PHY 742 Quantum Mechanics Il
12-12:50 PM MWEF Olin 103

Plan for Lecture 4
Approximate solutions for stationary states
Perturbation theory (Chap. 12 C& D, 13%*) -

Some additional tricks and famous results

1. Summary of basic formalism for non-degenerate problem
2. Polarizability of H atom

3. Summation tricks

4. More examples

* WKB method will be discussed after completing Chap. 13
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Course schedule for Spring 2022

(Preliminary schedule -- subject to frequent adjustment.)

Lecture date Reading Topic HW| Due date

1 Mon: 01/10/2022 |Chap. 12 Appmxi!‘naie solutions for stationary states -- #1 01/14/2022
The variational approach

2 \Wed: 01/12/2022 |Chap. 12 C Apprﬂxim_aie solutions for stationary states -- #2 101/19/2022
Perturbation theory

3 Fri: 01/14/2022  Chap. 12D Approximate suluiions‘_:. for stationary states -- #3 01/21/2022
Degenerate perturbation theory

Mon: 01/17/2022 MLK Holiday -- no class

4 |\Wed: 01/19/2022 |Chap. 12C & D |APProximate solutions for stationary states - |, |44/54/2022
Additional tricks

5 [Fri: 01/21/2022 |Chap. 13 Examples of of the use of perturbation theory

Note that we will come back to the WKB method after completing the perturbation
theory examples presented in Chap. 13
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PHY 742 -- Assighment #4

January 19, 2022
Read Chapter 12, parts C & D in Carlson's textbook.

1. Verify the solution and energy of the quadratic Stark effect for ground state H atom in a
uniform electric field discussed in Lecture 4.
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Review of non-degenerate perturbation formalism --

Problem to solve — H ‘ n> — F
n

n)
For a Hamiltonian

0 |
of the form H=H +eH

Here H® denotes a Hamiltonian whose eigenstates we know
1) = £ ')

H' denotes another contribution to the Hamiltonian scaled by a small number ¢




H|n)=E,|n)
H=H"+ecH'
Assume: ‘n>:‘no>

E =E)




First order formula --

£ = (|10 |n")
(L 5 170N
-5 o)

m+*n \

Second order formula --

E; =(n"|H'|n")= Z<”O‘Hl‘mo><mo‘Hl‘”o>

e E, -E,
(e L ey o i e e (3 s |
)= mz‘ >ZZ( E0)(EY - E) ’;‘m> (£ £ 2‘” >mZ (£ £

Note that this approach involves a lot of computation



The following approach is adapted from the textbook by Schiff --
H ‘ n> =Lk n>
H=H"+eH'

Assume: ‘n>=‘n0>+e‘n1>+62‘n2>+...
E =E)+e¢E, +c¢’E? +...
where H°’ ‘n0> =E ‘n0> is presumed to be known

First order solution:
(H' = E])|n')=~(H'-E,)

n0> where E, :<nO‘H1‘nO>



First order solution:
(H' = E])|n')=~(H'-E,)

n0> where E, :<nO‘H1‘nO>

=» In some cases, this inhomogeneous differential equation can be solved directly.
Note that the equation has a singularity and it is essential to enforce the condition

(n°|n")=0

Do you think that this is a good idea?
1. Yes

2. No
3. Yes, if someone else does the hard work....



Example — hydrogen atom in its ground state perturbed by a uniform electric field
(note that this is the quadratic Stark effect we mentioned last time)

2 2 —rlay 2
HO :__V2_kee ‘nO>E‘(IOO)O>: € 3 Eno — _ kee -
2u r (nim) na; 2a,n

Bohr radius:

h
uk e’

ay

H'=eFr cos(d)  assuming the field F is oriented along the z-axis

Note that in this case, £, = <n0 ‘Hl ‘n0> =0



Hydrogen atom in its ground state perturbed by a uniform electric field -- continued
Differential equation for first order solution:

(HO—E,?)n1>:—(H1—E:l)nO> WhereE;:<n0‘H1‘n°>

2 2 2
(—h—Vz _ ke + ke j‘n1> — eFr cos =
2u ro 2a,

—r/ayg

3

Assume ‘n1> = f(r)cos®
Differential equation for unknown radial function f(r):

(dz 2d 2 2 2F

_I_

- GE
dr’ rdr ¥ oag a; e, /ﬂag

re



Hydrogen atom in its ground state perturbed by a uniform electric field -- continued

Assume ‘n1> = f(r)cosd
Differential equation

d_2_|_2 d — 2 _|_i_L f(V)_
dl/'z r dl/' 7/'2 Clol" ag eao'/ﬂ'a(’;’

F
It can be shown that ‘nl> S re " [1 + Lj cos @

e\ 7a, 2a,
9

Second order energy - E- = <n0 ‘Hl ‘n1> = _Z%Fz

2F —r/ag
re




Hydrogen atom in its ground state perturbed by a uniform electric field -- continued

Note that the general energy associated with the polarization of

a neutral object 1n an electric field F' is given 1n terms of the

polarizability o : E = —laF ?

polarization 2

= Approximate value of « for H atom: « = %aé



Additional “tricks” for evaluating second order energy (Ref. L. Schiff, Quantum Mechanics)

E’ =<nO‘H1‘n1>: Z<nO‘H1‘Z§>_<ZZ‘H1‘nO>

m#+n

Note, typically we are interested in perturbations to the

ground state, so that ‘n0> represents the (non-degenerate)

ground state and all {‘m0>} form a complete set of functions.



Suppose that we can find an operator G such that:
GALRLY
E)-E)
Then: E’= Z<n0 ‘Hl ‘m0><mO‘G‘no> —<n° ‘Hl ‘n0><n0 ‘G‘n°>

m

(oo}~

Because of completeness of the functions, Z‘m0><m° ‘ =1

= 52 = 0| )~ oo o)

How can we find G?  Note that <m0 ‘[G,HO]‘n0> = (Ef —Eg)<m° ‘G‘n0> = <m0 ‘Hl ‘n°>
It follows that [G,H’]= H' +(constant) and (constant)= —<n0 ‘H ! ‘no

Further, we can find the first order wavefunction

‘ﬁ1> = (G —<n° ‘ G‘n0>)‘n0> can be obtained by solving
(£2-#°)|') = (H' ~(n[#1'[n")) ") = B ={n'|H'|i)

Generalization of second order Stark effect calculation discussed previously.



More examples of perturbation theory estimates from Chap. 13 of your textbook

Finite size of the nucleus
Bohr radius a,=0.529 x 101° m
Nuclearradius R=10%¥ m

1_

Scale = 70000 eV

Vfinite nucleus(r/R)— 3-

1/19/2022

Vpoint nucleus(r/R)
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Finite nucleus model used in textbook

A Finite Nuclear Size

The nucleus is not in fact an infinitesimal object. but instead an object of finite radius a. We
will treat the nucleus as a uniformly charged sphere of total charge Ze. The total charge inside a
sphere of radius r will therefore be

Ze rF>a.
q(r)=

' Zer3/ a r<a.

Gauss’s Law can then be used to find the electric field everywhere

kZelr* r>a.
E[;']={ Ze/ .
krﬁer/a r<a.

The potential energy is the negative of the integral of the force on the particle used to bring it in
from infinity:

i ~k,ze* [r r>a,
V(r)=—|[-eE(# )l = (2 13.3
() J:[ eE(r }]dr ﬁkEZez : 3—; r<a. (13:3)
L = ~a
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More convenient notation —
Bohr radius a,=0.529 x 101 m

Nuclearradius R=10% m )
[ . 2\
k 2 3 _(Ej 0<r<R
Vﬁnite nucleus (7' ) — ee a() 3 \ y,
2a, R 5
r >R
. I”/R

Perturbation for 0<r<R:

H'(r)= ke a /3 —(LT —Z—R\
2a, R




—r/ay 2
e 0 ke
E) ==

3
ra; 2a,

Correction for ground state of H atom -- ‘ n0> = ‘ (1 ()O)O> —
Perturbation for 0<r<R:

Hl(r):—kee2 % 3—(LT—2—R
2a, R R r

First order: E = <(1 00)” ‘H ! ‘(1 OO)O>
R 2
_ ke a, 47zjr (rj _2_R o2l g
2a, R 7a, v

2
N keez [R ] 8 <136 er(3><10_10) More si.gnificant
d

corrections for
larger Z.
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