot
VxE = _1oB

c Ot



Some phenomenological theories < 1957

London model of conductivity in superconducting materials

dJ dv  ne’E
— =—ne—=
dt dt m
From Maxwell's equations:
VXB:4_7Z-J+18_E VXE:—la—B
C c Ot c Ot
2
Vx(VxB)=-VB=2Tyxy_ LB
C c” Ot
3
_vza_B:4_7Z-VXaJ_ 12 6133
ot ¢ ot ¢ ot
2 3
RvE cB _ drrne VxE—LZa ?
ot mc c” Ot
B 28_B__47me2 B 1 O0'B
ot mc® ot ¢ or

2

2 2
Iyl 10 Iy with A2 = ——
ot A ¢ ot 4rne
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London model — continued

London model of conductivity in superconducting materials

dJ dv  ne’E
— =-—ne—=
dt dt m
2 2
Iy L 1O 1g_g with 27 = ——
ot A ¢ Ot 4rne
For slowly varying solution:
ﬁ v2_iz B=0 for a_B:iM:
Ot ; Ot Ot
. OB,(x,t) _ 0B,(0,1) s Here we assume we know the
ot Ot boundary value at x=0.

London's leap: B.(x,t) = B.(0,t)e """

Consistent results for current density:

4 1 i 2
_ﬂVXJ:_sz:__zB J:ny(x) — Jy(x):/’LLKBZ(O)e—X/lL
mc

c A



London model — continued

j2= M Typically, 4, =107 m

Penetration length for superconductor: :

drrne
BZ (x, l’) = Bz (O’ t)e—x//h
: . 4
Vector potential for B=VxA and V-A =0: Note that: VxB = TJ
A =34 (x) A, (x)=-2,B,(0)e " VALY LAl YT
C C

2
Recall form for current density: J (x) =4, KBZ (0)e ™
mc

2
L3+ A0 o E(WEAj 0
mc m C
Va N
y A
€ - >
A >X
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Challenge for BSC -
What is the microscopic origin of this two-electron current and why is it stable at
low temperature?

Using creation/annihilation operators for Bloch eigenstates:

Bloch states specified by wave vector k and spin o,
which satisfy the usual Fermi commutation relations:

[ﬂka,ﬂkfaf*]+=5kk*5w*, (2—1}
Eﬁk,,ﬂkrgf]+z[}. (22)
The single-particle number operator sy, is defined as

Mko = Cke Cko- (2.3)
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From these single particle states, form Cooper pair states

We start then by considering a reduced problem in
which we include only configurations in which the states
are occupied in pairs such that if k4 is occupied so is
—kJ. A pair is designated by the wave vector k,
independent of spin. Creation and annihilation opera-
tors for pairs may be defined in terms of the single-
particle operators as follows:

by =C_kiCxt, (2.9)
b =crt* ey *. {2.10)

The BCS Hamiltonian takes the form:

These operators satisfy the commutation relations

[E}k,bka'*]_: {1 “‘ﬂkT“ﬂ_kL)akk*, (211)
[Bi,br ]-=0, (2.12)
I:E'k:-bl:’lr:zbkbk’(l —0xKk’), (2.13)

where 7y, is given by (2.3). While the commutation
relation (2.12) is the same as for bosons, the commu-
tators (2.11) and (2.13) are distinctly different from
those for Bose particles. The factors (1—#yxt—9_xy)
and (1—3&xx) arise from the effect of the exclusion
principle on the single particles.

Hred=2 Z Egbk*ﬁ'k—l-z Z |Ek|bkbk* — Z I’rkkrbw*ﬁ'k. (214}

k=>kr k<kp

kk’
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The BCS Hamiltonian takes the form:

Hred=2 Z Egbk*ﬁ]{—FZ Z |Ek|bkﬁlk* — Z Vk}:-'bki*fﬁk. (214}

k }F:Ff k<kp

Single particle energy
Relative to g,

Form of variational wavefunction:

U =TTL (1= i) A, ¥ ],
k

gy

Attractive interaction potential
due to electron-phonon interaction

(2.16)

Here the variational parameters h, represent the probability that pair state k

is occupied.
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Evaluating the matrix elements --

(W[H|Y)=
Wn=W1{E—|—WI=2 Z Ekkk-l'z Z !Ekl (1"‘&];]'— Z ka!i:hk(l—kk}flkr(l-'kkr)]é. (:232)

k>kr k<kp kK’

Optimizing the energy with respect to the variational parameters:

L(l—he) P 2w Vi [ (1= ) A
1_ 2-"1'3]: ZEk '

(2.33)

Simplification for V. :
V for —hw<e, <ho

Vi = |
0 otherwise
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Introduction of the average matrix element into
(2.33) leads to

1 €k
kk=—[1- ], (2.35)
2 (EL:LFEHE)'}
and
€0
e (1—hy) 1= , (2.36)
L ot
where
e0=V 2wl e (1—hw) I, (2.37)

the sum extending over states within the range |ex|
<fiw. If (2.36) and (2.37) are combined, one obtains a

condition on e€g:

1 - 1
V% 2(edted)t

(2.38)
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Replacing the sum by an integral and recalling that
V=0 for |ex| > hw, we may replace this condition by

(2.39)

1 fﬁ” de
NOW Sy (eted)t

Solving for €, we obtain

1
en=ﬁm/smh[N(0) V:I‘ (2.40)

where N (0) is the density of Bloch states of one spin
per unit energy at the Fermi surface.
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The ground state energy is obtained by combining
the expressions for zy and €, (2.35), (2.36), and (2.37),
with (2.32). We find

Eu].2

Fiew
Wo=4N (0) f (&) de——
. V

Fie Eﬂ E{F
— 2N (0 f [ _ ]d —— 4
©) 0 E (e+e?)? E V ( )

where we have used the fact that [1—A(—¢€) |=%k(e),
that is, the distribution function is symmetric in elec-
trons and holes with respect to the Fermi surface.

At 0K, the energy difference of the superconducting state relative to the “normal” state is:

€n 293 i 2
Wu=N(0){ﬁw)ﬂl1-[1~]—(-—-) ] }= 2N O) Buy

e el2IN©O)V] — 1
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Ground state of BCS Hamiltonianat 0 K- __

o\ — 2
11’.;,=N(0){ﬁm)2l1—-[1+(_~) ] }= 2N O) Buy

B el2IN(O)V] 1
(2.42)

Considering excitations to this ground state — BCS Hamiltonian has a energy gap of 2¢,

1 o de 1
N(O)V f.} (et Lid(ete)l, 3.21)  where j kT

The transition temperature T, can be estimated as the solution when g, = 0.

: fﬁmd& h(38.c) mp kT.=1.14% [ : }
= — tanh(s0 € e = 1.130w EXpPl — —
NOW J, e i N(O)V

For k,1, <<hw
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Plot of gap parameter as a function of temperature --

€,(T)
€,0) %°
Q4

qz._

[ I [ |

-0 0.2 - 0.4 0.6 ol: L0

Fic. 1. Ratio of the energy gap for single-particle-like
excitations to the gap at T'=0°K vs temperature.
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This treatment has assumed that there are no magnetic
fields present in the system. An applied magnetic field
can also affect superconductivity.

The critical field for a bulk specimen of unit volume
is given by

H2/8x=F,—F, (3.32)

where F, is the free energy of the normal state: o

I-(T/ T

(T/ T

Frc. 2. Ratio of the critical field to its value at T=0°K us
(T'/T.)* The upper curve is the 1—(7"/T.)* law of the Gorter-
Casimir theory and the lower curve is the law predicted by the
theory in the weak-coupling limit. Experimental values generally
lie between the two curves.
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Superconducting current —

Single particle Bloch wavefunctions --

We expand ¢ and ¢* in creation and annihilation

operators®®:
1 .
. ik.r ieh e’
¥(x) - E Cre, Mal™™", X (r) =—W*vy—Herm. conj.) ——*A¢
1 (5.6) 2m mc
?:’*(r) =§; k%,ﬂk;r ‘?’*‘Mo"*g_ikj -r’ = "LSP{I) -i_ 1}{1‘)

where the ¢’s satisfy the usual fermion anticommutation
relations, (2.1) and (2.2), #, is a two-component spinor,
and £ is the volume of the container. The interaction

The paramagnetic contribution is complicated, but is generally small at low temperature.
However, the diamagneticterm:  Jp(r)= — (ne?/mc)A(r), (5.14)

is significant and is consistent with the London expression.
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BCS estimate of penetration depth --

(K} =

O s
Al T)
' x
04l |Aglo) e | &mn
T i T 2kT

G2~

| | I
nﬂ-i 04 Q5 0.6 QT c.8 a9 LO

t=T/T,

Fic. 6. The temperature variation of the penetration depth,
A, in the infinite coherence distance limit, (£,/A\)— «, compared
with the empirical law, [A(0)/A(T) E=1—4.
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