PHY 742 Quantum Mechanics Il
12-12:50 PM MWEF Olin 103

Plan for Lecture 3
Approximate solutions for stationary states
Perturbation theory (Chap. 12 C & D)

. Summary of results for non-degenerate problem

. Perturbation theory for the case of degenerate zero order
eigenvalues

. Examples
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Course schedule for Spring 2022

(Preliminary schedule - subject to frequent adjustment.)

Lecture date Reading Topic HW| Due date

Mon: 01/10/2022 (Chap. 12 Appmxirne;te solutions for stationary states -- 41 101/14/2022
The variational approach

Approximate solutions for stationary states -- 49 101/19/2022

Wed: 01/12/2022 |Chap.12C Perturbation theory e

Approximate solutions for stationary states -- 43 101/21/2022

AL aZs Gl 1 Degenerate perturbation theory —

Mon: 01/17/2022 MLK Holiday -- no class

1/14/2022 PHY 742 -- Lecture 3




PHY 742 -- Assighment #3

January 14, 2022
Read Chapter 12, part D in Carlson's textbook.
1. Work problem 9 at the end of chapter 12.

9. A hydrogen atom in some combination of the 7 = 2 states 1s placed m an electric field which
adds a perturbation 7" =12 (}fz — FE) where A 1s small. Ignore any spm-orbit or hyperfine
splitting of the hydrogen atom: 7.e., treat all » = 2 states of hydrogen as perfectly degenerate
before W 1s mcluded.

(a) Find all non-vanishing matrix elements (2?’;13'|F‘F|2hn> for this mteraction.

(b) Find the perturbed eigenstates and eigenenergies of the » = 2 states to zeroth and first
order n A respectively.
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Methods for finding approximate solutions to the time-independent
Schrodinger equation

Review of non-degenerate perturbation formalism --
Problem to solve - H ‘ n> _ En

n)
For a Hamiltonian

0 |
of the form H=H"+eH

Here H® denotes a Hamiltonian whose eigenstates we know
1) = £ ')

H' denotes another contribution to the Hamiltonian scaled by a small number ¢




H|n)=E,|n)
H=H"+ecH'
Assume: ‘n>:‘no>

E =E)




First order formula --

£ = (|10 |n")
(L 5 170N
-5 o)

m+*n \

Second order formula --

E; =(n"|H'|n")= Z<”O‘Hl‘mo><mo‘Hl‘”o>

0 0
m+n En _Em

2

)= S >Z<( L O 0 A L Al

EN)E-E)) (E0-E) 2055 (B -E)



Qualitative behavior of non-degenerate perturbation theory

E° +E! E° +E! +E2
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Perturbation theory in the case that the zero states are degenerate

Cannot use non-degenerate formalism because even in first order, the expressions
diverge.

First order formula --

B = (| 1| )
/<mo‘Hl‘no>\
E'-E

m+*n \

J



Approximation schemes for solving the time-independent Schrodinger equation

H‘n>=En n>
H=H"+eH'

In general, we approach the problem using the

complete basis set of 4" :
HO () = £
However, consider the case when

0 _ 710 0
Ena —Enb....EnN




Degenerate perturbation theory,

considering the effects on the N-fold degenerate states:

0 0 0 0 770 _ 10
na>, nb>,....‘nN> where £, =E, ..=E,

0
)

— The N first-order wavefunctions will be the

N
. 1 1
Fori=1,2,...N, assume ‘ni>: E C;.
j=1

eigenstates of the N x N matrix <nf ‘H "+ H

0
)



HO+H*

1/14/2022

For the moment, we will focus on
one degenerate zero order state
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Photo from the Nobel
Foundation archive.

Johannes Stark

Prize share: 1/1

1/14/2022

The Nobel Prize in Physics 1919 was awarded
to Johannes Stark "for his discovery of the
Doppler effect in canal rays and the splitting
of spectral lines in electric fields."
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Example of degenerate perturbation theory for a H atom in the degenerate states

|nim) =|200),

21-1),

2109,

211)

2
3 b 1
all having zero-order energies E, = — = —
2a, 2

In this case, consider a perturbation caused by an electrostatic field F

directed along the z-axis causing polarization of the electron:
H'=eFr cos@

Matrix elements:

<21m|H1 |2['m'> =-3eFa,0, 0,0,

(=117 m0=m"0

Details:

0 1
<2OO|H1|210>: ek Ir4dr[2—Ljer/“°jcos29 dcosd

4

=—3eka,



Degenerate perturbation theory example for the Stark effect --
continued

Matrix elements: 200) |210) |21-1) |211)
(200[ (0 —3eFa, 0 0
(20m| H' |20 m) ~ (210] | —3eFa, 0 0 0
(21-1]| 0 0 00
AR 0 0 0,

Eigenvalues of <21m‘HO+H1‘21'm'>:
E, for [21£1)
Ej —3eFa, for -(|200)+|210))

2

1
NG
E; +3eFa, for 4(|200)-|210))



Degenerate perturbation theory example for the Stark effect -- continued
Eigenvalues of (2/m|H’+H'|2]'m"):
E, for |21+1)

El = E; —3eFa, for -(|200)+|210))
" Ey+3eFa, for --(|200)-|210))
E,
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Note that the treatment in the previous slides is called the linear Stark effect. (why?)

What happens when you apply an electrostatic field to a H atom in its ground state?
1. No effect
2. Small effect
3. Large effect



Degenerate perturbation theory example for effects of a constant magnetic field B on an atom

2
(p + eAj 1
H=~°"J yy)+-SB.s Vector potential A=—r xB

2m mc 2
2
H’ = P +V(r)
2m
Keeping only terms to linear order in B :

o (L+2S)-B Detail:
2mc 1 1
Ep-pr+5pr-p:L-B



Degenerate perturbation theory example for effects of a constant magnetic field B on an
atom -- continued

For atoms with total orbital momentum L and total spin S:

L*|LM;SM ) = h*L(L+1)|LM;SM ) L |LM;SMg)=hM|LM;SM)
S?*|LM;SM ) =n*S(S +1)|LM;SM ) S.|LM;SMg)=nMg|LM;SM )
These states have a degeneracy of (2L +1)(25 +1)

Degenerate perturbation theory matrix for first order:
ehB

2mc
Example: atomic term: *P

values of (LM;SMg|H'|LM ",SM ")/ (ehB/2mc)

(LM ;SM¢|H'|LM ;8M ") =

(M +2M)8,,,0,

’
SMS

Paschen-Back

effect
M= -1 0 1
M =-1 -3 —1 1
M =0 -2 0 2

M =1 -1 1 3



Energy eigenvalues of L=1,5=1 atom (without spin-orbit interaction) in a magnetic field

M M,
30- 1 1
20- 01
10- — -110r10
e — | . | | | . | | , 0 0
. —d— 6 8 10
~10- i — 1-10r-10
~20- 0 -1
-30- -1 -1

>

B field strength
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Example of degenerate perturbationtheory in the treatment of the
term values of multi-electron atoms:

I = Zh(r)+z h(r)=_%v _ZTe
‘ ’ I,j<I '

\_YJ‘ |
single electron  qjectron-electron

terms interaction
Evaluating expectation values: <LM ‘%‘LM > for 2 p°

E(P)=e (930(219,219,21?,21?)—2%93 (2p,2p,2p,2p)j

E(D)=¢’ (930(2p,2p;2p,2p) + 2%5/32(219,219; 2p, 2p)j

E(S)=¢’ (930(2p,2p;2p,2p) + %fk (2p,2p,2p,2p)j



Example of degenerate perturbationtheory in the treatment of the
effects of spin-orbitinteraction:

H,,=G(r)S-L
Note that: J=S+L
J°=S*+L’+2S L

< SO ; >:G(’”)< ; >
_n (;(r)(j(j+1)—s(s+1)—l(l+1))
J=1+1/2:
(1+%)M;ls|Hg, |(1+4) M ls>=hi(”)z
J=I-1/2:
(1-4)M;is|Hg, |(1-1)M;ls) = - hG(”)(Hl)

2



Degenerate perturbation theory example for effects of a constant
magnetic field B on an atom — including the effects of spin-orbit
interaction

2
i)
H=>"%"7 4 v)+G#)S-L+-B-S
2m mc
2
H’ =p—+V(r)
2m

Keeping only terms to linear order in B ;

e

HI:G(r)S-L+2mC(L+ZS)-B
G(r) (2 v2 2 e
= J°-L"-S J+S)-B
2 ( )+2mc( " )
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