Advanced
Quantum Mechanics

J. J. Sakurai
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2-8. A stable, spinless nucleus 4 of even parity has a spin-one, odd-parity excited state
R whose only significant decay mode is R — A4 + 1.
a) Assuming that excitations to intermediate states other than R are unimportant
and ignoring the nuclear Thomson term (due to A-A), show that the differential
and total scattering cross sections of a v-ray by the ground state A are given by

do :i(i)z(e(m,e(a'))z %
dQ 16\ w (Er — E4 — ho) + (T%/4)°

3 (Th/4)
Tror = 7(4”7\ )(Eh, — E4 — hw)® + (I'}:/4)°

where A = c/w. (The second formula can be generalized to resonance scattering
involving any multipole transition if we replace 3/2 by (2J, + D/[2Q21, + 1)].)
b) Verify that the above expression for the total cross section is equal to
47(c/w) Imf(w).
¢) The nucleus C** whose ground state is known to be a 0* state has an excited
1~ state (denoted by C'4*) 6.1 MeV above the ground state. The only decay mode
of C'* is known to be C'* + «, Compute the total cross section at exact resonance
and compare it with the cross section for nuclear Thomson scattering due to the
C'" nucleus as a whole.

2-9. Assuming that f(w) for the scattering of a high-energy photon by the hydrogen
atom is given by the Thomson amplitude, derive the sum rule

2n%cry = J: Trot(®) do.

Show that within the framework of the approximations made in this chapter, the
above sum rule is equivalent to the well-known Thomas-Reiche-Kuhn sum rule:

% Z%wl‘ﬂxmfz =3.
I
2-10. Assuming the validity of perturbation theory, use the fixed-source neutral scalar
theory of Problem 2-7 to obtain an expression for the probability of finding one
virtual meson of energy <o ™2% around the nucleon.
2-11. Why is it legitimate to ignore Fig. 2-7(a) in estimating the Lamb shift ?

IMerzbacher (1961) p. 446.

CHAPTER 3

RELATIVISTIC QUANTUM MECHANICS
OF SPIN-{ PARTICLES

3-1. PROBABILITY CONSERVATION IN RELATIVISTIC
QUANTUM MECHANICS

It is almost traditional to start an exposition of the Dirac theory of spin-1 par-
ticles by discussing some of the “difficulties” of the Klein-Gordon theory. As we
shall see later, there is actually nothing wrong in the Klein-Gordon equation if
it is properly interpreted. We shall sketch, however, the usual arguments against
the Klein-Gordon equation since they played an important historic role in the
formulation of relativistic quantum mechanics.

In Schrédinger’s wave mechanics we associate a complex-valued wave function
2 with a single particle, such that |y»|*d*x gives the probability of finding the
particle in a volume element d°x. This interpretation is possible because the proba-
bility density P and the flux density S given by

P=|Y>0 3.n
and
S = —(h/2m)(p* Vo — Vo) 3.2)
satisfy the continuity equation
oPlot + V-8 =0 3.3)

by virtue of the Schrédinger equation. Using Gauss’ theorem, we also see that the
integral over all space | Pd*x is a constant of the motion which can be set to unity
by appropriately normalizing r.

If one is to construct a relativistic quantum mechanics in analogy with non-
relativistic quantum mechanics, it may appear natural to impose the following
requirements on the theory. First, with the relativistic wave function we must be
able to construct bilinear forms which can be interpreted as the probability density
and the flux density satisfying a continuity equation of type (3.3). The probability
density we form must, of course, be positive definite. In ‘addition, the special theory
of relativity requires that P must be the fourth component of a four-vector density.
To see this last point, we recall that d®*x — d®x/T — (v/c)* under a Lorentz
transformation because of the well-known Lorentz contraction of the volume
element; if Pd®x is to remain invariant, it is essential that P transforms like the
fourth component of a four-vector P — P/~/1 — (v/c)*. The continuity equation
(3.3) takes the following covariant form,

(@/ox,)s, = 0, (3.4)
where
s, = (S, icP). (3.5)

75
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Let us now see whether the relativistic quantum mechanics based on the Klein-
Gordon equation satisfies the above requirements. Consider a four-vector density
given by

so=a(pr 22 - %), (3.6)

ox, 0x,

where ¢ is a solution to the free particle Klein-Gordon equation, and 4 is a mul-
tiplicative constant. The four-divergence of (3.6) vanishes,

35, _ [f’ﬁi*éi_ * . *34’*_%]: 3.7
axu - A axﬂ ax“ (I:l¢ )¢ +¢ D¢ axl‘ axu 09 ( . )
by virtue of the Klein-Gordon equation. For a Klein-Gordon particle moving
at nonrelativistic velocities (E =~ mc?),

(i) ~ ’lll‘e_im'c”/h, (3.8)

where +r is the corresponding Schrédinger solution (cf. Problem 1-2). The com-
ponents of s, are then given by

So = —is, ~ Qmc/) Ay, s = ARt Vo — (Ty)yl. (3.9)

If we set A = —ih/2m, then s and s, are precisely the flux density and ¢ times
the probability density in the Schrddinger theory. Thus we obtain a four-vector
current density from a solution of the Klein-Gordon equation with the following
properties: (i) the current density satisfies the continuity equation, and (ii) the
components of the current density coincide with the flux density and ¢ times the
probability density in the nonrelativistic limit.

So far everything appears satisfactory. There is, however, a difficulty in inter-

preting
i h 0 ad*
P o450~ % 9) .10

as the probability density. In the Schrddinger theory, in which the time derivative
appears only linearly in the wave equation, the sign of the frequency is determined
by the eigenvalue of the Hamiltonian operator. In contrast, because the Klein-
Gordon equation is of second order in the time derivative, both u(x)e~*£¢/* apd
u*(x)e*tFY" are equally good solutions for a given physical situation (cf. Problem
1-3). This means that P given by (3.10) can be positive or negative. We may arbi-
trarily omit all solutions of the form u(x)e~£‘/* with E < 0. But this would be
unjustified because solutions of the form u(x)e *** with E > 0 alone do not
form a complete set. It appears that we must either abandon the interpretation
of (3.10) as the probability density or abandon the Klein-Gordon equation al-
together.

Let us analyze the origin of this difficulty a little more closely. From the deriva-
tion of the continuity equation (3.7) we may infer that the appearance of the linear
time derivative in s, is unavoidable so long as the wave function satisfies a partial
differential equation guadratic in the time derivative. Perhaps we could avoid
this difficulty if we wrote a relativistic wave equation /inear in the time derivative.
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In 1928, in what is undoubtedly one of the most significant papers in the physics
of the twentieth century, P.A.M. Dirac succeeded in devising a relativistic wave
equation starting with the requirement that the wave equation be linear in 9/at.
Using his equation, known to us as the Dirac equation, he was able to construct
a conserved four-vector density whose zeroth component is positive-definite. For
this reason, from 1928 until 1934 the Dirac equation was considered to be the
only correct wave equation in relativistic quantum mechanics.

In 1934 the Klein-Gordon equation was revived by W. Pauli and V. F. Weiss-
kopf. Their proposal was that, up to a proportionality factor, s, given by (3.6)
be interpreted as the charge-current density rather than as the probability-current
density. As we saw in Section 1-3, an interpretation of this kind is reasonable
in the classical field theory of a complex scalar field. The fact that the sign of s,
changes when w*(x)e™***" is substituted for u(x)e'”** makes good sense if the
negative-energy solution is interpreted as the wave function for a particle with
opposite electric charge (cf. Problem 1-3).

The interpretation of s, as the charge-current density is even more satisfactory
for a theory in which a solution to the Klein-Gordon equation is to be interpreted
as a quantized field operator. In analogy with what we did for the complex scalar
field in classical field theory we form a non-Hermitian field operator d(s= oY)

such that . '
¢=%&, ¢+=¢;'J_T’<i’2, 3.11)

where ¢, and ¢, are Hermitian operators whose properties are given in Problem
2-3. Consider now a four-current operator

je=e(9r 22 - 24, (3.12)

ox, 0x,

It is easy to show (Problem 3-1) that the fourth component of j, has the property

[Giieyd>x = e 3 (N — N, (3.13)
K
where
N® = af, a., (3.14)
with

+

1 .
G = (@) L id?), . =

\/%(af(" T ia®). (3.15)

Physically, N*> and N~ are the number operators for the Klein-Gordon particle
of charge e and for its antiparticle with charge —e. So the eigenvalue of the opera-
tor expression (3.13) is the total charge of the field. Usually the four-vector j, is
regarded as the charge-current density operator.

As emphasized in Chapter 2, quantum field theory accommodates physical
situations in which particles are created or annihilated. When there are processes
like 4y — 7* + 7z~ which take place in the Coulomb field of a nucleus, what is
conserved is not the probability of finding a given particle integrated over all
space but rather the total charge of the field given by the eigenvalue of (3.13).
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Coming back to the original argument against the Klein-Gordon equation, we see
that if we are to reject the Klein-Gordon equation on the ground that we cannot
form a positive-definite probability density, we might as well give up the Maxwell
theory which, as the reader may verify, cannot accommodate any conserved
four-vector density bilinear in the electromagnetic field.

3-2. THE DIRAC EQUATION

Derivation of the Dirac equation. Even though the Klein-Gordon equation is
quite satisfactory when properly interpreted, there is reason for rejecting it for
the description of an electron. The Klein-Gordon equation cannot accommodate
the spin-1 nature of the electron as naturally as the Dirac equation can. In this
connection, let us first study how to incorporate the electron spin in nonrelativistic
quantum mechanics.

In nonrelativistic quantum mechanics, in order to account for the interaction
of the electron spin magnetic moment with the magnetic field, it is customary to
add a term

H®™ = —(ek/2mc)o-B (3.16)
to the usual Hamiltonian, as done originally by W. Pauli. This procedure appears
somewhat artificial, especially if we subscribe to the philosophy that the only
“fundamental” electromagnetic interactions are those which can be generated
by the substitution p, — p, — ed,/c. There is, however, a slightly less ad hoc
way of introducing the spin magnetic moment interaction. In the usual wave-
mechanical treatment of the electron, the kinetic energy operator in the absence
of the vector potential is taken to be

HXE) — p*2m. 3.17)
However, for a spin-1 particle we may just as well start with the expression
HE® — (g-p)(g-p)/2m. (3.18)

This alternative form is indistinguishable from (3.17) for all practical purposes
when there is no vector potential.] There is, however, a difference when we make
the substitution p — p —eA/c. The expression (3.18) then becomes

bioo-H)o- (o=

2m c
1 eA\? i eA eA
= z;n‘("’_ 7) +ﬁ"'[("— 7) X (" 7)]
1 A\? h
=§r—n<p—%) — g3, (3.19)
where we have used
p X A= —in(V x A) — A X p. (3.20)

(The operator p is assumed to act on everything that stands to the right; in contrast,

{We recall that the formula (¢-A)e-B) = A:B + ig-(A X B) holds even if A and B
are operators.
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the V operator in (3.20) acts only on A.) Note that the spin magnetic moment
generated in this way has the correct gyromagnetic ratio g = 2.1

Our object is to derive a relativistic wave equation for a spin-4 particle.
Just as we incorporated the electron spin into the nonrelativistic theory by using
the kinetic energy operator (3.18), we can incorporate the electron spin into the
general framework of relativistic quantum mechanics by taking the operator analog
of the classical expression

(E*c?) — p* = (me)’
o be (me) (3.21)
E(op) E ©p)
( - —a-p)( _ +a-p) = (me), (3.22)
where
0 .0
E — ip 9 — ipe 9,
ih P ihe %, (3.23)
and p = —ihV as before. This enables us to write a second-order equation (due
to B. L. van der Waerden),
.. 0 . . 0 .
<1h970 + a-th) (zha—xo — a-th) ¢ = (mc)*d, (3.29)

for a free electron, where ¢ is now a two-component wave function.

We are interested in obtaining a wave equation of first order in the time deriy-
ative. Relativistic covariance suggests that the wave equation linear in 2/ot must
be linear in V also. An analogy with the Maxwell theory may now be helpful.
The free-field D’Alembertian equation [ ]4, = 0 is a second-order equation,
while the free-field Maxwell equation (9/0x,) F,, = 0 is a first-order equation.
Note that F,, obtained by differentiating 4, has more components than A,. This
increase in the number of components is the price we have to pay when we work
with the first-order equation.

(b(ll::loti(\ilat?d by this analogy, we can define two two-component wave functions
and ¢%:

dB = 1 (ihi — iha-V) ¢, PP = . (3.25)

mc X,

The total number of components has now been increased to four. The superscripts
R gnd L come from the fact that as m — 0, $® and ¢®, respectively, describe
a right-handed (spin parallel to the momentum direction) and a left-handed (spin
antiparallel to the momentum direction) state of the spin-} particle, as we shall
see la.ter. The second-order equation (3.24) is now equivalent to two first-order
equations

liha-V — ih(8/0x,)]pP = —mcPp™®,

[—ihe -V — ik(9]3x,)]® = —med®. (3.26)

H—_Ilstorically, all this was first obtained by working out the nonrelativistic limit of the
Dirac theory, as we shall show in the next section. For this reason, most textbooks state
that the g = 2 relation is a consequence of the Dirac theory. We have seen, however,
that .the & = 2 relation follows just as naturally from the nonrelativistic Schrédinger-
Pauli theory if we start with the kinetic energy operator (3.18). This point was emphasized
particularly by R. P. Feynman.
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Note that unless the particle is massless, these first-order equations couple ¢*
and ¢ just as the Maxwell equations, also first-order equations, couple E and B.

Equation (3.26) is equivalent to the celebrated wave equation of Dirac (cf.
Problem 3-5). To bring it to the form originally written by Dirac, we take the
sum and the difference of (3.26). We then have

—ih@- V)@ — ) — Ih@[Ox) G + ) = —me(® | ¢,
in(@-V)(@P + ) 4 ih(3[x) (P — ¢P) = —mc(p® — ¢P),
or, denoting the sum and the difference of ¢ and ¢‘® by 4, and s, we have
(_{h(a/ax") __iha'v)(‘!"‘> — —me (""‘)- (3.28)

ihe-V ih(8]9x,)] \\rg g

Defining a four-component wave function +Jr by

(3.27)

B "l’A _ ¢(R) _{,_ (j)(L)
V= ( wan P® — ® ’ (3.29)
we can rewrite (3.28) more concisely as
0 me,
(79 i)+ + o =, (3.30)
or
0 mc .
(e + 5 )b =0 33
where v, with g = 1, 2, 3, 4 are 4 X 4 matrices given by
h(O —iak) ¥<I 0) 3.32)
"o 0 "o -1 .
which really mean
0 0 —i 0 1 0 0 0
0 0 0 i 0 1 0 0
= ) = s etc. 3.33
"Zli 0 0o "Tloo -1 o Tt G
0 — 0 0 00 0 —1

Equation (3.31) is the famous Dirac equation.$§

1We use the standard form of the 2 X 2 Pauli matrices

0 1 0 —i ., _(1 0>
0’1—<l 0), Ug—(i 0)1 3 0 —1 .

The symbol I stands for the 2 x 2 identity matrix

(o 1)

§In deriving the Dirac equation we have not followed the path originally taken by Dirac.
The first published account of the derivation given here is found in B. L. van der Waerden’s
1932 book on group theory. The original approach of Dirac can be found in many books,
for example, Rose (1961), pp. 39-44; Bjorken and Drell (1964), pp. 6-8.
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We wish to emphasize that (3.31) is actually four differential equations that
couple the four components of " represented by a single-column matrix

L2

Yy
Y= ol (3.34)

Yy
A four-component object of this kind is known as a bispinor or, more commonly
as a Dirac spinor. If there is any confusion as to the real meaning of (3.31) thé
reader may write the matrix indices explicitly as follows:
4

e o DI ey (339)

B=1

The fact that +}» has four components has nothing to do with the four-dimensional
nature of space-time; s does not transform like a four-vector under a Lorentz
transformation, as we shall see in Section 3-4.

The 4 x 4 matrices y, we introduced are called the gamma matrices or the

Dirqc matrices. They satisfy the following anticommutation relations as we may
readily verify:

{'Yw V) = YV + VY. = 28;;1;- (3.36a)
. <I 0)2 (1 0)
Y1 = = s
0 —1 0 171

L LA
10 0 10, 0 ig'2 0 iO’l 0

For instance,

_ (0’10'2 -+ o0, 0 —0 3.36b
0 01”2"‘0'20'1)— ) (3.365)

Moreover, each v, is seen to be Hermitian,
'Y;L = Yus (337)

and traceless.}

' Multiplying (3.30) by s, We see that the Dirac equation can also be written
In the Hamiltonian form

Hvjr = [h(ar/01), : .
where ¥ (&9/on (3.38)
H= —jcha-V 2
with + Bmc?, (3.39)
7 0 0 o,
B = = ( ), =7 — k .
Y4 0 —J A = Iy, o, 0 (3.40)

$In the litcratgrg some people define gamma matrices that do not quite satisfy (3.36a)
and (3.372. This is deplo;able. Our notation agrees with that of Dirac’s original paper
and Pauli s Ha{tdbuch article. The alternative notation sometimes found in the literature
IS summarized in Appendix B.
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The matrices a and 8 satisfy}

{a,, 8} =0, B =1, {ana}=25,. (3.41) |

In Section 3-6, we shall make extensive use of the Hamiltonian formalism based
on (3.39).

Conserved current. We shall now derive the differential law of current conservation.
First let us define
¥ =Py, (3.42)
where ) is called the adjoint spinor, as distinguished from the Hermitian conjugate
spinor ', Explicitly 4» as well as »* can be represented by single-row matrices,
that is, if
¥

¥y
= ’ 3.43
Y ", (3.43)

Py

then

Y= (Pl P, P, ),

P = (P, P, =P, —4l).
To obtain the wave equation for «J» we start with the Hermitian conjugate of the
Dirac equation,

(3.44)

so e+ bty + Bt =, (3.45)
Multiplying (3.45) by vy, from the right, we obtain the adjoint equation
o mc
% 20 = 3.46
axﬂ{p%t + 7 ¥ 0, ( )
where we have used
9 __9 __ 9, 3.47
ox¥  o(icty* — oxy (3.47)
and .y, = —¢,v,. We now multiply the original Dirac equation (3.31) from the
left by Jr, the adjoint equation (3.46) from the right by +, and subtract. Then
(@/ox,)(fryup) = 0. (3.48)
Thus we see that
s, = icPyr = (et o, icr' ) (3.49)

1In addition to v,, @4, and B, one also finds in the literature

01 /0 —i1> and =(1 0)
pl_(l 0)’ Pz_(il 0o/ P=\o0 -1/

We shall, however, not use the rho matrices in this book.
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satisfies the continuity equation.} Using Green’s theorem we see that

[ Ty x = [t pdx = const, (3.50)

which may be set to unity by appropriately normalizing +». Now, unlike (3.9),
_ 4

Ty =i = 3 iy (3.51)

is necessarily positive-definite. So we may be tempted to identify Jry,r = Yrtalp
with the probability density as we did in the Schrodinger theory. With this in-
terpretation,

S = eyl = et (3.52)
is identified with the flux density. For the covariance of the continuity equation,
we must, of course, prove rigorously that s, indeed transforms like a four-vector;
this will be done in Section 3-4.

For the time being, we assume that a solution 4 to the Dirac equation is a single-
particle wave function subject to the above interpretation of ' 4r as the probability
density. Toward the end of this chapter, however, we shall point out some of the
difficulties associated with this interpretation. For a more satisfactory interpretation
of the Dirac theory, it is necessary to quantize the Dirac field. This we shall do in
Section 3-10.

Representation independence. In concluding this section we shall mention briefly
the notion of the representation independence of the Dirac equation. Suppose
somebody writes

(‘fo% + ’”76) W =0, (3.53)

where the only defining property of v, is that v, With u = 1...4 forms a set of
4 X 4 matrices satisfying
{7i v} = 23, (3.54)
Our assertion is that this equation is equivalent to the Dirac equation (3.31) where
the matrices vy, are explicitly given by (3.32). Note that we do not assert that for
a given physical situation » and {r" are the same. Different sets of 4 X 4 matrices
satisfying (3.54) are referred to as sets of the gamma matrices in different repre-
sentations. '
We can prove the representation independence of the Dirac equation by appeal-

ing to what is known as Pauli’s fundamental theorem: Given two sets of 4 x 4
matrices satisfying

{vu 7} =28, and {ves i} = 28,

1Al this can be readily proved even in the presence of the electromagnetic interaction
generated by the substitution

d . 0 eA,
ox, ox, c
in (3.31).
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with g, » = 1. .. 4, there exists a nonsingular 4 X 4 matrix S such that

Sy, St = o, (3.55)
Moreover, S is unique up to a multiplicative constant. The proof of the theorem
can be found in Appendix C. Assuming the validity of Pauli’s theorem, we rewrite
(3.53) as

1 0 "ﬁ) oy =
(sws o+ ) ST =0, (3.56)
where S is the matrix that relates the set {v,} and the set {v,} via a relation of the
form (3.55). Multiplying by S~ from the left, we obtain
o me\ gy
(«y,‘ =+ )S W = 0. (3.57)
This is the same as the original Dirac equation with S ~14) as solution. In other
words, (3.53) is equivalent to the Dirac equation, (3.31), and the wave functions
' and 4 are related by
P = S (3.58)
Let us consider the case where the v, are also Hermitian. By taking the Hermitian
conjugate of (3.55) we see that S can be chosen to be unitary S* = S~'. With a
unitary S we see that expressions like the probability density and the flux density
are the same:
P’ =P i
=t St Sy, S!Sy, ST Sy
= Vyu (3.59)

Evidently all the physical consequences are the same regardless of whether we use
(3.31) or (3.53). Note, however, that the wave functions for the same physical
situation Jook different when different representations are used.{
In practice three representations of the gamma matrices are found in the
literature:
a) The standard (Dirac-Pauli) representation given explicitly by (3.32).
b) The Weyl representation in which not only v, but also v, are off-diagonal
(cf. Problem 3-5).

tActually we are already familiar with an analogous situation in the Pauli two-component
theory. In nonrelativistic quantum mechanics it is customary to use the standard repre-
sentation of the ¢ matrices in which o is diagonal. From the point of view of the com-
mutation relations, however, one may as well work with what we may call “a noncon-
formist’s representation,”

0 —i (1 o> o (° 1>
= To = N = .
7 (i o)’ ! Ao

The spin-up spinor (the spin in the positive z-direction) is then given by

%( i ) rather than by ((1))
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<) The Majorana representation in which the v, are purely real and v, is purely
imaginary, hence «y,(0/¢x,) is purely real.

In .thlS boolf, whenever explicit forms of «y, or +Jr are called for, only the standard

(Dirac-Pauli) representation is used.

3-3. SIMPLE SOLUTIONS; NONRELATIVISTIC APPROXIMATIONS;
PLANE WAVES ’

parge and small components. Before we study the behavior of Dirac’s wave func-
tion 4r under Lorentz transformations, let us examine the kind of physics buried
in the harmless-looking equation (3.31).

In the presence of electromagnetic couplings, the Dirac equation reads
) ie mce
(EZ _ h—cA”) et + B =0, (3.60)

where.the usua! replacement —ih(d/0x,) — —ih(9/ox,) — eA, jc is assumed to
be valid. Assuming that 4, is time independent, we let the time dependence of
+r be given by

Yr =YX, 1) |oe ™ FV? (3.61)
(which, of course, means that +Jr is an eigenfunction of ik §/d¢ with eigenvalue E).

We can then write the coupled equations for the upper and lower two components,
r, and rp, as follows (Eq. 3.28):

(o (b~ &) g = L& — oo — e
M[a-(p — e—céﬂ Yy = —%(E —edy + met, (3.62)

where A = (A, i4,) as before. Using the second equation, we can readily elimi-
nate 1, in the first equation to obtain

[a- (p - %")} [E_W} [a’- (p . ‘%‘)] Wra= (E — edy — mcnprs. (3.63)

Up to now we have made no approximations. We now assume that

E =~ mc?, |ed, | <& mc?. (3.64)
Defining the energy measured from mc? by
EC® = F — me?, (3.65)
we can make the following expansion:
c? 1 [ 2me? _ L[] _ECY —ed,
E=ed, - mc® 2m|2mc® L ESO —e4,| 2m| 2mc? + }

(3.66)

This can be regarded as an expansion in powers of (v/c)? since E®™ — ed, is
roughly [p — (eA/c)]}/2m =~ mv*[2. Keeping only the leading term in (3.66), we
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obtain
Lo(p - B)o(p— D)= E™ ety (6D
which, as we have already seen (cf. Eq. 3.19), becomes
2 v
[sz (p — %‘) — B eAO] s = E®Oap,. (3.68)

Thus to zeroth order in (v/c)?, 4, is nothing more than the Schrédinger-Pauli
two-component wave function in nonrelativistic quantum mechanics multiplied
by ei™*/*, Using the second expression of (3.62), we see that +Jry is “smaller”
than +, by a factor of roughly |p — e(A/c)|/2me = v[2c, provided that (3.64) is
valid. For this reason with E ~ mc?, 4r, and 4z are respectively known as the
large and small components of the Dirac wave function +r.

Approximate Hamiltonian for an electrostatic problem. We shall now study the
consequences of keeping the second term in (3.66). For simplicity, let us treat
the case A = 0. The equation we must work with is

HOAp, = ES,, (3.69)
where
, i EO® _ g
(NR) __ . — _ v47e .
HE® — (a-p) 2m(1 — )(a p) | ed,. (3.70)

At first sight it might appear that we can regard (3.69) as the time-independent
Schrédinger equation for +r,. There are, however, three difficulties with this
interpretation. First, if we are working to order (v/c)?, {4 no longer satisfies the
normalization requirement because the probabilistic interpretation of the Dirac

theory requires that
[t + P dx = 1, 371

where s is already of the order of v/c. Second, by expanding (3.70) it is easy to
see that H$™® contains a non-Hermitian term ikE-p. Third, (3.69) is not an
eigenvalue equation for the energy since H{™ contains E (NB) jtself.

To overcome these difficulties, let us first note that the normalization require-

ment (3.71) can be written as

2
I«pg(l + ‘ﬁ?) Yadix =~ 1 (3.72)
to order (v/c)? since, according to the second expression of (3.62),
~ 7P
Vo~ TR (3.73)

This suggests that we should work with a new two-component wave function ¥

defined by
¥ = Qry, (3.74)

where
Q =1+ (p*/8m*c?). (3.75)
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With this choice, ¥ is normalized to order (v/c)? since

f Vdix ~ j LIl + (pYf4mEc?)p,d? x, (3.76)

where wé have used (3.71). Multiplyi
1. plying (3.69) from th =
1 — (p¥/8m?®c?), we obtain ) ¢l by o=
QTHR QW = ENR -2, 3.77)
Explicitly, to order (v/c)* we have |

p’ { p’ 2 . (NB)
P oeq, — , (P2 _(@-p)(E™M — e4
[Zm Feds— g (Bt eds)| — 5B (5 °)(a-p)]\1r

2

= E<NR><1 __P
4m2c2

R SRERT)
or, writing E®® p? as L{E®® b2} we have
B+ edo— P L, (B — e '
L et Gr(Ph (B = eAn)) = 20 -XE™ — edo)o-p) |
: ' = ENBp, 3.79)
n general, for any pair of operators 4 and B, we have
2
{4%, B} — 2ABA = [4,[A, B]]. (3.80)

This very useful formula can be empl imoli
, ployed to simplify (3. o
and E™ — ¢4, = B. Using plify (3.79) where weset o-p = A

g-p, (EMY — = —ieho-
i [o-p,( ed,)] ieho -E, (3.81)

lo-p, —ieho-E] = —en?V-E — 2¢ha-(E X p), (3.82)
both of which are valid since V4, = —Eand V x E — 0, we finally obtain

P . pt eha-(E X p) eh®
[2171 + er 8msd c? B 4m?c? - 8msc? V.EJ ¥ = E(NR)\I,' (383)

This equation is free of the difficulties mentioned earlier and can therefore be
regarded as the Schrodinger equation for the two-component wave function

The physical significance of each term in (3.83) will now be given. The ﬁr;t two
n.eed.no explanation. The third term is due to the relativistic correction to the
Kinetic energy as seen from the expansion '

(me*)* +-|ple* —me* = [pP*2m — (|p|'/8mPc?) + - - - (3.84)

The f.ourth term represents the spin interaction of the moving electron with the
ilectr,l’c field. Crudely speaking, we say this arises because the moving electron
sees” an apparent magnetic field given by E X (v/c). Naively, we expect in this
way —(eh/2mc) q-[E X (¥/c)], which is just twice the fourth term of (3.83). That
this argument 1s incomplete was shown within the framework of classical eiectro-
dynamics two years before the advent of the Dirac theory by L. H. Thomas, who
arguefi that a more careful treatment which would take into account the e’ner
associated with the precession of the electron spin would result in reduction lg>§
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a factor of two, in agreement with the fourth term of (3.83).1 Hence the fourth

term of (3.83) is called the Thomas term. For a central potential

ed, = V(1) (3.85)
we obtain
eh ‘_h(__l_dV>_ 1 1dvg,
o Exp) = a7 ) B = g g S G50

with S = ha/2. Thus the well-known spin-orbit force in atomic physics, repre-
sented by (3.86), is an automatic consequence of the Dirac theory.
As for the last term of (3.83) we note that V-E is just the charge density. For

the hydrogen atom where V.E = —ed®(x), it gives rise to an energy shift
62 h2 chrd E — 62h2 chrd
S 3(3)(,‘)]1!,(5 ) |23 x = WW’&E)}‘ o)lz L (3.87)

which is nonvanishing only for the s states [in contrast to (3.86) which affects
all but the s states]. The last term of (3.83) was first studied in detail by C. G.
Darwin; hence it is called the Darwin term. We shall postpone the physical inter-
pretations of the Darwin term until Section 3-7.

Using the third, fourth, and fifth terms of (3.83) as the perturbation Hamiltonian
and the wave functions for the hydrogen atom in nonrelativistic quantum me-
chanics as the unperturbed wave functions, we can compute the lowest-order
relativistic correction to the energy levels of the hydrogen atom. Since this cal-
culation based on first-order time-independent perturbation theory is straight-
forward, we present only the results:§

(Y ()L (A - 2
AE= (47rhc> (87ra0> n3( 7T 3 4,,)’ (3.88)
which is to be added to the unperturbed energy levels

E(o) = (62/8%'00"2). (389)

The sum E‘ 4 AE correctly describes the fine structure of the hydrogen atom
to order (i) times the Rydberg energy (e*/8na,). Note that states with the
same n but different j (for example, 2p,» — 2ps») are now split. On the other
hand, states with the same n and the same j (for example, 25, — 2py;») are still
degenerate. This degeneracy persists even in the exact treatment of the Coulomb
potential problem, as we shall see in Section 3-8.1

{For the derivation of the Thomas factor in classical electrodynamics consult Jackson
(1962), pp. 364-368.

§See, for example, Bethe and Salpeter (1957), pp. 59-61.

||Tn practice it is of little interest to work out an expansion more accurate than (3.88)
using only the Dirac equation with V' = —e*/(4nr), because other effects such as the
Lamb shift (discussed in the last chapter) and the hyperfine structure (to be discussed
in Section 3-8) become more significant.
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Free particles at rest. Let us now turn our attention to problems where exact
solutions to the Dirac equation are possible. The simplest solvable problem deals
with a free particle. We will first demonstrate that each component of the four-
component wave function satisfies the Klein-Gordon equation if the particle is
free. Although the validity of this statement is rather obvious if we go back to
$* and ¢, we prove it by starting with the Dirac equation (3.31). Multiplyin
(3.31) from the left by v, (9/0x,), we have £
d 0 mc\?

st — (55) v =o. (3.90)

Adding to (3.90) the same equation written in a form in which the summation
indices w and » are interchanged, we obtain

2 @ 2
axya—xu(%w + vy — 2 (%c) Y =0, (3.91)

which reduces to
[ — (mefh)ofp = 0 (3.92)
by virtue of the anticommutation relation of the gamma matrices (3.35). Note

that (3.92) is to be understood as four separate wncoupled equations for each

component of yr. Because of (3.92), the Dirac equation admits a free-particle
solution of the type

. Y ~ u(p) exp [i(p-x/h) — i(Et/h)] (3.93)
with '
E= 4+A/|plPc? + mic, (3.94)

‘where' u(p) is a four-component spinor independent of x and #. Note that (3.93)
is a simultaneous eigenfunction of —irV and ik (3/ot) with eigenvalues p and E,
respectively. ’

For a particle at rest (p = 0), the equation we must solve is

2
VgV = —%«p. (3.95)

In accprdance with (3.93) and (3.94), we first try the time-dependence e~i™"¢/%,
Equation (3.95) then becomes

_ime? (1 0)(uA(0)> _ _m_c(uA(O)) 3
ich — I/ \u,(0) b \u,(0) ’ (3.96)
Whlch is .sajtisﬁed only if the lower two-component spinor u,(0) vanishes. But,
using a similar argument, we see that (3.95) can be satisfied equally well by the

t}lm(?-dependepce e”"‘c"/f’ provided that the wupper two-component spinor u,(0)
anishes. As in the Pauli theory, the nonvanishing two-component spinors can be

taken as
1 0
( 0) and ( 1 )

o
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So there are four independent solutions to (3.95):

13 0
0 e—imc’t/h, 1 e—imczl/h,
0 0
0 0
(3.97)

0 0
0 0

+ime2t/n et imeit/n
A 0
0 1

If we insist on the interpretation that i#(2/2¢) is the Hamiltonian operator, the
first two afe “positive-energy” solutions while the last two are “negative-energy”
solutions. Note that the eigenvalues of the Hamiltonian operator are +mc?,
depending on whether the eigenvalues of v, = 3 are 4-1; this also follows directly
from the expression for the Hamiltonian (3.39). In Section 3-9 we shall show that
the existence of negative-energy solutions is intimately related to the fact that
the Dirac theory can accommodate a positron.

Earlier in this section we showed that in the nonrelativistic limit E = mc?,
the upper two-component spinor vr, coincides with the Schrédinger wave function
apart from e~ ™*"/*_ Therefore the first solution in (3.97) is the Dirac wave func-
tion for a particle at rest with spin up, since the eigenvalue of o; is -1 when applied

to ( (1) ) This leads us to define a 4 X 4 matrix

— 0
S V1Y — Y2V ("'3 >’ 3.98

s 2i 0 o, (3.98)
whose eigenvalue is to be interpreted as the spin component in the positive z-
direction in units of /2. This interpretation will be justified in later parts of this
chapter where we shall show that

a) the operator 2,/2 is the infinitesimal generator of a rotation about the z-axis
acting on the space-time independent part of the Dirac wave function; and that
b) for a central force problem the sum of x X p and AZ/2 is indeed a constant of
the motion, to be identified with the total angular momentum, where 3, is

defined as it was in (3.98), that is,
2= M’Z_M = (Uk 0) (ijk) cyclic.} (3.99)

1 0 o,

Evidently the solutions (3.97) are eigenfunctions of Z; with eigenvalues 1 for
the first and third and —1 for the second and fourth. Thus for each sign of the
energy there are two independent solutions corresponding to two spin states,
as expected from the spin-4 nature of the particle described by the Dirac equation.

1The notation “(ijk) cyclic” stands for (i, j, k) = (1,2,3),(2,3,1),0or (3, 1, 2).
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It has sometimes been stated that we need a 2 X 2 = 4 component wave func-
tion in the relativistic electron theory to take into account the two energy states
and the two spin states of the electron for given p. This argument is incomplete
(if not incorrect). To see this we recall that although the wave function in the
Klein-Gordon theory is a single-component wave function, it can accommodate
the two energy states of a spin-zero pa\rticle. Furthermore, the two-component
second-order equation (3.24) of Waerden, which we started with, is a perfectly
valid equation for the electron; it can accommodate the two energy and the two
spin states of the electron just as the Dirac equation can.} In this connection
we note an important difference between a differential equation linear in o/ot,
such as the diffusion (heat) equation or the Schrédinger equation, and a differential
equation quadratic in the time derivative, such as the wave equation (for a vibrating
string) or the Klein-Gordon equation. When we solve the problem of the tem-
perature distribution of a potato placed in boiling water, it is sufficient to specify
initially only the temperature of the inside region of the potato; we do not need
to know how fast the potato is warming up. On the other hand, if we want to
predict the time development of a vibrating string for 7 > 0, it is not sufficient
to know only the displacement of the string at # = 0; we must also know how
fast the various parts of the string are moving at ¢ = 0. In general, then, when
solving a partial differential equation quadratic in the time derivative, we must
specify as initial conditions both the function and its time derivative. However,
when solving a partial differential equation linear in the time derivative, we need
specify only the function itself. Thus in the Dirac theory if we know Yrat =0,
we can predict the time development of +» for ¢ > 0. By contrast, the two-com-
ponent equation (3.24) of Waerden is second order in the time derivative; so we
must know both ¢ and a¢/at at £ = 0 to predict the future development of ¢.
For an energy eigenstate, specifying d¢/dt (in addition to ¢) amounts to specifying
Fhe sign of the energy. The number of independent components we must specify
is four whether we use the four-component Dirac equation or the two-component
Waerden equation.

P!ane-wave solutions. Now let us return to the free-particle problem, this time
with p == 0. Substituting

) lplee(ei—8) oo

into (3.62) with 4, = A = 0, we obtain

wl®) = gz @ Pu®),  w®) = g (@ Pu®. (310D

1One pf the reasons that the two-component formalism based on (3.24) is not used so
extens.lvely as the Dirac theory is that a solution to (3.24) with the electromagnetic in-
teraction added has a rather complicated transformation property under parity (cf.
Broblem 3-5). Nevertheless, the two-component equation can be used for solving prac-
tical problems in quantum electrodynamics just as the Dirac equation can, as shown by
R. P. Feynman and L. M. Brown.
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For E = ~/|p|*c* + m’c* > 0 we may try, apart from a normalization constant,

(o) = (1)

for u,(p). We can easily find the lower two-component spinor u,(p) by using the
second equation of (3.101) if we recall that

D; Dy —1p;

7P <p1 +ip,  —ps ) (3.102)

In this way we get two independent solutions for E > 0,

1 0
ud(Pp) =N 0 and ¥®(Pp)=N 1 ,
Psc/(E + mc?) (P, — ipy)c/(E + mc?)
(p1 + ipo)c/(E + mc?) — psc/(E + mc?)

(3.103)

where the normalization constant N is to be determined later. For E =
—A/|plfc? + mPc* < 0, we may start with the lower two-component spinor u,

set to
1 0
(o) = (1)

so that in the case where p = 0, 4Jr reduces to the third and fourth solutions of
(3.97). Using the first of (3.101) to obtain the upper spinor u,, we have

—psc/(| E|+mc?) —(p\—ipo)c[(E|+mc?)
—(P1+ipz)c'l/(]El+m52) and w9(p) =N Psc/(lE([)+mc2)
0 1

u®(p) = N

(3.104)
Since
2 X ’_Ei]

o [(25 1E
satisfies the free-field Dirac equation, it is evident that each free-particle spinor
U withr = 1,. .., 4 satisfies

(iv-p + mc)u”(p) = 0 (3.105)
with +p = o, p,, p = (P, iE/c) regardless of whether E > 0 or E < 0. This can,
of course, be checked by direct substitution.

As shown earlier, the four independent free-particle solutions with p = 0 written
in the form (3.97) are eigenspinors of the 4 x 4 matrix X,. This is not true for the
free-particle solutions we have written for the case where p = 0, as we can directly
verify by applying =; to (3.103) and (3.104). But suppose we choose the z-axis
in the direction of momentum p so that p, = p, = 0. We then see that u” with
r=1,...,4 are eigenspinors of 2; with eigenvalues of 1, —1, +1, —1, respec-
tively. In general, although free-particie plane-wave solutions can always be chosen
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so that they are eigenfunctions of Z.p (where p = p/|p)), it is not possible to
choose solutions in such a way that they are eigenfunctions of 3+ i with an arbitrary
unit vector i.} As we shall see in Section 3-5, this peculiarity of the plane-wave
solution in the Dirac theory stems from the fact that the operator 3-f does not
commute with the free-particle Hamiltonian unless i = +p or p = 0. The operator
3-p which can be diagonalized simultaneously with the free-particle Hamiltonian
is called the helicity operator. The eigenstates of helicity with eigenvalues 41
and —1 are referred to, respectively, as the right-handed state (spin parallel to
motion) and the left-handed state (spin opposite to motion).

It is easy to see that for a given fixed p, the free-particle spinors u(p) given
by (3.103) and (3.104) with r = 1, . .., 4 are orthogonal to each other;

Ut (Pu(p) =0 for rsr. (3.106)
For the normalization of 4, two conventions are found in the literature:
(a) U (pu(p) = 1, (3.107)
which implies
[1 + (PP E] 4+ mc®)?IN? = 1, (3.108)
hence
N = (E|+ m®R[E|; (3.109)
(b) u”(p)u(p) = |El/mc?, (3.110)
which means
N = ~/(E] + mc®)]2mc?. (3.111)

The second normalization convention which says that u'u transforms like the
zeroth component of a four-vector appears somewhat artificial at this stage. How-
ever, we shall see in the next section that this convention is quite natural from the
relativistic point of view. Throughout this book we shall use the normalization
condition given by the second form (3.110).

To summarize, the normalized plane-wave solutions for given p are:

V= %f,z ut " %(p) exp [ip- - l%} (3.112)

for E = /[pFc + mict > 0, and
_ me? | gor ) [M i[EIt}, 3
P = B (p) exp |i5= + (3.113)

I.This situation is in sharp contrast to the nonrelativistic Pauli theory in which any space-
t:rpe independent two-component spinor can be regarded as an eigenspinor of o -1, where
R 1S a unit vector in some direction, that is,

wn(3)-(3)

Assuming that the spinor is normalized, all we have to do is set @ = cos (0y/2)e 19012
and b = sin (f,/2)e*%+2, where 6, and ¢, characterize the orientation of the unit vector
along which the spin component is sharp.
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for E = —W < 0, where
1
0
pic/(E + mc?)
(pitipy)c/(E+mce?)
0

or 1 , (3.114)

(p1—ipy)c(E+mc?)
—Pps¢/(E+mc?)

ut o 0(p) = NEFme2me’

for E > 0, and
—psc/(| E| + mc?)
—(p1 + 1P/ E| + mc?)
1
0 /
—(p1 — ipa)e/(| E| + mc?)
psc/(| E| + mc?)
0
1

u or9(p) = N/ E] + me2me’

. (3.115)

for E < 0. The square root factors in (3.112) and (3.113) merely compensate for
| E|*/mc? in (3.110), so that

Lf«[ﬁ«pdi‘x = 1. (3.116)

As V — oo, the allowed values of E form a continuous spectrum. For positive-
energy free-particle solutions, mc? < E < oo, whereas for negative-energy solu-
tions, —oo << E << —mc?, as shown in Fig. 3-1.

Allowed E>0
\

E=mc? —_—

E=0———————————— Forbidden

Allowed E<0

Fig. 3-1. The allowed values of E for free particles.

When the particles are not free, problems for which the Dirac equation can be
solved exactly are rather scarce. In Section 3-8 we shall treat the classical problem
of the electron in the Coulomb potential for which exact solutions can be found.
Another problem that can be solved exactly is that of an electron in a uniform
magnetic field, which is left as an exercise (Problem 3-2).
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3-4. RELATIVISTIC COVARIANCE

Lorentz transformations and rotations. Before we establish the relativistic covariance
of the Dirac equation, we shall review briefly the properties of Lorentz transfor-
mations. Since a Lorentz transformation is essentially a rotation in Minkowski
space, let us first examine ordinary rotations in the usual three-dimensional space.

Consider a rotation through an angle o, of the coordinate system in the 1-2
plane about the third axis. The sense of rotation is that of a right-handed screw
advancing in the positive x;-direction if ® > 0. A point described by (x;, x,, x;) in
the old coordinate system is described in the new (primed) coordinate system by
(x!, x3, x3) where

X\ = x,cos @ + X, sin o, X; = —X; sin @ + X, COS w. 3.117)

Meanwhile, when we perform a Lorentz transformation along the x;-direction
such that the primed system moves with velocity v = Bc, (X, ix,) and (X', ix;) are
related by

’ X1 Bx,

xl:\/li—-BQ—,\/li-—Bz,

7 Bx xO

xo:—J1:B2+M1_B2, (3.118)

or
xi = x,coshyx + ix,sinh x, xi = —ix,;sinhy + x,coshy, (3.119)
where we have set
tanh y = 8. (3.120)
Since the cosine and sine of an imaginary angle i’y are coshy and i sinh , the above
Lorentz transformation may be viewed as a rotation in Minkowski space by an
angle iy “in” the 1-4 plane, just as the transformation (3.117) represents a rotation
in the 1-2 plane by a real angle . For both three-dimensional rotations and Lorentz
transformations we have
Ay, = Sya,s (3.121)
where a,, is defined by
Xy = QupXy. (3.122)
From now on, the term Lorentz transformation will be used both for a three-
dimensional rotation of the form (3.117) and for a “pure” Lorentz transformation
of the form (3.119). At this stage we shall consider only those coordinate trans-
formations which can be obtained by successive applications of a transformation
that differs infinitesimally from the identity transformation. For example, (3.117)
can be obtained by successively compounding an infinitesimal rotation

x;=x, + dwx,, X3 = —dwXx; + Xy, (3.123)

where 3o is the infinitesimal angle of rotation. This means that we restrict our
considerations to the cases where

det (a,) = 1, a, > 0. (3.124)

Covariance of the Dirac equation. What is meant by the covariance of the Dirac
equation under Lorentz transformations ? First of all, if someone, working with the
primed system, were to formulate a relativistic electron theory, his first-order
wave equation would look like the Dirac equation. Second, there exists an explicit
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prescription that relates j(x) and +'(x), where yr(x) and '(x") are the wave

functions corresponding to a given physical situation viewed in the unprimed -

and the primed system, respectively. Third, using the foregoing prescription, we
must be able to show that the “Dirac-like” equation in the primed system not
only looks like the Dirac equation in the unprimed system but actually is equivalent
to it.

We take the point of view that the gamma matrices are introduced merely as
useful short-hand devices that enable us to keep track of how the various com-
ponents of «r are coupled to each other. Hence the explicit forms of the gamma
matrices are assumed to be unchanged under Lorentz transformations.f Note,
in particular, that the gamma matrices themselves are not to be regarded as com-
ponents of a four-vector even though, as we shall show in a moment, vy, does
transform like a four-vector. On the other hand, we expect that for a given physical
situation the wave functions in different Lorentz frames are no longer the same.

With this point of view, if the Dirac equation is to look the same in the primed
system, we must have

gy W) + BEP() = 0. (3.125)

Note that the gamma matrices themselves are not primed. The question we must
now ask is: How are 4r and ' related? An analogy with electrodynamics may be
helpful here. When we perform a Lorentz transformation without a simultaneous
change in the gauge, the components of 4,(x) and A4,(x") are related by

AYx') = AL, (3.126)

where a,, given by (3.122) depends only on the nature of the transformation and
is independent of the space-time coordinates. Similarly, we may assume that the
prescription that relates 4r(x) and 4#'(x’) is a linear one that can be written as

' (x") = Syr(x), (3.127)
where S is a 4 X 4 matrix which depends only on the nature of the Lorentz trans-

formation and is completely independent of x and f. We rewrite (3.125), using
d/ox), = a,(8/ox,) [which was proved in Chapter 1 (cf. Eq. 1.21)] as follows:

Val 2o S+ S = 0 (3.128)
or, multiplying S~! from the left, we have
-1 9 mce ., _
ST Sty 5o+ Gl =0, (3.129)

We now ask: Is (3.129) equivalent to the Dirac equation ? The answer to this ques-
tion is affirmative provided that we can find an S that satisfies

59,8 @ =1, (3.130)

$This means that we are considering a Lorentz transformation not accompanied by
a simultaneous change in the representation of the gamma matrices.
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or, multiplying by a,, and summing over », we obtain

Sy S = vy, a5, (3.131)
where we have used (3.121).1 The problem of demonstrating the relativistic covari-
ance of the Dirac equation is now reduced to that of finding an S that satisfies
(3.131).

We shall first treat the case of an ordinary rotation in three dimensions which
we refer to as a “pure rotation.” In looking for an S appropriate for the transfor-
mation (3.117), we recall that for a particle at rest the upper two-component
spinor u, is identical with the corresponding two-component spinor in the non-
relativistic Pauli theory. So in this particular case we know from nonrelativistic
quantum mechanics how u, transforms under three-dimensional rotations: if
u, is the Pauli spinor in the unprimed system, then

w . . w
(cos £ +igysin 7) (3.132)

times u, is the Pauli spinor corresponding to the same physical situation seen in
the primed system defined by (3.117).§ Since the form of S is independent of
whether it acts on the “at-rest” spinor or a more general wave function, it is natural
to try for S the 4 X 4 analog of (3.132) given by

w . )
Seor = cos > + i ,sin—+

2
o e (3.133)
= Ccos 5 + Y1 sm-z—,
which is now assumed to act on a four-component wave function. Since
(71 92)® = v1v2917s = —oivi = —1, Skt is given by
Sih=rcos & — yimasin - (3.134)

}Note that the matrices a,, rearrange the coordinates x and x,, whereas the gamma
matrices and the 4 X 4 matrix S rearrange the components of +r. Although a,, and v,
are both 4 x 4 matrices, they are in entirely different spaces. The relation (3.131), for
Instance, really means

% (5 as(v2)8y (85 = Ev:, ar(Y)as-

§See, for example, Dicke and Wittke (1960), p. 255. As an example, let us consider an
electron whose spin is in the positive x,-direction. Its wave function is represented by

7z(1)

which is evidently an eigenspinor of o, with eigenvalue +1. In a primed system obtained
by a rotation of 90° about the x;-axis, the electron spin is in the negative xj-direction.
Accordingly, the wave function in the primed system is

T ..oy 1 1 1 /1+1i
(cosT + oy sin T)ﬁ<l>=7(1 —i>'

This is indeed seen to be an eigenspinor of o, with eigenvalue —1.
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So the relation to be checked is (cf. Eq. 3.131)

(cos % — &1, sin %) Vi <cos % + 7,1y, sin %) = ¥,d;,. (3.135)
For A = 3, 4 we have a,, = §,,; hence (3.135) is trivially satisfied by virtue of
ViV2Ys8 = Va4Y1%2 A0 41 925471Ys = —73.. FOr A =1,

(cos % — s SN %) 7 (cos % + y,7y, sin %)

— 2 © g @ ® ine @
= 71 c08* > + 2r,sin = €08 5 — 71 5in’
= 1y, COS @ + 7, Sin . (3.136)

But according to (3.117) cos w = a,,, sin @ = a,,. So (3.135) is indeed satisfied
for A = 1; similarly for A = 2. Thus we have proved that the S, that satisfies
(3.131) is given correctly by (3.133).

According to (3.119) a “pure” Lorentz transformation is nothing more than
a rotation in the 1-4 plane by an imaginary angle /. Hence for S corresponding
to (3.119) we try a matrix analogous to (3.133) with @ — iy, v, — v,

Stor = cosh (x/2) + iv,ry, sinh (x/2). (3.137)

The relation we must check this time is

(cosh X — iy, sinh 226_) v (coshzzé_ & iy, sinh %) — vy, (3.138)

Using similar techniques, we can verify this. For instance,

(Cosh % — iy, 7y, sinh 226—) Ya (cosh 226— +- i7,ry, sinh %)

= 1 X _ 9 X sinh X inh? X
=, cosh > 2iey, cosh2s1nh > ~+ «, sinh >

= ry, cosh y + «,(—isinh )
= V1484 + 7144 (3.139)

Since we have found S that satisfy (3.131) for the transformation (3.117) and
(3.119), we have established the covariance of the Dirac equation under (3.117)
and (3.119). In general, the S that relates 4» and ' via (3.127) is given by

Siww = cOS 2 + i sin 5 (3.140)

for a rotation about the kth-axis (ijk cyclic) by an angle », and

Stoe = cosh % — 044 sinh % (3.141)

for a Lorentz transformation along the kth-axis with 8 = tanh x, where we have
introduced new 4 X 4 matrices

ow = 12Dy, v} = —ivay,,  p#v. (3.142)
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More explicitly,

o) 0
o= —05 == " . ), {ijk) cyclic,
k

0 3.14
. (0 0k> (3.143)
k4 4k k o 0
It is easily verified that
St = cosﬁz)— — ioy;sin % = Sa, (3.144)
but
S;‘“r = cosh % — Ok Sinh % - SLm- E= Sic.)ll" (3145)

Thus, unlike S.,., Si, is not unitary. This is not catastrophic, however; S;,. should
not be unitary if Yr*r is to transform like the fourth component of a four-vector
under Lorentz transformations. It is very important to note that for both pure
rotations and pure Lorentz transformations we have

St=vS, St=vS5"y, (3.146)

since v, commutes with o,; but anticommutes with ¢,,. We shall make extensive
use of (3.146) in the next section.

Space inversion. So far we have considered only those transformations which
can be obtained by compounding transformations that differ infinitesimally from
the identity transformation. Under such transformations the right-handed coor-
dinate system remains right-handed. In contrast, space inversion (often called
the parity operation) represented by

X =—x, =t (3.147)

changes a right-handed coordinate system into a left-handed one; hence it is outside
the class of transformations considered so far. We shall now demonstrate that
the Dirac theory is covariant under space inversion even in the presence of A4,.

According to the Maxwell theory the four-vector potential transforms under
space inversion as}

A, 1) = —AX, 1), AUX, 1) = Ax, 1) (3.148)

1To prove this we first note that if the equation for the Lorentz force

md% (J_I%—W> = e[E + (v/c) X B]

is to take the same form in the space-inverted system, the electromagnetic fields must

transform as E’ = —E, B’ = B since vV = —v. Meanwhile, E and B are related to A and
As=iA, by

_ 1 04 B

E~—VA0—?at, B =V X A.

Hence we must have (3.148).
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If the Dirac equation is to look similar in the space-inverted system, we have

(g — e A vo¥ + 5w =0, (3.149)
"
or, equivalently,

0 ie 0 ie roome
[_(% _ EA,C)% 4 (5;4 _ %A4)q4]\p + My =0, (3.150)

We try as before

P'(x', 1) = Spr(x, 1), (3.151)
where S is a 4 X 4 matrix independent of the space-time coordinates. Multiplying
(3.150) by S'7' from the left, we see that (3.149) is equivalent to the Dirac equation
if there exists S, with the property

SE'YeSe = —v,  SE'YSE = 94 (3.152)
Since ry, commutes with «, but anticommutes with r,,
Sp =107, S =y (3.153)

will do the job, where 7 is some multiplicative constant. The invariance of the
probability density '+ further requires || = 1, or » = €*® with ¢ real. It is
customary to set this phase factor 5 equal to 1 even though no experiment in the
world can uniquely determine what this phase factor is.f We shall take

S =1, (3.154)
for an electron wave function.
Closely related to the parity operation is an operation known as mirror reflection,
for example,
(x1, x5, x3) = (x4, X3, —X3), Xg = X (3.155)

Since (3.155) is nothing more than the parity operation followed by a 180° rotation
about the third axis, the covariance of the Dirac equation under mirror reflection
has already been demonstrated implicitly. Similar statements hold for more general
transformations with

det (a,,) = —1, a, >0, (3.156)

which are called improper orthochronous Lorentz transformations in contrast to
proper orthochronous Lorentz transformations that satisfy

det (a,,) = 1, a, > 0. (3.157)

Simple examples. To appreciate the real physical significance of S,.,, St.oe, Sy, it is
instructive to work out some examples at this stage. As a first example, let us con-
sider an infinitesimal form of (3.117) in which cos » and sin e are set, respectively,
to 1 and dw. The wave functions in the two systems are related by

P =1 + i T Gof)]Hx), (3.158)

ISome authors argue that one can narrow down the choice for 7 to 41, 47 by requiring
that four successive inversion operations return the wave function to itself. However,
there does not appear to be any deep physical significance attached to such a requirement.
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where X’ = x 4 8x with
0x = (x,0w, —x,8w, 0). (3.159)
But
VA ’ 61]»’ a;\ll‘,
Y (x) = P'(x) + Bxla—x1 + &x, ox, (3.160)
Consequently,

W(x) = {1 +iE.% (xgsmaixl — x50 5‘%)] W(x)
— (X)) + % [-5-23—3 + %(—ihxl aixz n ihxza—il)} Wx). (3.161)

We see that the change in the functional form of +» induced by the infinitesimal
rotation consists of two parts: the space-time independent operator i2;8w/2 acting
on the “internal” part of +r(x) and the familiar iL,3w/h operator affecting just
the spatial part of the wave function. The sum

(/B)(h 25/2) + Ly (3.162)

is to be identified with the third component of the total angular-momentum opera-
tor in units of 4 since it generates an infinitesimal rotation around the third axis.}

X3

Fig. 3-2. A positive-helicity electron moving with momentum p along the X3-axis. The
electron is at rest in the primed system. The gray arrow indicates the spin direction.

As a second example, let us consider a free positive-energy electron of helicity
-+1 and momentum p along the positive x;-direction. We choose a primed system
in such a way that it will coincide with the rest system of the electron (Fig. 3-2). In
the primed system the electron wave function can be written

1
1 0 .
'xX) = ——= e imetin (3.163)
V) =
0
1Usually an operator that rotates the physical system around the third axis by an angle

3w is 1 — iSw(Js/h). But in our case we are rotating the coordinate system rather than the
physical system. This explains why we have 1 4 i8wJ,/h instead of the above operator.
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The question is: What is the wave function for the same physical situation in the
unprimed system ? According to (3.141) and (3.137)

W(X) = St (x), (3.164)
where
Stac = cosh (x/2) — iy, sinh (x/2), (3.165)
with ¢ given by
cosh y = E/mc?, sinh ¥ = p;/me. (3.166)
Since
cosh (x/2) = /(1 + cosh x)/2 = A/(E + mc®)]2mc?, 3.167)
sinh (/2) = a/cosh? (x/2) — 1 = p,c/~/2mc*(E + mcb), -
we obtain
1 ﬁm : PiCO, |
o 2mc? ; ~2mc(E + med)|| o
- 0 D3CT, % /E + mc? 0
0 ~/2mc*(E 4 mc?) | 2mc? 0
1
E 2 0
=5 e | (3.168)
E + me?
0

This result is in complete agreement with u‘"(p), with p, = p, = 0 obtained
earlier by solving directly the Dirac equation (cf. Eq. 3.114). It is amusing that
the normalization constant which we pick up automatically is precisely the one
that appears when u(p) is normalized according to (3.110), which says that utu is
the fourth component of a four-vector. As for the space-time dependence of the
wave function, we merely note that

t' = tcosh ¥ — (x;/c) sinh x
= (E/mc®)t — (ps/mc?)x,. (3.169)
So we find that
) = il (x)

_ 1 (1) [-Psxs — I_B:|
= Wu (p)exp |i 5 h
— /e wp) exp [il’—h‘l _ ’—f—’] (3.170)

where we have used V = (mc?/E)V' that follows from the Lorentz contraction
of the normalization volume along the direction of motion. Thus we see that
once we know the form of the wave function for a particle at rest, the correct
wave function for a moving particle of definite momentum can be constructed
just by applying St This operation is sometimes known as the Lorentz boost.

34 RELATIVISTIC COVARIANCE 103

To work out an example that involves Sp, let us look at a Dirac wave function
with a definite parity:

I (X, 1) = Sar(x, 7). (3.171)

According to (3.151) and (3.154) the functional form of the wave function in the
space-inverted system is

Y, 1) = yid(—x, 1), (3.172)
which is to be identified with TIy(x, 7). Thus

(1 0><m<—x, t)) _ («lu(x, r))_

o g =+t (3.173)

Yra(—X, 1)

If, in addition, +r, and 4, can be assumed to be eigenstates of orbital angular
momentum, then

V(=% 1) = (=D Yy(X, D) = fhu(x, 1),
—Ys(—X, 1) = —(— 1) ra(X, ) = Fafry(x, 1),

where /, and I, are the orbital angular momenta of the two-component wave
functions. Thus

(3.174)

(=D = — (=1~ (3.175)
At first sight this appears to be a peculiar result, since it implies that if Y, is a
two-component wave function with an even (odd) orbital angular momentum,
then +Jr; is a two-component wave function with an odd (even) orbital angular
momentum. Actually, this is not too surprising in view of the second part of (3.62),
which, for a central force problem with A = 0, takes the form

c
Vg = m(”‘P)\h- (3.176)
Let us suppose that 4r, is an s, s2 State wave function with spin up so that
1
Yry = R(r) ( 0 ) e~HEUm, (3.177)
Then we find that
A R
_ ike ox, ox, ax, | (R(r)\ _,
Yrg E—V 1 me Fa o 0 e—iEym)
ox, ox, ox,
_ ikc L@ X3 X, — ix,\ (1 ~i(Et/n)
E—V+mer drix, +ix, —X, 0 ¢

ihc dR 4 1 3 0 .
= mﬂ[“v T Yg(o) + 43 Y}( 1 )} R S

which is recognized as a wave function whose angular part is that of a p,, wave
function with j, = 1. Thus Yr. and yry have opposite parities in agreement with
(3.175). We could have guessed that this would be so, since the operator that
multiplies r, in (3.176) is a pseudoscalar operator which does not change j and
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j, but does change the parity. We shall make use of this property in Section 3-8
when we discuss central-force problems in detail. :

An even more striking consequence of Sp = «y, may now be discussed. Consider
a positive-energy free-particle wave function and a negative-energy free-particle
wave function both with p = 0:

® 0
(X ) e-m and ( m) gmein, (3.179)
X

(o) = (%)

where % may stand for

Since they are eigenstates of v, with eigenvalues -1 and —1, respectively, we
have the following far-reaching result: a positive energy electron at rest and a
negative energy electron at rest have opposite parities. This will be shown to imply
that an electron and a positron have opposite “intrinsic” parities when a negative
energy state is properly interpreted in Section 3-9. For instance, the parity of an
e*e -system in a relative s state must be odd despite its even orbital parity. This
remarkable prediction of the Dirac theory has been checked experimentally in
the decay of a positronium and will be discussed in Chapter 4.

3-5. BILINEAR COVARIANTS

Transformation properties of bilinear densities. We are in a position to discuss
bilinear densities of the form I, where I' is a product of gamma matrices.
Such densities are called bilinear covariants since they have definite transforma-
tion properties under Lorentz transformations, as will be shown in a moment.
Let us first note that because of (3.146) the relation J'(x) = S 2Jr(x) implies that

T(x) = PH(x) STy, = P ) 7ava Sty = F()S ™, (3.180)
whether S stands for Sy, Of Sp.. Clearly this relation holds also for S,. Using
(3.180) we immediately see that Jrjr is invariant:

TP () = Fx) ) (3.181)
under pure rotations, pure Lorentz transformations, and space inversion; hence
Tl (not frtfr) is a scalar density. To investigate the transformation properties
of Yry,r, it is sufficient to recall (3.131). We have

Ty (3 = F(O)S "y, SYAX) = @ () 7P (x) (3.182)
under pure rotations and pure Lorentz transformations. For the behavior under
space inversion, we obtain

7 'Yk} ' = ST 'Y"}S = {—‘T’”"‘P}- 3.183
v {74 v o {'Y«t e Py (3-183)
Hence Jry,yr is a four-vector density whose space components change under

parity. Consequently the flux density and the probability density defined earlier
(cf. Eq. 3.49) do indeed form a four-vector. Using similar techniques we find
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Table 3-1
BEHAVIOR OF BILINEAR COVARIANTS UNDER LORENTZ
TRANSFORMATIONS
Proper orthochronous Space
Lorentz transformations inversion
Scalar Al Jr 7
s A
Vector R Ao Yol {‘_‘E%‘w}
Tensor (antisymmetric, - o 13% b
second rank) VTl At ooV Tho { 1!—’0“ 1l[I}
Axial vector .+ - ﬁ'l!wk“!,
(pseudovector) YT A PP Ys Y {—;Y%’yk‘p}
Pseudoscalar LR AL ‘15_"):; 'ler‘!'
- 5

tha‘t Vo = —ifry,y with g 7% v (which is necessarily antisymmetric in g and

v) is a.t'second-rank tensor density. At this point it is advantageous to define a
Hermitian 4 X 4 matrix

Vs = Y1V2Y3 V4. (3.184)

This fys.matrlx has the remarkable property that it anticommutes with every one
ofy, withpu=1,...,4,

Wwos} =0, pw=#S5, (3.185)

a}i s;een, for instance, from V21 Y2VsVa = (— 1Dy, 95vsv47:, Where we have used
the fact that ¢y, commutes with ry, but anticommutes with «,, 7,, v,. Note also that

. . v =1 (3.186)
Justasey, with p =1, ..., 4. As for its explicit form it is easy to show that

A
vw={_, 0) (3.187)
in the standard (Dirac-Pauli) representation. Using (3.185), we see that

SI_Agr'YS SLor = 'Ys, Sr—olt.'ys Srot - 'YS’ (3188)
since y; commutes with ¢, but

S5l Sp = —s, ‘ (3.189)

since _anticommutes with r,. Hence ry;r transforms exactly like the scalar
_dengnty 4mJr under proper orthochronous Lorentz transformations but changes
its sign under space inversion. This transformation is characteristic of a pseudo-
scalar densi.ty. Finally, using similar arguments, we can easily see that iyry,y,Jr
transfo'rms in the same way as yrvy,1Jr under proper orthochronous Lorentz tra:ls-
formations but in exactly the opposite way under space inversion. This is expected
of an axial vector (pseudovector) density. Table 3-1 summarizes the results.

The question naturally arises: Have we listed all possible bilinear covariants
of the form {I'y»? To answer this question let us start multiplying the v,. If we
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multiply any pair of gamma matrices, we get either y2 = 1 when the two matrices
are the same or ry,vy, = —w,y, = ic,, when the two matrices are different. When
we multiply three gamma matrices, we get back only one of the ry, up to sign unless
all three are different (for example, v,9,9y, = —y,9:1vs = —.); when the three
matrices are different, we do get a new matrix y,y,v,. But oy, with g 5= v £ A
can always be written in the form vy, up to sign, where ¢ = g, v, A (for example,
ViYsYsYsYs = ¥sY.)- Finally, when we multiply four gamma matrices, we get
only one new matrix, y; = ,7s7sy, (Which is, of course, equal to —a,ysy,v1,
YaYsV1Ys2, €tc.). Needless to say, when we multiply five or more gamma matrices,
we obtain nothing new. So

r,=1, YVus O = —ivuy, (p# ), ivsy,, and «; (3.190)

represents all we can get. This means that there are in all sixteen independent
4 X 4 matrices (as we might have guessed): the identity matrix, the four y, matrices,
the six o,, matrices (antisymmetric in x and v), the four ir,y, matrices, and
the «; matrix. The factors +i in (3.190) are inserted so that

™ =1, (3.191)

for A =1,...,16. The I', are all traceless with the obvious exception of the
identity matrix, as the reader may easily verify by using the explicit forms of I',
in the standard (Dirac-Pauli) representationf (cf. Appendix B). Moreover, they
are all linearly independent. Consequently any 4 X 4 matrix can be written as
a unique linear combination of the sixteen I',. We can find the coefficient A, in the
expansion of an arbitrary 4 X 4 matrix A

16
A =3 nTy, (3.192)
A4
by simply evaluating
Tr(ALY) = Tr(Z Az T5) = 4, (3.193)
B

where we have used the fact that I',I", is traceless when B s 4 and is equal to the
identity matrix when A = B. The algebra generated by I, is called Clifford algebra
after W. K. Clifford, who studied generalized quaternions half a century before
the advent of the Dirac theory.

Let us return now to our discussion of the bilinear covariants. It is worth keep-
ing in mind that Table 3-1 exhausts all possible bilinear covariants of the form
I, as first shown by J. von Neumann in 1928. For instance, note that we have
no way to write a symmetric second-rank tensor of the form +I'Jr. This does not
mean, however, that we cannot form a symmetric second-rank tensor in the Dirac

iTo prove this without appealing to any particular representation, first verify that for
every I', there exists at least one I'y (different from I" ) such that ' y\T'y = —TI'sI"4. Then

—TrIT ) = Tr(Tsl'als) = Tr(T3C4) = Tr(T4)

which would be impossible unless I'", were traceless.
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theory. If we start introducing derivatives of 4/» and , we can develop an expres-
sion like
_ _lthe N op ikhc o -
Tw="7 (W”Txu - a_xu"'"‘/’) T2 o P, (3.194)
mn

L,V
#v

which can be shown to be the energy-momentum tensor of the Dirac wave func-
tion.

For not too relativistic electrons of positive energies some bilinear covariants
are “large” while others are “small.” To see this we first recall that if E ~ mc?
and V<<_mc2, then +r, is of order (v/c) compared to Yrs. We can see then that
Jrfr and Jry Ar given by

Y = Pyl = Pl — Phry,
Tyl = P = P + Vs

are both “large” and in fact equal if terms of order (v/c)’ or higher are ignored.
Similarly, since

(3.195)

iysy, = (Uk 0>> gy =2, = (ok 0) (3.196)
0 —oy x 0 o)

it follows that iry,yr and +Jos ) (ijk cyclic) are “large” and indistinguishable

up to order v/c:

- {i')'s Vx

T }¢ ~ Yoy (3.197)

0-”
In contrast to 1, v,, iv,y,, and o,;, which connect Y with «r,, the matrices r,,
15%6s Ty and «; connect r(yr}) with +r,(yr,). Hence the corresponding bilinear
covariants are “small” or, more precisely, of order v/c. For instance,

==y o)(V)

— s+ P (3.198)

Gordon decomposition of the vector current. The remaining part of this section is
devoted to a detailed discussion of the vector covariant Py, which occurs most
fre.quently. We argued earlier that within the framework of the single-particle
Dirac theory, s, = icry, ) is to be regarded as the four-vector probability current.
We therefore define

Ju = es, = iecpey,r, (3.199)
which is to be interpreted as the charge-current density. Using steps analogous
FO (3.45) through (3.48) we can show that J.. satisfies the continuity equation even
In the presence of the electromagnetic interaction. With (3.199) as the charge-

Current density, the Hamiltonian density for the electromagnetic interaction of the
charged Dirac particle is given by

Koy = —juAu/c = _ie"p')'u"l’\Au
= —e'\[ﬁa\[/'-A + efrtalrAd,. (3.200)
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This relationship can also be inferred from the Hamiltonian form of the Dirac
equation (cf. Eqs. 3.38 and 3.39):

in(9)onr = [(— ichV — eA)-a + Bme® + eAo]r. (3.201)
To appreciate the physical significance of j, we rewrite (3.199) as
Ju = (iec/2)(Fyup + Pyud)
ieh - 2 ie ) ie +
Loy, (e — o) ¥ (2 + ) F) o], 3202)

T 2m

where we have used (3.60) and its analog for the adjoint wave function aJr. This
encourages us to split j, into two parts:

Ju =00+ J0s (3.203)
according to dependency on whether or not the summation index » in (3.202)
coincides or does not coincide with x. We have

o — @(L\Tmp _ @2%) A XA (3.204)

2m\ox, mc

and

. jeh 5 0 olr
i = 12—8,; [_WP%L% a—xv‘l’ + (3—;!:) VoV

pxv

+ ;l—ecAnTﬂywm!f + ;l—iAwawa]
_ e 9 g
— ok (T auur)- (3.205)

This decomposition is known as the Gordon decomposition, named for W. Gordon.
Let us look at each component of (3.204) and (3.205) a little more closely. The

four-vector (3.204) does not contain any gamma matrix. In fact j{’ would be
formally identical to the expression for the three-vector current density in the
Schrodinger theory if we could replace the Dirac wave function by the Schrodinger
wave function. This is rather gratifying since we know that in the nonrelativistic
limit, (24r/oxnpr, etc., can be legitimately replaced by (9yr/dxchjr. ete. As for
Jj§ we can easily show that

.y ieE 1 ie? +

Jji = e — -n—12_-1l’f111'A0 (3.206)
when the time dependence e~***/* is assumed. This reduces to ic times the charge
current density eyriyr, in the Schrédinger theory, provided E =~ mc* and |e4,| K
mc?. As for (3.205) we recall that in the nonrelativistic limit

Porlp = —Pou
can be ignored while yro ;1 can be interpreted as the spin density Yo, (jkl
cyclic). In other words, the kth component of (3.205) is —eh/2m times

aixw,;gl A4) — %(«p;wml (jkI) cydlic, (3.207)
j !
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which is just the kth component of the curl of the spin density.] Thus for slowly

moving electrons the Gordon decomposition of j, can be regarded as the separation

of j, into the convection current due to the moving charge and the current associated

with the intrinsic magnetization (magnetic dipole density) of the electron.

, When J? interacts with A4, via (3.200), we have the interaction Hamiltonian
ensity

:(2)
Ju A eh | 0 T
_ uc B T l:TC; (’\IJ‘O'WL’\)[I‘)} A,
eh 04, +
= —%a—x:(‘ﬁffvu‘lf)

eh

1 3/4‘,, T 1 Y (lp
= A—m [7 aTv(lpo-vll'\b‘) + 721)‘:“ (111\0—#”11,)}

eh -
== - 2_”% [‘%Fvu'lp‘o-vu"l’]a (3.208)

where we have dropped (2/2x,)({ro,,4r A,) which is irrelevant when the interaction
density is integrated. Noting that

YFudro,u =~ B-(ho) (3.209)

in the nonrelativistic limit, we see that (3.208) can indeed account for the spin
m_agnetlc moment interaction with the gyromagnetic ratio g = 2, in agreement
with our earlier discussion based on (3.67).

]?xpenmentally, as first shown by P. Kusch in 1947, the observed gyromagnetic
ratio of the electron is not exactly 2 but rather

. -
—2 _£_>L .

J [1 + (47rhc 2 + ’ (3:210)
wh_ich holfls also for the muon. The origin of the extra magnetic moment was
satisfactorily f:xplained in 1947 by J. Schwinger who took into account the fact
that'the physical electron can emit or absorb a virtual photon, as we noted in
Section 2-8. (We shall come back to this point in Chapter 4.) When the magnetic

morpent is pot correctly given by g = 2 we may add a phenomenological term to
the interaction Hamiltonian of the form

) eh _
Hoi= — 5= Furonl, (3.211)

called an anomalous moment (Pauli moment) interaction.§ The total magnetic

filn t_his connpctiop recall that according to classical electrodynamics a magnetic dipole
ensity 4 gives rise to an effective current density

j(eff) = ¢V X ﬂ.

See Pa:nofsky and Phillips (1955), p. 120; Jackson (1962), p. 152.

§The .mteraction ‘(3.211) is to be interpreted as an effective Hamiltonian density. To the
e;:tent' that Schwinger’s correction is computable on the basis of the interaction (3.200),
there is no need to postulate an additional “fundamental” interaction of the type (3.211)
at least for the electron and the muon. ’
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moment computed from the sum of (3.208) and (3.211) is
u = (eh)2mc)(1 + «). (3.212)

For the proton, replacing e and m in (3.208) and (3.211) by |e| and the proton
mass m,, we have
e = (le|h2m,c)(1 + &), (3.213)

where experimentally &, = 1.79, as O. Stern first determined. We thus see that
roughly 60 % of the observed proton magnetic moment is “anomalous.” According
to (3.208), spin-1 particles should have zero magnetic moments as e — 0, yet
experimentally neutral particles, such as the neutron and the A-hyperon, are
known to possess sizable magnetic moments. They can again be represented
phenomenologically by interactions of the type (3.211). In contrast to the anom-
alous moments of the electron and the muon, the anomalous moments of the
proton, the neutron, the A-hyperon, and so forth, cannot be accounted for by
Schwinger’s mechanism. Therefore their existence appears to indicate a failure
of the simple prescription p, — p, — qA,/c. However, if we consider that these
particles are complicated objects surrounded by virtual meson clouds, the failure
of the simple prescription does not seem surprising. Spin-} particles whose
electromagnetic properties can be understood on the basis of (3.200) alone are
sometimes referred to as pure Dirac particles.

Vector covariant for free particles. To investigate further the physical meaning
of the gamma matrices, let us consider this time <Jrqyr;, where 4, and +r, are
E > 0 plane-wave solutions:

Q) p-x_ l_li’)
= u (p) exp( 7 i)
_ mc u™(p' lP X I.E/l>. ’
Yy (p') exp ( 5

This is of some practical interest in connection with the scattering of a Dirac
particle by an external vector potential A, since the transition matrix element
which we compute in the Born approximation is essentially —ie f syl Aid® x.
Assuming for simplicity that the vector potential is time independent so that
E = E' (elastic scattering), we can evaluate iy, taken between #7"(p) and u(p)
as follows:

(B Y () = W (B) sl ()
(s)
*( E—|—mc>(<s)+ =)+ "'PC)O Tk X
= 2mc? X " Et me 0/ 2P
E+ maX

=y [sz;;c}"k + iog-{(p' 2;13) X “k}} ®, (3.215)

where v and x " are the initial and final Pauli two-component spinors. The first
term, of course, corresponds to the convection current j{" of (3.201). To see the
meaning of the second term, we note that it appears in the transition matrix
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element as

~e(\/—;)Q 1 J % Xyt ["’ {» 2’—713)) X A}J ® exp [i(p —hp’)-x]

- %(ﬁ)f dxxte- [(V exp [——i(p —hp’)-x]) X A} x”

m h B s
Ef/ anc LIV J d*x(V X A) exp [M_X}, (3.216)

which is recognized as the perturbation matrix element expected from the spin
magnetic moment interaction.

Finally, let us consider the case yr; = ;. Using (3.215) with p = p’, we have}

; T 3y + sy — (ME\2p YV pec,
vakawdx J‘vqlrak‘pdx (EV) 2me — E (3.217)

But this is nothing more than the classical particle velocity divided by ¢. It is
interesting to recall in this connection that the analog of —ie [y, r4, d*x in the
classical electrodynamics of a point particle is

Helassmnl ( eve A/C) + er (3218)

Since plane-wave solutions of the form (3.214) are orthonormal, the result
(3.217) can be generalized to any wave function that can be expressed as a super-
position of E > 0 free-particle plane-wave solutions:

Yrso = 2 2 @cp 1" (p) exp ( px_ lﬂ) (3.219)

p 7=12 h

where ¢, , is a Fourier coefficient whose modulus squared directly gives the pro-
ability for finding the electron in state (p, r). With the help of (3.215), we obtain

e = J-V 1If2‘>oafk‘1f5>o déx

= Z py Z E} N (MVPEE'V? ¢y o u™N (D)ot u”(p) V Sp.p

= % 2 e (puc/E) = {pic/ED, (3.220)

where 4 stands for positive energy. Using similar techniques with negative energy
spinors, we can readily obtain

{Aip- = = e/l E[) ‘ (3.221)
for a wave function made up exclusively of negative-energy plane-wave solutions.
We shall come back later to these very important relations.

Although we have treated only i{ryn)r = ') in detail, the reader may
work out the analogs of (3.216) for other matrices v,, ifsy,, 0w, 75, and so forth.

For instance, the interpretation of oy is of interest in connection with electron-
neutron scattering (Problem 3-6).

IN_ote that, although we have used the two-component language, we have not made
a single nonrelativistic approximation in obtaining (3.215) and (3.217).
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3-6. DIRAC OPERATORS IN THE HEISENBERG REPRESENTATION

Heisenberg equation of motion. Up to now we have regarded the Dirac matrices
as short-hand devices that rearrange the various components of 4. In discussing
the time development of a matrix element such as [/'(x, N r(x, 7)d* x, we shall
find it sometimes more convenient to introduce a time-dependent operator af#(t)
(where H stands for Heisenberg) with the property

j YK, DX, 1) dx = f WHE, 0)al® (DY, 0) d®x.  (3.222)

The time development of [ +'*(X, H)ar(X, 1)d*x can then be inferred directly
from the differential equation that governs the behavior of the operator a{™. All
this amounts to working in the Heisenberg representation, where the state vector
is time independent and the dynamical operator is time dependent. For this reason
let us briefly review the connection between the Heisenberg representation and the
Schrodinger representation.

By virtue of the Schrédinger equation [or the Dirac equation written in the
Hamiltonian form (3.38) and (3.39)], a Schrodinger (or Dirac) wave function, which
is not necessarily assumed to be an energy eigenfunction, can be written as

(X, 1) = e~ 1HMap(x, 0), (3.223)

where H is the Hamiltonian operator that acts on the wave function. Associated
with a time-independent operator Q> where S stands for Schrédinger, the cor-
responding operator in the Heisenberg representation can be defined as

QUEI(t) = ' BUR QS g-1HIR, (3.224)
Clearly, at t = 0, Q" coincides with Q®;
QE0) = Q.
With (3.223) and (3.224), the matrix elements of a given operator in the two re-
presentations taken between any initial and final state are seen to be the same

provided that in evaluating the matrix element in the Heisenberg representation
we use the wave function at r = 0, that is,

I Y (X, DQOY(x, ) dPx = f Yr't(x, 0) QHJr(x, 0) d® x. (3.225)
By considering an infinitesimal displacement in time, we are able to readily deduce
the Heisenberg equation of motion:
dQi o)
a = ar
where the last term is nonvanishing only when Q depends explicitly on time.
Note that this equation is equivalent to

Lr'l [H, Q7] + (3.226)

% f WX, DOO(x, £) d*x

= % j WX, [H, QOTx, £ d®x + j PH(x, NOQS[aN(x, D d®x.  (3.227)
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With a Dirac matrix, «,(8) we may associate a Heisenberg dynamical operator
a(B) with the property that its explicit matrix representation at =0 is
a(B). Since the operator e '#“* that connects af”’ with «,, B with 8, and
so forth, is unitary, the anticommutation relations among «, and 8 hold also for
the corresponding dynamical operators. In this section only, we shall omit the
superscript (H) so that «;, will stand for the dynamical operator that corresponds
to the matrix ¢, discussed in the previous sections. Similarly, the symbols x,
p, and L will stand for the velocity operator, the momentum operator, and the
orbital angular momentum operator in the Heisenberg representation.

Constants of the motion. With the aid of the Heisenberg equation of motion we
can immediately determine whether or not a given observable is a constant of the
motion. For instance, for a free particle whose Hamiltonian is}

H = ca;p; + Bmc? (3.228)
we have the Heisenberg equation for the momentum
dp. _ i _
v W[H, 2] =0, (3.229)

since p, commutes with both ca;p; and Bmc?®. Equation (3.229) tells us that we
can find a solution to the Dirac equation which is a simultaneous eigenfunction
of the Hamiltonian and the momentum. But we know this already, since the plane
wave solutions obtained in Section 3-3 are simultaneous eigenfunctions of H
and p.

As a less trivial example, let us consider L for a free particle. For the x-com-
ponent of L we have

[H, L] = [c@pi, (X205 — X3p5)] = —ihe(aypy — aspy), (3.230)
and similarly for L, and L,. So
dL/dt = c(a X p). (3.231)

This means that for a free Dirac particle, L is not a constant of the motion, in
sharp contrast with the corresponding operator in the Schrédinger theory.
Next let us consider =. First it is useful to note that

Oy = —Zpys = —s 2, . (3.232)
which is obvious from the explicit forms of a, «y;, and =,.§ Therefore

[H, 2] = [carpi, 21] = —clys 2 pr, 2]
= 2ic(ayp; — A3Pps), (3.233)

1Since it is customary to use a; and B to write H, we shall, in this section, make exclusive
use of o, and B rather than o, and v,.

§To prove this without recourse to any particular representation, note, for instance,
Oy = —iv3¥y = i7192Y1Y2Y5Ys = —2;5%;, where we have used (v,7,)? = —1.
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where we have used v, 3,3, = —iy;2; = i, and so forth. Consequently,
d 2 ,
_d_f = (@ x p). (3.234)

Thus the spin angular momentum of a free electron is not a constant of the motion,
either. But taking the dot product of (2.234) and p and remembering (3.229), we
obtain

d(Z-p)/dt =0, (3.235)
which means that the helicity =-p/|p| is a constant of the motion, as shown in

Section 3-3.
Let us now consider

J =1L + rZ/2. (3.236)
Because of (3.231) and (3.234) we have
dJjdt = 0. (3.237)

Thus, although L and r3/2 taken separately are not constants of the motion, the
sum (3.236) which, according to (3.161), should be identified with the total angular
momentum is a constant of the motion. As is well known, the constancy of J is
a consequence of invariance under rotation. Hence we may argue that J must be
a constant of the motion even if we add to the free-particle Hamiltonian a central
(spherically symmetric) potential V(r). Indeed, the relation (3.237) still holds in
the presence of V(r) since both L, and %, commute with ¥(r).
Next we shall consider the time derivative of the mechanical momentum

T=p—eAlc (3.238)

(as opposed to the canonical momentum p) of an electron in the presence of 4,.
Using the Hamiltonian

H=ca-w -+ ed, + fmc?, (3.239)
we obtain
) j 0A ] ]
Ty = %[H, ] — %a—tk — %a,-[n',-, md + % [Ao, 7] (3.240)
But we know that
_ ip 24
[Ao, 7fk] = lh ax,c9
and
_iehddy _ieh A, _ ieh
[, ms] = = ax FR T B, etc. (3.241)
Hence
7 =e(E + ax B). (3.242)

Since {a, >, has been shown to correspond to the classical particle velocity in
units of ¢ (cf. Eq. 3.220), we may be tempted to identify (3.242) with the operator
equation for the Lorentz force. However, as we shall see later, we have to be
somewhat careful in regarding ca as the operator that corresponds to the particle
velocity in the usual sense.
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It is also of interest to study the time dependence of -7 for an electron in the
electromagnetic field. Assuming that A4, is time-independent, we obtain

d E‘n’ l 2 ]
(d__t ) _ 7[(—C%E-?r + Bmc® + eAdy),Z-x] = %[Ao,z'”] =e%-E, (3.243)

since both ry; and 8 commute with Z-7. Let us suppose that there is no electric
field. We know that the magnitude of the mechanical momentum of a charged
particle is unchanged in a time-independent magnetic field. The constancy of
2. then amounts to the constancy of the helicity. It follows that a longitudinally
polarized electron (one whose helicity is +1 or —1) entering a region with a mag-
netic field will remain longitudinally polarized no matter how complicated B may
be. When an electron is injected into a region with a uniform magnetic field B
whose direction is perpendicular to the initial electron velocity, the electron follows
a circular path with an angular frequency, known as the cyclotron frequency:

o, = (|eB|/mc) T — B (3.244)

In-this particularly simple case, the constancy of helicity implies that the electron
spin precesses in such a way that its precession angular frequency wg is equal to
w;, as pictorially represented in Fig. 3-3.

Fig. 3-3. Spin precession of a moving electron in a uniform i
3. S sion magnetic field.
arrows indicate the spin direction. gnetic field. The gray

I.n deriving the equality of w, and ws we implicitly assumed that the gyromagnetic
ratio of the electron is strictly two. In reality, because of the anomalous moment

of the electron, o, and wy are not quite equal. It can be shown that the correct
relation is given by

Wy g — 2) 1
D5 S DR S
@1+ ( ) s (3.245)
This means tha}t as the initially longitudinally polarized electron makes one orbital
turn, its spin direction departs from the direction of motion by a very small amount,
1/137 rad 1.f the electron is nonrelativistic (cf. Eq. 3.210). This principle has been
used experimentally to make precise measurements on the anomalous moments

of the electron and the muon.
Velocity” in the Dirac theory. Let us now return to the free-particle case. Consider

Xy = (im)[H, xi] = (ic/h)[a;p;, x,] = ca,, (3.246)
which says that « is the velocity in units of ¢. (Actually this relation holds even



116 RELATIVISTIC QUANTUM MECHANICS OF SPIN-1 PARTICLES 3-6

in the presence of 4,.) At first sight this appears quite reasonable in view of (3.220),

which says that (>, is the same as the expectation value of p,cH ~'. Note, how- -

ever, that the eigenvalue of &, is +1 or —1. Hence the eigenvalue of the velocity
operator is -c, as first pointed out by G. Breit in 1928. This is a truly remarkable
result, since for a particle of finite mass the classical velocity cannot be equal to
+c. We may also note that because «; and «, do not commute when k 5 /, a
measurement of the x-component of the velocity is incompatible with a measure-
ment of the y-component of the velocity; this may appear strange since we know
that p, and p, commute.

In spite of these peculiarities, there is actually no contradiction with the results
derived earlier. The plane-wave solutions (3.114) and (3.115) which are eigen-
functions of p are not ecigenfunctions of «; (unless the particle is massless), as
the reader may verify by directly applying «,. In fact, since «, fails to commute
with the Hamiltonian (see Eq. 3.248), no energy eigenfunctions are expected to be
simultaneous eigenfunctions of «;.

Let us now look at the time derivative of «,:

a, = (ifm[H, a;]
= (i/n)(—2a,H + {H, a,})
= (i/n)(—2a,H + 2cpy), (3.247)

where we have used the fact that «, anticommutes with every term in H except
the term that involves «, itself. This equation can also be written as

2ia,Bmc’®

dk:—%(sz)k~ A

(3.248)
We see that the velocity operator X, = ca, is not a constant of the motion despite
the fact that the particle is free. Contrast this with Eq. (3.229), which says that
the momentum of a free particle is a constant of the motion.

The relation (3.247) can be regarded as a differential equation for (7).
Keeping in mind that p, and H are constants of the motion, we easily see by direct
substitution that the solution of this differential equation is

ayt) = cppH™' 4 (a(0) — cp H ') e ?in, (3.249)

The first term of (3.249) is reasonable since, for an eigenstate of momentum and
energy, it gives cp,/E in agreement with (3.220) and (3.221). But what is the physical
significance of the second term? Taken literally, it seems to say that the velocity
of the electron has an additional term that fluctuates rapidly about its average
value even in the absence of any potential.

As for the coordinate operator, the relation (3.249) can be easily integrated
to yield

xi{1) = x(0) + c*p H™'t 4 (ich/2)(a(0) — cp H ")H ~' e 21U%  (3.250)

The first and the second terms are understandable because their expectation values
are seen to give the trajectory of the wave packet according to the classical law:

X,(S.'hms)(t) — X‘(L_cluss)(O) + t(ka 2/E)((:1uss), (3'25 1)
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Just as they do in nonrelativistic quantum mechanics. The presence of the third
term in (3.250) (which, of course, is a consequence of the second term in Eq. 3.249)
appears to imply that the free electron executes very rapid oscillations in addition
to the uniform rectilinear motion (3.251). This oscillatory motion, first discussed
by E. Schrédinger in 1930, is called Zitterbewegung (literally “quivering motion”).
We shall say more about this in the next section.

3-7. ZITTERBEWEGUNG AND NEGATIVE-ENERGY SOLUTIONS

Expectation values of a and x. The algebraic techniques extensively employed in
the previous section are quite powerful when we want to obtain the constants
of the motion or establish a correspondence with the classical theory. However, in
order to analyze the peculiarities we encountered at the end of the previous section,
it is instructive to go back to the Schriddinger representation and reinterpret the
operator relations (3.249) and (3.250), using specific wave functions.

Since the positive- and negative-energy plane-wave solutions (3.114) and (3.1 15)
with all possible p form a complete orthonormal set, the most general free-particle
wave function can be written as

- ip-x i|E|t
Vo0 = 3 %\ @) exp (B — 2L
+3 3, ]’ZTVc.,,u<’>(p)exp(’Px+ 'E“) (3.252)

where ¢, ; is to be determined from the Fourier expansion of 4 at ¢t = 0. By ap-
propriately choosing ¢, ,, we can write the wave function for an arbitrarily localized
free-particle wave packet in the form (3.252). Let us now evaluate {a;>. A
straightforward calculation using (3.220) and (3.221) gives

(ay = j A D%, D x
2 PiC 2 PrC
E Z |CPT| iEl E Z |CI)T| IEI

+2 2 2 m [c;(.r*Cp,ru(T'”(p)ak u(p) e~ HIE 1A

P r=1,27r-34
+ Cp,r‘c;ru(rﬁ(p)ak“(rr)(p) e2i[ Elt/h]. (3253)

The first (second) term which is time independent represents the group velocity
of the wave packet made up exclusively of positive- (negative-) energy plane-wave
components. The last two terms which are time dependent are more interesting.
First note that «, taken between #"*(p) and u?(p) is “large” when |p| < me,
in sharp contrast with «; taken between u"?*(p) and u®?(p) which is of order
v/c. Specifically,

D)oty " (p) = X oux* -+ O([[p meT), (3.254)

where x® and x® are the two-component Pauli spinors corresponding to
ut o and u® Y. Therefore the last two terms of (3.253) represent a superposi-
tion of violent and rapid oscillations, each with an angular frequency ~2mc?/h
= 1.5 x 10%' sec”! and an amplitude ~| "¢
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As for {x,> we first observe that the operator relation (3.246) implies

(d/dr) j WX, DX, ) d*x = ¢ j (X, Datr(X, 1) dx. (3.255)

We can therefore obtain {x,> by integrating ¢ times (3.253) with respect to time:

—_ 2 P, 2 PiC’
G = o+ | BT e M1 =3 3 e, BT

y 2\ 2 o
+ 3.3, 5 e (1) 68 coru D@ e 10
_ Cpr’c;:T u(r)’r(p)aku(r')(p) &2l Elt/fz]] . (3.256)

Thus on top of the rectilinear motion of the wave packet we again have a super-
position of violent oscillations, each with an angular frequency ~2mc?®/h. If both
Cp1orzand ¢, ;o4 are appreciable, the fluctuation of the electron coordinate due
to these oscillations is of the order of i/mc = 3.9 x 107! cm. It is very important
to note that the peculiar oscillatory behavior, Zitterbewegung, of both () and
{x,> is due solely to an interference between the positive- and negative-energy
components in the wave packet. The Zitterbewegung is completely absent for
a wave packet made up exclusively of positive- (negative-) energy plane-wave
solutions.

Presence of negative-energy components. At this stage we may naturally ask why
we cannot simply forget all about the trouble-making negative-energy components
in constructing a wave packet. This can certainly be done for a free-particle wave
packet since in a potential-free region a wave packet made up exclusively of posi-
tive-energy plane waves at a given time does not develop negative-energy com-
ponents at later times. On the other hand, we can show that the wave function
for a well-localized particle contains, in general, plane-wave components of nega-
tive energies. As an illustration, let us consider a harmless-looking four-component
wave function at ¢ = 0,

(%)

(X, 0) = g , (3.257)

0

where | (x)|? is assumed to be appreciable only in a region whose linear dimension
is Ax,. From our earlier discussion in Section 3-3, we see that +Jr corresponds
to the four-component wave function for a nonrelativistic particle with spin-up
localized to ~Ax,. We now propose to expand this wave function in various
plane-wave components so that 4Ji(x, 0) takes the form (3.252), evaluated at t = 0.
The appropriate Fourier coefficients can be readily found by multiplying (3.257)
from the left by u™*(p)e »** and integrating over the space coordinates.
Although the coefficients themselves depend on the detailed form of ¢(x), we
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easily see that

Sos_ ____PsC  Ga_ _(p—ipy)e,
Cp.1 |E |+ mc? Cot [E[ + mc? (3.258)

This means that a negative-energy component is comparable in importance to
the corresponding positive-energy component whenever ¢ has a Fourier com-
ponent with momentum comparable to mc. On the other hand, we know that
the Fourler transform of ¢ is appreciable in a region in momentum-space whose
linear dimension is

Ap, ~ h/Ax,. (3.259)

Suppose the state in question is localized to Ax, << h/me. The uncertainty relation
(3.259) tells us that we need plane-wave components of momenta |p|= mec.
From (3.258), we then infer that there must be appreciable amounts of negative-
energy components.

We have seen that a well-localized state contains, in general, plane-wave com-
ponents of negative energies. Conversely, we may ask how well localized a state
will be which we can form using only plane-wave components of positive energies.
A rather careful analysis by T. D. Newton and E. P. Wigner indicates that the
best-localized state we can construct in this way is one in which the characteristic
linear dimension of the wave packet is ~ i/mc but no smaller. This statement can be
shown to be valid also for a Klein-Gordon particle.

It is interesting to note that a positive-energy bound-state wave function when
expanded in free-particle plane waves usually contains some negative-energy com-
ponents. For instance, let us take the case of the ground-state wave function of the
hydrogen atom whose energy is evidently positive, E = mc? — (e?/8ra,) > 0. When
this bound-state wave function (whose explicit form will be given in the next
section) is expanded in free-particle plane waves, we do obtain nonvanishing
coefficients for negative-energy plane waves. An immediate consequence of this
is that the electron in the hydrogen atom exhibits Zitterbewegung. As a result,
the effective potential that the electron at x feels is no longer just ¥(x) but rather
V(x 4 6x), where 8x characterizes the fluctuation of the electron coordinate.
Note now that ¥(x + 8x) can be expanded as follows:

o*V
axiaxj

V(x + 8x) = V(x) + 8x-VV + %3)&8% 4. (3.260)

Assuming that x fluctuates with magnitude |8x | = h/mc without any preferred
direction, we obtain for the time average of the difference between
V(x + 8x) — V(x):
) ~Ll1l(BNVgp_e&(hYsa
(AV)tune average 273 (mc) ViV = F(m~c) 8 (x). (3.261)
Apart from a numerical factor (} instead of }), this is just the effective potential

needed to explain the Darwin term discussed earlier in connection with the ap-
proximate treatment of the hydrogen atom (cf. Eqs. 3.83 and 3.87).
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Fig. 3-4. One-dimensional potential with mc? > E — Vi > —mc?,

Klein’s paradox. As a final illustration of the peculiarities attending the negative-
energy solutions, let us consider a simple one-dimensional potential (Fig. 3-4).
In Region I the particle is free; the height of the potential in Region II is assumed
to be ¥;. When considering a region in which the potential is not varying rapidly,
we can proceed directly to obtain the functional form of the wave function. For our
purpose it is actually sufficient to look at +r, only:

1 . — —_ . 2
(0"P)CE_—V_'}_—m? (@-p)cYu= (E—V —mc* ), (3.262)
Wherever V is locally independent of x, we obtain
ipx LE_’) (_w _Et
oo exp (1B — )y, exp(—1BLX i Z)y, (3.263)
where
D =(E—V+ mc®)E— V — mc?). (3.264)

With p? > 0 we have an oscillatory solution, while with p? << 0 we have an ex-
ponentially damped solution. Let us suppose that

me* > E — Vi > —mct. (3.265)

The Region II is a classically forbidden region (p* < 0), and the free-particle
wave function in Region I dies out exponentially as it enters Region II.

So far everything has been straightforward. Let us now consider the potential
given by Fig. 3-5. Our experience with nonrelativistic quantum mechanics tells
us that the wave function in Region III is even more strongly damped. However,
when the potential becomes so strongly repulsive that

Vy — E> mc, (3.266)

(3.264) tells us that just the opposite is true. Since both E—V+-mc? and E—V—mc?
are now negative, we have p? > 0; hence the solution in Region III is oscil-
latory just as is the free-particle solution in Region I. This result is exactly the
opposite of the one we set out to find. Semiclassically speaking, a particle initially
confined in Region I can tunnel through Region II (just as the a-particle inside
an «-emitting nucleus), and behaves in Region III as though it were in an attractive
potential instead of the very strong repulsive potential implied by (3.266). This
theory is named Klein’s paradox for O. Klein, who worried about this interesting
point in 1930.
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—

Fig. 3-5. Potential to illustrate Klein’s paradox. Oscillator i i
o vegionet p y solutions are expected in

What Is the origin of this peculiar behavior? Let us recall that the free-particle
solutions to the Dirac equation exhibit an energy spectrum ranging from —mec?
to —oo as well as from +-mc? to co. Now suppose we apply a small positive poten-

tial V. The condition that we have negative-energy oscillatory solutions now
becomes
—oo < E < —me? 4 V. (3.267)

As Vis increased adiabatically, we see that eventually E need not even be negative
for (?.267) to be satisfied. Coming back to Fig. 3-5, we see that the oscillatory
sglutlon in Region III is essentially a negative-energy solution despite E > 0,
since it can be obtained from the wave function whose space-time dependence is
exp [i(px/h) + i( E|t/n)] by simply increasing ¥ adiabatically. Klein’s paradox
arises because when the potential ¥ is sufficiently positive, an oscillatory negative-
energy solution in Region III can have the same positive energy as an oscillatory
positive-energy solution in Region I. The tunneling of the electron from Region
Linto Region III must therefore be viewed as a transition from a positive-energy
to a negative-energy state. We shall say more about such a transition in Section
3.—9, pp. 131-143. In any case, we find that our intuitive notion that a strong posi-
tive potential can repulse the particle breaks down completely when V becomes
comparable to 2mc?. '

Similar peculiarities are present also for strongly attractive potentials. With a
moderately attractive finite-ranged potential we can have bound-state solutions
(E < mc*) which fall off outside the range of the potential, just as they do in non-
re!a.tlvistic quantum mechanics so long as the attraction does not exceed a certain
critical strength. But when the potential becomes too strong, the Dirac theory
Ste}rts accommodating solutions with E less than mc? which are oscillatory and
un@amped outside the range of the potential. The interested reader may verify this
point in detail by studying the behavior of the Dirac particle in a deep spherical
well (Problem 3-10c).
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3-8. CENTRAL FORCE PROBLEMS; THE HYDROGEN ATOM

General considerations. In this section we shall first study some general properties
of the wave function for an electron in a spherically symmetric potential. As we
have already seen in Section 3-6, the total angular momentum operator J is a
constant of the motion whenever the Hamiltonian is given by

H = ca-p + Bmc? + V(r). (3.268)

Let us now look for other constants of the motion. Intuitively, we expect that we
must be able to specify whether the electron spin is parallel or antiparallel to the
total angular momentum. In nonrelativistic quantum mechanics these two pos-
sibilities are distinguished by the eigenvalues of

-3 =a-(L -+ ha/2) = (1/n)(J* — L? + 2h%). (3.269)
Alternatively, we may specify /, which can be either j - £ or j — . For a relativistic
electron we might try the 4 x 4 generalization of (3.269), namely X-J. However,
the commutator of H with Z-J turns out to be rather involved, as the reader may
verify. Instead, then, let us try B82-J which has the same nonrelativistic limit
as 2-J:
[H,8%-J] = [H, 8123 + BIH,3]-
‘ = —2cB(a-p)(Z-J) + 2icBla X p)-J, (3.270)
where we have used (3.233), and
[H,B] = ca-pB — Beca-p
= —2cBoa-p. 3.271)
If we take advantage of
(a-A)(2-B) = —v;(2-A)(2-B)
= —v;A-B + ia-(A X B), (3.272)

we can simplify expression (3.270):

(H,BZ-J] = 2¢Bys(p-J)
= 2¢fBv;p-(L + hZ/2)

= —chBa-p = (h/2)[H, B], (3.273)
where we have used
p-L=—ihV.[x X (—ikV)] =0 (3.274)
and (3.271). Therefore an operator K defined by
K=pR83%.J— Br2=pLEZ-L+h) (3.275)
does commute with H:
[H, K] =0. (3.276)
Furthermore, using the fact that J commutes with 8 and 2-L, we readily see that
(J,K]=0 (3.277)

as well. Thus, for an electron in a central potential, we can construct a simultaneous
eigenfunction of H, K, J2, and J;. The corresponding eigenvalues are denoted
by E, —«h, j(j + D and jh.
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We shall now derive an important relation between « and j. First let us consider

K* = B(Z-L + nBE-L + h)

=(2-L + )
=L+ i3(L X L)+ 2h3.L+ p
=L+ h3-L + A% (3.278)
At the same time, since
J? = L* 4+ h2-L + 3n%/4, (3.279)
we obtain
K= J° + 1p2, (3.280)
which means that the eigenvalues of J? and K’ are related to each other by
K*h* = j(j + D* + 1h* = (j + §)h%. (3.281)
So we must have
K=+ + 3. (3.282)

Thus « is a nonzero integer which can be positive or negative. Pictorially speaking,
the sign of x determines whether the spin is antiparallel (x > 0) or parallel (x < 0)
to the total angular momentum in the nonrelativistic limit.

Explicitly, the operator K is given by

K — (a-L+h 0
= 0 —o L — h>. (3.283)

Thus, if the four-component wave function +» (assumed to be an energy eigen-
function) is a simultaneous eigenfunction of K, J?, and J,, then

. (@-L + W)Yy = —xhfry,  (0-L 4 Wy = chjry, (3.284)
an

Jz"l/il,l; = (L -+ ha’/2)2'1,lfA_B:j(j + 1)h2‘lfA,1h
JSWI’A,H = (Ls + ho’a/z)\l’A,B :jsh”llfA,u-

The operator L? is equal to J* — ha-L — 3h% when it acts on the two-component
wave functions ), and 4r,. This means that any two-component eigenfunction of
o-L + h and J* is automatically an eigenfunction of L?. Thus, although the four-
component wave function 4 is not an eigenfunction of L? (since H does not com-
mute with L?), 4, and +r, separately are eigenfunctions of L? whose eigenvalues

alt')e denoted by /,(/, + 1)h* and [/, + 1)h*. From (3.284) and (3.285) we then
obtain

—k=j+ D)L+ D+L o k=jU+1) L+ 1D+ 1 (3.286)

Using (3.282) and (3.386), we can determine /, and /, for a given x. The results
are summarized in Table 3-2.

For a given j, [, can assume two possible values corresponding to the two possible
values of «. This fact is already familiar from our study of nonrelativistic quantum
mechanics. For example, for j = %, I, can be either 0 or 1 (s} or p%), depending
on whether « is negative or positive. What is new is that for a fixed x the orbital

(3.285)
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Table 3-2
RELATIONS AMONG «, j, I, AND Iy
1y Iy
k=j+3z Jit3 j—%
k=—(+% j—% Jt+ 3

parities of 4, and +ry are necessarily opposite. As we showed in Section 3-4,
this result can also be derived from the requirement that the four-component
wave function +» have a definite parity (cf. Eqs. 3.172 through 3.175).

We can now write «Jr as A
J3
Y= (%) = (g(r)@”‘. ) (3.287)
Vs if(n%i,
where @4 stands for a normalized spin-angular function (an r-independent

eigenfunction of J?, J;, L?, and, of course, S?) formed by the combination of the
Pauli spinor with the spherical harmonics of order /. Explicitly,

js — l ] 3 Ja— l l -]3__._—%- js+1/2 0
j / +21 A +1 y; 1/2( 0) / S +1 Y | (3.288)
forj=1+4 4, and

T—j ; 1 T+ Js+ % vl 0
Wy = — ITIJLE_’j__Fl_%Y{:—l/ﬂ(O)_J[_ —;—%Y{; 1/2(1> (3.289)

for j = [ — 4.} The radial functions f and g depend, of course, on «. The fac;tor
i multiplying f has been inserted to make f and g real for bound-state (or standing-

wave) solutions. . . .
Before we substitute (3.287) in the Dirac equation written in the form

c(@-p)rs = (E— V(r) — me*)py, c(@-plPy = (E— V(r) + mc*)yry, (3.290)

let us note that

a-p = ZX (@-x)(0-p)

. (ar';‘)(—ihra% 4 ia-L). (3.291)

Moreover, the pseudoscalar operator (¢-x)/r acting on %7, must give an eigen-
function of J?, J,, and L? with the same j and j; but of opposite orbital parity. There-
fore [(g-x)/r] %%, is equal to &%, itself up to a multiplicative p}}ase factor. [IYote:
(e-x)?/r* = 1] It is not difficult to show that this phase factor is minus one if we

his book we shall follow
iSee, for example, Merzbacher (1961), p. 402. Throughout t

the phase convention used in Condon and Shortley (1951), Rose (1957, 1961), Merzbach;r
(1961), and Messiah (1962). The phase convention used by Bethe and Salpeter (1957) is
slightly different due to an unconventional definition of Y7
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conform to the phase convention used in writing (3.288) and (3.289). In fact,
we have already verified this for the special case j = j, = 4, I, = 0, as seen from
(3.178). Similarly [(@-x)/r] acting on %%, gives %%, apart from a minus sign.
Thus

(G-Prs = i("’x)(—ihra% + i"'L)f@ﬁ,

r2
= &0 (il + it — Dnp)

df g (1L —0h
= -hd—{ Y — (r—")f%.. (3.292)
Similarly

(o= indEay, 4 i Dk gy, (3.293)

Jlae

We now observe that the spin-angular functions completely drop out when we
rewrite (3.290), using (3.292) and (3.293):

d 1 — x)h
_chd'_{:_ (fx)cfz (E -V — mcz)g’
(3.299)
d 1 A
chzf + (%K)Cg = (E — V + mo)f.
Introducing
Fry=rf(r), G@r)=rg@ (3.295)
as in nonrelativistic quantum mechanics, we finally get radial equations:
dF
hc(ﬁ ~£ ) = —(E—V —meY)G,
(3.296)

dG «
hc(ﬁ—'_TG) =(E—V + mc*F.

Hydrogen atom. On the basis of the coupled equations (3.296) a variety of problems
can be attacked. We shall consider only one problem along this line; the remaining
part of this section will be devoted to a discussion of an electron bound to the
atomic nucleus by a Coulomb potential. This classical problem (first treated by
C. G. Darwin and W. Gordon in 1928) can be solved exactly. The reader who is
interested in other central-force problems—the anomalous Zeeman effect, free
spherical waves, exact solutions (as opposed to Born approximation solutions
to be discussed in Chapter 4) to the Coulomb scattering problem, etc.-——may
consult Rose’s book.}
In order to simplify (3.296) when V is given by

V = —(Ze*jdxnr), (3.297)

fRose (1961), Chapter 5.
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we introduce
a, = (mc® + FE)/hc, a, = (mc® — E)/he,

3.298
v = (Ze*/dnhec) = Za =~ Z[137, p=Aa,a,r. ( )

Note that k/a,a, = /m?c* — E?/c is just the magnitude of the imaginary mo-
mentum of an electron of energy E. The coupled equations we must solve are

3 (- Hemo (o (Gp)reo
(3.299)

As in the nonrelativistic treatment of the hydrogen atom, we seek solutions to
(3.299) of the form

F=e"*p 3 a,p™, G=¢e’p’Y b,p™ (3.300)
m=0 m=0
Substituting (3.300) in (3.299), and equating the coefficients of e *p*p?™!, we obtain

the recursion relations

(s +9—«)ag — ag_y + by — st by, =0,

(3.301)
(s+q+w)b, — b, —ya, — [y a,., = 0.
For g = 0, we have

(s — x)a, + yby =0, (s + x)by — ya, = 0. (3.302)
Since a, and b, are not zero, the secular determinant of (3.302) must vanish; hence
s = £k — ¢ (3.303)

We must require that | yr*+rd®x be finite. This requirement amounts to
JIFpdp <o, [1GIdp < co. (3.304)

Thus F and G must behave better than p~'/* at the origin, which means s > —1.
Since

€ — o = min () — o? =1 — (Z/137), (3.305)

the above requirement cannot be satisfied if we take the negative root of (3.303).
So we are led to take the positive root.}

It is not difficult to show that F and G would increase exponentially as p — oo
(that is, F, G ~ e** at infinity) if the power series (3.300) did not terminate.§
Assuming that the two series terminate with the same power, there must exist
n’ with the property

Gy =bpii =0, ap#0, b,#0. (3.306)

iFor || =1, f= F/r and g = G/r diverge at the origin (since s < 1); yet (3.304) is
satisfied.

§The e? behavior for F and G at infinity is allowed if E > mc?, which means a purely
imaginary p. Indeed the oscillatory behavior of the radial functions at infinity is charac-
teristic of scattering-state solutions which exhibit a continuous energy spectrum,
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Setting ¢ = »' + 1 in (3.301) we obtain

Ay = —aA/ ag/ax bn' (3307)
from both parts of (3.301) (which incidentally justifies our assumption that the
two series terminate with the same power). To write an equation that involves
only a, and b, whose ratio is now known, we multiply the first of (3.301) by
a,, the second by ~/ &y, set ¢ = n’ this time, and subtract:

[ai(s + 1" — ) + Vs vlay — [V, (s + 1 + k) — a,9]b, = 0; (3.308)

hence

20, (s + 1) = yla, — a,), (3.309)
or
~(mc?)? — E* (s + n') = Ev. (3.310)

Thus we obtain the energy eigenvaluesi
E— me? _ _ mc222 : .
1+ 7 \/ 1 @
R y N T @ VTT =y
Note that E depends only on #’ and j + 1 = | «|.

In order to compare (3.311) with the corresponding expression obtained in the
Schrédinger theory, we define

(3.311)

n=n+{(+H=nr+|x| (3.312)

Since the minimum value of ' is zero, we have
n>j+ %=/« (3.313)

which is at least unity. Expanding (3.311) we get

= me? ~L(Za)2_i(2a)“( 1 3>_,.. :
E=me [1 i Rl R O ] (3.314)
Since§

%—azmcj = 6’2/(87[0301“.), (3'315)

we see that n is indeed identical with the familiar principal quantum number in
nonrelativistic quantum mechanics. Note also that the leading correction to the
Balmer formula is precisely the fine-structure splitting (3.88) which tells us that,
for a given n, higher j-states are at higher levels.

In the Dirac theory each state of a hydrogen atom can be completely charac-
terized by n’, x, and j,. We can translate this classification scheme into the more
familiar one based on spectroscopic notation. This is done in Table 3-3 which
can be obtained with the help of Table 3-2 and Egs. (3.312) and (3.313). Note that
although L? is not “good” in the relativistic theory, it is customary to use the

{Formula (3.311) was first obtained by A. Sommerfeld, using a relativistic version of
N. Bohr’s old quantum theory.

§In this section we shall use ag.n. rather than g, for the Bohr radius to avoid a possible
confusion with the coefficient a, in (3.300).
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Table 3-3
RELATIVISTIC QUANTUM NUMBERS AND SPECTROSCOPIC
NOTATION
A pair of states which have the same energy according to (3.311) are denoted by “deg.”
n n=n—|kl>0 [(k=2+(+1 Notation
1 0 —1 1s}
2 1 —1 25t
2 1 +1 Zp%} deg
2 0 -2 2p3
3 2 —1 35t }
3 2 +1 3p1f dee
3 1 -2 3p3 }
3 1 +2 3d3) 98
3 0 -3 3d3

notation py, etc., which actually means /, = 1 with j = 2, etc. In other words the
orbital angular momentum of the upper two-component wave function (which
becomes the wave function of the Schrodinger-Pauli theory in the nonrelativistic
limit) determines the orbital angular momentum in the spectroscopic language.
The reader may wonder why we have omitted in Table 3-2 the « > 0 states when-
ever n' = 0. The reason for this omission is evident if we go back to the second
expression of (3.302) and (3.307) which together imply

(s + k)/v = - a,ja,, n' = 0 only. (3.316)

This can be satisfied only if « is negative because s is a positive number smaller
than |« | (cf. Eq. 3.303). The absence of the x > O states for n’ = 0 corresponds
to the familiar rule in nonrelativistic quantum mechanics: The maximum value
oflisn— 1, notn.

For the ground state (n" = 0, k = —1), the relation (3.311) simplifies to
E,; = me*A/1 — (Za) (3.317)
So
saa, = Zamcilhe = Zlag,, (3.318)
and
b Za (AT (ZaP. (3.319)
a, l 4+ A1 —(Za) Za ’

Up to an overall multiplicative constant denoted by N we can readily write the
ground-state wave function

X(x)
N (ZN g (2 T X
Vo = e (o) e (2 (’“_ | —Za)ex) o |
Za r

(3.320)
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(o) = (1)

depending on whether j; = § or —}. A straightforward calculation shows that
the normalization requirement for «r gives

= IVI=(Zay-1 1+ /1 —(Zay
M= A/P(l T 2J/1 = (Zay) (3.321)

where x© is the Pauli spinor

where
T(x) = j Cetrdy,
0 (3.322)
I'(m) = @m — 1! for m = positive integer.
Note that N approaches 1 as Za — 0. Furthermore
(Zr[agon)T-Z=7-1 is essentially unity except at distances of order
r o 378 sz, (3.323)

2mcZ

As r — 0, +r exhibits a mild singularity. This, however, is of academic interest
only, since the wave function at short distances must be modified because of the
finite charge distribution of the nucleus. Thus we see that for the ground states of
hydrogen-like atoms with low Z, the upper two-component wave function is
essentially identical to the Schrodinger wave function multiplied by a Pauli spinor.
As for the lower two-component wave function, we merely remark that, apart
from i(g-x)/r, the ratio of the lower to the upper components is given by (cf.

Eq. 3.307)
_ G _ u,v\/m_v? T \_2, 3.324
b, mc2+E:d— < 2 )(ch'z) 2c ( )

where v is the “velocity” of the electron in Bohr’s circular orbit theory. This result
is in agreement with our earlier discussion in Section 3-3 on the ratio of Yrg to
Ve

In 1947 W. E. Lamb and R. C. Retherford observed a splitting between the
2s3- and 2pj-states of the hydrogen atom not given by (3.311). As already dis-
cussed in Section 2-8, the main part of this “Lamb shift” can be satisfactorily
accounted for when we consider the interaction of the electron with the quantized
radiation field.

Another important effect not contained in (3.311) arises from the interaction
between the magnetic moment of the nucleus and the magnetic moment of the
electron. In the case of the hydrogen atom, for instance, when we compound the
electron spin with the proton spin, the net result is F = 1 (triplet) or F = 0 (sin-
glet), where F is the quantum number corresponding to the total spin. Since the
magnetic interaction is dependent on the relative orientation of the two magnetic
dipole moments, each level of the hydrogen atom characterized by n, j, I(= 1) is
split further into two sublevels corresponding to the two possible values of F
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even in the absence of any external magnetic field. This is known as a hyperfine
splitting. Let us estimate it for the s-states using nonrelativistic quantum mechanics.
Classically the magnetic field created by the proton magnetic moment M is}

B-V x (M“"*‘SS’ %V Il_> .63

r

Quantum-mechanically we replace M by the magnetic moment operator

M e+ 1),

T O (3.326)

where @, is the Pauli matrix for the proton spin and 2(1 + &) is the g-factor of the
proton. (We assume that the magnetic moment distribution of the proton is point-
like.) Within the framework of the Schrédinger-Pauli theory we obtain the in-
teraction Hamiltonian operator

H®™ = —u.V X <M X V—l-)
4rr

= @MV (L) — [ VMV)

=3V (L) — (@MY - pumv | ea)
where p = (eh/2m.c)a,. The quantity in the brackets transforms like a traceless
tensor of rank two; so when it is integrated with a function of x, f(x), it gives
a nonvanishing contribution only if the expansion of f(x) in spherical harmonics
contains Y7 For the spherically symmetric s states, only the first term of (3.327)
is relevant. Using the nonrelativistic wave function «,, we obtain the energy shift

AE, = —5u-M [ 890)| a0 Pd’x
_qa +K)e2h2M1 Ly
[ 6mempc2 2 <aBohrn) :I 7

2 me I’nec2 1’ F= 1’
2yl + ) (mp> il {_3, o (3.328)
as first shown by E. Fermi in 1930. Note that the order of magnitude of this split-
ting is the fine-structure splitting multiplied by (m./m,). For the lsi-state, the
above energy difference corresponds to a radio microwave of 1420 Mc or 21 cm;
the radiative transition between these two hyperfine levels is of fundamental
importance in radio astronomy. We may parenthetically mention that this energy
difference is one of the most accurately measured quantities in modern physics;
S. B. Crampton, D. Kleppner, and N. F. Ramsey have determined that the corre-
sponding radiofrequency is (1420.405751800 4 0.000000028) Mc.

There are other corrections to formula (3.311). First, we must take into account
the motion of the nucleus since the mass of the nucleus is not infinite; a major

iPanofsky and Phillips (1955), p. 120; Jackson (1962) p. 146.
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part of this correction can be taken care of if we use everywhere the reduced mass
mom,[/(m, + m,) in place of m,. Second, there are other contributions to the Lamb
shift not discussed in Chapter 2; especially important is the vacuum polarization
effect to be discussed later. Third, the finite size of the nucleus also modifies for-
mula (3.311) especially for the s states which are sensitive to small deviations from
Coulomb’s law at close distances; in the interesting case of the 2s state of the
hydrogen atom, however, we can estimate the energy shift due to this effect to be
only 0.1 Mc, using the observed proton charge radius ~ 0.7 x 107'* cm.

The utility of the Dirac theory in atomic physics is not limited to light hydrogen-
like atoms. For heavy atoms where (Z«)® is not very small compared with unity
(0.45 for uranium), the relativistic effects must be taken into account even for
understanding the qualitative features of the energy levels. Although we cannot,
in practice, study one-electron ions of heavy atoms, it is actually possible to check
the quantitative predictions of the Dirac theory by looking at the energy levels
of the innermost (K-shell and L-shell) electrons of high Z atoms which can be
inferred experimentally from X-ray spectra. Similar studies have been carried
out with muonic atoms (atoms in which one of the electrons is replaced by a nega-
tive muon).

Although we shall not discuss the emission and absorption of radiation using
the Dirac theory, the results of Section 2-4 are applicable mutatis mutandis.
All we need to do is make the following replacements:{

e e
727m7c(p A+ A-p) 2mc

,\ll,(Schradinger-Pauli) > ,ll,(Dirac)

\!,(Schrﬁdinger-Pauli)’r > 11[,(Dirac)’r (not J,(Dirac))' (3.329)

g:-B— —eca-A

3-9. HOLE THEORY AND CHARGE CONJUGATION

Holes and positrons. Although we have shown that the Dirac theory accommodates
negative-energy solutions whose existence should not be ignored altogether,
we have as yet not examined their physical significance. This section is devoted
to the physical interpretation of the negative-energy states within the framework
of a theory in which the electron field is not quantized.

As a simple example to illustrate some of the difficulties with the original Dirac
theory of 1928, let us consider an atomic electron. According to the quantum
theory of radiation developed in the previous chapter, an excited atomic state
can lose its energy by spontaneously emitting a photon even in the absence of
any external field. This is why all atomic states, with the exception of the ground
states, have finite lifetimes. In the Dirac theory, however, the so-called ground
state of an atom is not really the lowest state since there exists a continuum of
negative-energy states from —mc® to —oo for any potential that vanishes at

1We have to be a little more careful when we treat a process in which the quadratic A’
term in the nonrelativistic Hamiltonian is important. This point will be discussed in the
next section with reference to Thomson scattering.
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infinity. We know that an excited atomic state makes a radiative transition to the

ground state; similarly, we expect that the atomic electron in the ground state -

with energy mc® — | Eyr| can emit spontaneously a photon of energy = 2mc?
and fall into a negative-energy state. Furthermore, once it reaches a negative-
energy state, it will keep on lowering its energy indefinitely by emitting photons
since there is no lower bound to the negative-energy spectrum. Since we know
that the ground state of an atom is stable, we must somehow prevent such cata-
strophic transitions.

Faced with this difficulty, Dirac proposed, in 1930, that all the negative-energy
states are completely filled under normal conditions. The catastrophic transitions
mentioned above are then prevented because of the Pauli exclusion principle.
What we usually call the vacuum is actually an infinite sea of negative-energy
electrons. Occasionally one of the negative-energy electrons in the Dirac sea can
absorb a photon of energy hw > 2mc® and become an E > 0 state. As a result,
a “hole” is created in the Dirac sea. The observable energy of the Dirac sea is
now the energy of the vacuum minus the negative energy of the vacated state,
hence a positive quantity. In this way we expect that the absence of a negative-
energy electron appears as the presence of a positive-energy particle. Similarly,
when a hole is created in the Dirac sea, the total charge of the Dirac sea becomes

Q = Qvacuum —e= Qvanuum - (7’ 4 I) = Qvacuum + ’el, (3330)
hence the observable charge of the hole is

Qohs = Q - Qvucuum = le' (3331)
This means that a hole in the sea of negative-energy states looks like a positive-
energy particle of charge |e|. Thus once we accept (a) that the negative-energy
states are completely filled under normal conditions and (b) that a negative-energy
electron can absorb a photon of energy > 2mc? (just as a positive-energy electron
can) to become a positive-energy electron, we are unambiguously led to predict
the existence of a particle of charge | e| with a positive energy.

When Dirac proposed this “hole theory,” there was no good candidate for the
predicted positively charged particle. In the beginning Dirac even thought that
the hole in the negative-energy state should be identified with the proton. How-
ever, it was quickly pointed out by J. R. Oppenheimer that if this interpretation
were correct, the hydrogen atom would undergo a self-annihilation into two
photons with a lifetime ~1071° sec.} Moreover, H. Weyl, who looked at the
symmetry properties of the Dirac equation, proved that the mass of the particle
associated with the hole must be the same as the electron mass. Prior to 1932,
because of the experimental absence of the conjectured particle, Dirac’s hole
theory was not taken seriously. To recapture the prevailing atmosphere of the
time, we quote from W. Pauli’s Handbuch article.§

1This number assumes that the energy released is 2m.c2. If we take the energy released
to be m.c® 4+ myc?, the lifetime is even shorter.

§The translation from the original German text is the work of J. Alexander, G. F. Chew,
W, Selove, and C. N. Yang.
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Recently Dirac attempted the explanation, already discussed by Oppenheimer, of
identifying the holes with antielectrons, particles of charge + | e|and the electron mass.
Likewise, in addition to protons, there must be antiprotons. The experimental absence
of such particles is then traced back to a special initial state in which only one of the
two kinds of particles is present. We see that this already appears to be unsatisfactory
because the laws of nature in this theory with respect to electrons and antielectrons
are exactly symmetrical. Thus v-ray photons (at least two in order to satisfy the laws
of conservation of energy and momentum) must be able to transform, by themselves,
into an electron and an antielectron. We do not believe, therefore, that this explana-
tion can be seriously considered.

When the article appeared in print, however, C. D. Anderson had already fie-
monstrated the existence of a positron. Many years later Pauli made the following
famous remark on Dirac:

... with his fine instinct for physical realities he started his argument without knowing
the end of it.

We shall now examine a little more closely the absorption of a photon by one
of the negative-energy electrons in the Dirac sea. As stated earlier, if the photon
energy is sufficiently large, an electron in a negative-energy state may be “esca-
lated” to a positive-energy state

€r<o T Y — €& (3.332)
According to the hole-theoretic interpretation, this appears as
¥ > €550 + €ix0s (3.333)

since the vacated negative-energy state is observable as a positron state. Although
a photon cannot produce an e”e* pair in free space without violating energy and
momentum conservation, the process (3.333) can take place in the Coulomb ﬁelFi
of a nucleus. As is well known, the production of an electron-positron pair is
a very frequent phenomenon when high-energy y-rays go through matter. We may
also consider a closely related process,

€50 — > €xco T 2. (3.334)

Since all the negative-energy states are supposed to be filled under normal con-
ditions, (3.334) is forbidden except when there is a hole in the normally .ﬁlled
negative-energy states. This means that whenever (3.334) is allowed, we can inter-

pret it as
€50 1+ €ho0 —> 2. (3.335)

This process has also been observed frequently as positrons sloyv down ip .soli.ds.
We shall present a quantitative treatment of this electron-positron annihilation
process in Chapter 4. . .
At this stage we emphasize again that the electron must obey the Pauli exclusion
principle if the hole theory is to make sense. Otherwise we cannot attach much
meaning to the notion that the negative-energy states are completely filled. .I.f it
were not for the exclusion principle, we could keep on, for millions of years, piling
up electrons in the same negative-energy state. Even though the energy spectrum
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Table 3-4
DYNAMICAL QUANTITIES IN THE HOLE THEORY

Charge | Energy | Momentum Spin Helicity | “Velocity”

E<O0 _ 10X .
Electron state —lel | E| P 2 =P v
Positron state +]el +| E| —p -—h<*§> 3P v

of free Klein-Gordon particles is identical to that of free Dirac particles, it is not
possible to construct a sensible hole theory out of Klein-Gordon particles which
obey Bose-Einstein statistics.

Let us study the connection between the various dynamical quantities of the
positron and those of the negative-energy electron whose absence appears as the
presence of the positron in question. We have already seen that both the charge
and the energy of the physical positron must be positive. What is the momentum
of the positron? Just as in the case of energy, the absence of momentum p in the
Dirac sea appears as the presence of momentum —p. Hence the momentum of the
physical (£ > 0) positron state is opposite to that of the corresponding negative-
energy electron state. Similarly the absence of a spin-up E < 0 electron is to be
interpreted as the presence of a spin-down E > 0 positron. Thus we can construct
Table 3-4 for a free particle. (We have listed (2> rather than the eigenvalue of
2, since, in general, the plane-wave solutions are not eigenstates of =,).

The entry “velocity” in Table 3-4 requires some explanation. Suppose we con-
sider a wave packet made up of negative-energy solutions whose momenta center
around a certain mean value. We can then associate a certain group-velocity
with the wave packet. The absence of this £ << 0 wave packet must appear as
a wave packet made up of E > 0 positron states moving in the same direction,
that is, the velocity of the positron wave packet must be the same as that of the
corresponding E < 0 electron wave packet. It is not hard to see that this is pos-
sible only if the “velocity” of the negative-energy electron is opposite in direction
to its momentum. This appears somewhat strange but is completely consistent
with (3.221), which says that the expectation value of the velocity operator ca
is the negative of the expectation value of pc?/| E|. The reader who is still not
convinced may amuse himself by working out steps analogous to (3.163) through
(3.170) for a negative-energy plane wave. If we apply St to the wave function
P& for an E < 0 electron at rest in the primed system, we obtain the wave
function +»** which corresponds to the negative-energy electron whose momen-
tum (defined as the eigenvalue of —inV) in the unprimed system is opposite to
the direction of motion of the primed system.

Thomson scattering in the Dirac theory. As a simple calculation that dramatically
illustrates the importance of the negative-energy states in an unexpected domain,
we shall now compute the cross section for Thomson scattering, that is, the scat-
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tering of a low-energy photon (ko < mc?) by a free electron. As in Section 2-5
(cf. Eqs. 2.158 and 2.168) we expect that the differential cross section is given by
ri|€®-€“’ [, which is also the same as the classical result. In the Dirac theory
there is no analog of the seagull graph Fig. 2-2 (c); we must compute the analogs
of Fig. 2-2 (a) and (b) for the free electron. We characterize the initial, final, and
intermediate states of the electron by (p, r), (p/, '), and (p”, r'’) respectively. We
then obtain for the transition matrix element,

e2 Czh E (<p/ r/ | a,E(a’) e—ik'-x I p”r”><p”r” |a_e(a)eik.x | pr>

T WSew B

EII o E_ h(l)
' o €9 etk X gty "ot Lel@) p-iknx
L <P e 'é’f/'fép!hlf‘ € e |pr>>, (3.336)

where we have used the rule stated in (3.329). Since all the negative-energy states
are supposed to be filled, the summation is over positive-energy states only
(r'" =1, 2). The electron is initially at rest. So, as p—0, k—0, a typical matrix
element in (3.336) becomes

P a-€9\0ry = (1/V)/mcE” fe‘“’""‘”‘ U™t P" ) (a-€*)u"(0)d? x
= po (P ) (- €)u(0) = 0, (3.337)

since the matrix element of «, taken between two at-rest £ > 0 spinors vanishes.
Because the final electron is also at rest for the scattering of a very soft photon,
we easily see that (3.336) is identically zero. This means that the Thomson scat-
tering cross section should vanish, in contradiction to both observation and non-
relativistic quantum mechanics.

What went wrong? In the hole theory we must take into account an additional
process which has no analog in nonrelativistic quantum mechanics. Consider
a negative-energy electron in the Dirac sea. It can absorb the incident photon
(say, at t = t,) and become a positive-energy electron. Even though this virtual
transition does not conserve energy (unless ho > 2mc?), there is a finite matrix
element for it. At a subsequent time (¢ = #,) the initial electron can fill up the
vacated negative-energy state by emitting the outgoing photon. Meanwhile the
escalated electron goes on as the positive-energy final-state electron. All this
may be visualized physically as follows. The incident photon creates an electron-
positron pair at ¢ = t,; subsequently at t = ¢, the positron is annihilated by the
initial electron, emitting the outgoing photon, as shown in Fig. 3-6(a). Similarly
it is possible for the outgoing photon to be emitted first.as one of the E < 0 elec-
trons in the Dirac sea is escalated; subsequently the initial electron fills up the
vacated negative-energy state by absorbing the incident photon. This is illustrated
in Fig. 3-6(b), which physically represents the creation of an electron-positron
pair plus the outgoing photon followed by the annihilation of the positron with
the initial electron and the incident photon.

We shall now calculate the matrix elements for the two diagrams. According to
the hole theory, for electrons, the initial state is made up of the incident electron
and the Dirac sea. In Fig. 3-6(a), one of the negative-energy electrons denoted
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Fig. 3-6. Thomson scattering in the Dirac theory.

by (p”,r") makes a transition to a positive-energy state (p’,r) by absorbing the
photon (k, a). The relevant matrix element is —eca/R2V o (p'r' | a-€@etk:x|p" ¢/’
Since the absorption takes place first, the energy denominator according to the
rules of Chapter 2 is E; — E, — ho, where E; = E,,, — (—|E"|) + E + E'
and E, = E,,. + E. For the transition at ¢, we have the matrix element
—ecn/h[2V o{p"r" |a-€e x| pry. Working out Fig. 3-6(b) in a similar way,
we obtain for the transition matrix element for both diagrams combined:

SOy (@ e o i e ety
2V N oo’ p rSa4 E'"+E"| — ho

B e e g e e kg ).
+ E ¥ E+ ha (3.338)

As before, we set E=FE' =mc’, p=p =0 as k — 0. Furthermore, because
of the space integration that appears in the evaluation of each matrix element,
P’ = 0; hence | E”| = mc?. It is now simple to evaluate each of the four matrix
elements. For example,

0 G-€@\ [y
0 /1 o (a) 0 — 0 (s)t
Or'|a-e€“0ry =0,y )(a_e(n) 0 )(0>
= ¥ a €@y, (3.339)
As ho, ho' < mc?, the two terms in (3.338) combine. Taking into account the two
spin states of the negative-energy electron at rest, we obtain

T [0r"|a-e|0r 0 r|a-e=]0r") + <0 r [a-€=[0r>0r|oa-e=|0r"]
T7=3,4

= ”_Zl \ [(X(S")+o-.E(R’)X(s))(x(s’)i'o-,E(ﬂ)x(s")) + (X(S")+o-,E(tx)X(x))(X(S’)f'a-,E(a)x(s"))]

= x""(o-€“)(g-€*) + (€)@ )]
= 2e@. e, (3.340)
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where we have used (3.339) and the closure property of the Pauli spinors

» x‘“"’x“"”=<(l))(1 0)+((1))(0 1)

§7=12
1 0
=<0 1)- (3.341)
Thus (3.338) is
etc’h 1 5 )
T W aa mct s COS O, (3.342)

where © is the angle between € and €. Apart from the minus sign in front
this is exactly the time-independent part of (2.158), which has been shown to be
responsible for Thomson scattering.t It is amusing to note that the seagull graph
(Fig. 2-2c) which is the sole contributor to Thomson scattering in the nonrelati-
vistic theory is replaced in the relativistic theory by the two diagrams of Fig. 3-6
in which the photons are emitted and absorbed one at a time.

The moral we can draw from this calculation is twofold. First, it illustrates
(perhaps more vividly than any other example can) that it is absolutely necessary
to take into account transitions involving negative-energy states if we are to obtain
the correct nonrelativistic results. It is truly remarkable that only by invoking the
concept of a negative-energy state (or a positron state), which is completely foreign
to nonrelativistic quantum mechanics, can we arrive at the correct Thomson
amplitude. Second, comparing (3.336) with (3.338) and noting that because of
energy conservation, the energy denominators in (3.338) can be written as

E'+|E"| — ho = —(E" — E + ho),
E' +|E"| + ho' = —(E" — E — ho),

we observe that the negative of (3.338) is formally identical with (3.336) as we
replace r” = 3,4 with r”” = 1, 2 despite the reversal in the time orderings of the
matrix elements.§ This kind of observation provides a natural justification of
R.P. Feynman’s point of view according to which a negative-energy electron go-
ing “ backward in time > is to be regarded as a positron going “forward in time.”
We shall say more about this in the next chapter.

We might add that we can evaluate expressions (3.336) and (3.338) without
making the approximation he < mc?, E’' = mc®. We then obtain the famous

(3.343)

1If (3.336) is finite (as in the case of the scattering of a high-energy photon), the relative
sign of (3.336) and (3.338) is important. Actually the correct amplitude turns out to be
the difference of (3.336) and (3.338). This is because for Fig. 3-6 we must take into account
the minus sign arising from the fact that the initial E > 0 electron is “exchanged” with
one of the E < 0 electrons in the Dirac sea. The reader need not worry about such subtle
sign changes; we shall show in the next chapter that the covariant prescription based
on the quantized Dirac theory automatically gives the correct signs for these matrix
elements. (See Problem 4-12.)

§In writing (3.336) and (3.338) we have used the usual convention in which the matrix
element standing to the right represents the perturbation acting earlier.
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Fig. 3-7. Pictorial representation of vacuum polarization.

formula for Compton scattering

(%) = 1A (2) (2 + L —2+4c05 ©) (3.344)

derived by O. Klein and Y. Nishina in 1929.1

Virtual electron-positron pairs. As another example illustrating the importaflce
of electron-positron pairs we mention a phenomenon known as vacuum polariza-
tion. According to the hole theory, the completely filled sea of negative-energy
electrons has no observable effects; in particular, what we normally call tl}e vacuum
is homogeneous and has no preferred direction. Let us, however, consider a nu-
cleus of charge Q = Z|e| placed in the Dirac sea..Thffre is now a depar.ture from
complete homogeneity because the charge distribution of the negative-energy
electrons is different from that of the free-field case. In terms of the 'electron-
positron language this is due to the fact that a virtual electron-positron pair created
in the Coulomb field behaves in such a way that the electron tends to l')e‘att{acte‘d
to the nucleus while the positron tends to escape from the nuclgus. This is Plctorl-
ally represented in Fig. 3-7. Note that the “inducgfi” negative charges in the
vicinity of the nucleus are compensated for by positive chgrge§ that escape to
infinity.” As a result, the net charge observed at large but finite distances is smaller
than the bare charge of the nucleus. In fact what is usually called .the observed
charge of the nucleus is the original bare charge of the nucleus part{all)f caqcelefi
by the charges of the virtual electrons surrounding the r.lucleus. jl'hls snuatxon. is
rather analogous to that of a charge placed in a dielec.tn'c material; the eﬂt?ctlve
charge in a polarized medium is the original charge divided by € where € is the
dielectric constant. In other words, because of virtual electron-positron pairs the
vacuum behaves like a polarizable medium.

tFormula (3.344) can be obtained more readily using covariant perturbation theory
(cf. Section 4-4).
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On the other hand, at very close distances to the nucleus the “bare charge”
itself may be explored; the electron in a hydrogen-like atom should feel at very
short distances a stronger attraction than the attraction determined by the Cou-
lomb potential due to the usual observed charge. Since the s state electrons have
a greater probability of penetrating the nucleus, we expect that the energy levels
of the s states should be displaced to lower levels. Although the argument pre-
sented here is rather qualitative, the 254 — 2p} splitting of the hydrogen atom due
to this vacuum polarization effect turns out to be calculable. In 1935, E. A. Uehling
predicted that the 2si-state should lie lower by 27 Mc than the 2p}-state.t The
experimentally observed Lamb shift, as we have seen in Section 2-8, has the oppo-
site sign and is about 40 times larger in magnitude. Although the major part of
the Lamb shift is not due to this Uehling effect, for a precise comparison of the
experimental value with the theoretical value of the Lamb shift (measured to an
accuracy of 0.2 Mc) it has been proved essential to take vacuum polarization
seriously. The effect of vacuum polarization is also observable in = mesic and
muonic atoms.

The notion that the negative-energy states are completely filled becomes rather
treacherous when applied to a particle subject to an external potential. The results
of Section 3-7 show that even the (positive-energy) wave function of the hydrogen
atom when expanded in plane waves contains small negative-energy components.
At first we may be tempted to simply drop the negative-energy components by
saying that these states are completely filled. But this cannot be right because,
if we do so, we do not even obtain the correct energy levels; in fact, we may recall
that the Darwin term (needed for the 254-2pL degeneracy) can be qualitatively
explained by invoking Zitterbewegung, which arises from interference of the posi-
tive- and negative-energy plane-wave components of the bound-state wave func-
tion.

A crude physical argument for the Zitterbewegung of an atomic electron within
the framework of the hole theory goes as follows. We note that in the Coulomb
field of the nucleus a negative-energy electron can make a virtual transition to
a positive-energy state (which is equivalent to saying that the Coulomb field can
Create a virtual electron-positron pair). Now the fact that the wave function in
the hydrogen atom contains negative-energy components implies that the atomic
electron in the orbit can fill up the hole in the negative-energy state (which means
that the atomic electron can annihilate with the positron of the virtual pair).
The escalated electron which is left over can now go around the nucleus as the
atomic electron. In short, the atomic electron and one of the E < 0 electrons in
the Dirac sea are visualized as undergoing “exchange scattering.” What is the order
of magnitude of the distance over which this effect takes place? From the uncer-
tainty principle we expect that the energy violation by an amount 2mc? involved
in the escalation of the negative energy electron is allowed only for a time interval
At ~ h/2mc?. (Note incidentally that this is of the order of the reciprocal of the

1Using covariant perturbation theory, we shall briefly outline the calculation of the
Uehling effect in Chapter 5.
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Zitterbewegung frequency.) At the time the original atomic electron fills up the

vacated negative-energy state, the escalated electron is at most c(Af) ~ k/2mc .

away from the original electron. This distance is precisely the order of magnitude
of the fluctuation of the electron coordinate due to the Zitterbewegung.

Charge-conjugate wave function. It is not entirely obvious from the form of the
Dirac equation that the space-time development of an electron state in a given
potential 4, is identical to that of the corresponding positron state in the potential
—A,. For this reason let us cast the Dirac theory into a form which makes the
symmetry between the electron and the positron self-evident. This can be best
done using a method originally exploited by H. A. Kramers, E. Majorana, and
W. Pauli.
We first ask whether the theory based on the Dirac equation with the sign of
eA, reversed,
d te ¢, Mmec o
(37# 5 A) v + TEp =0, (3.345)
is equivalent to the one based on the original Dirac equation (3.60). We assume
as usual that there is a definite prescription that relates +*° (called the charge-
conjugate wave function) and «/» which are respectively solutions to (3.345) and
(3.60). Motivated by our experience with the Klein-Gordon theory (cf. Problem
1-3), we try}
Y = Sea*, (3.346)

where S; is a 4 X 4 matrix. We must now show that

ie mc _
[(axk T ke hc )'y" + (3x4 t e A )74] Sep* + "h—So *=0 (3.347)

is as good as the original Dirac equation (3.60). Taking the complex conjugate
of (3.347) we have

d ie 0 ie mc _
[(6_xk — 2 )t + (—a—n + h—cA,,)ry;":l St +TESEp = 0. (3.348)

Multiplying (3.348) by (SZ)~! from the left and comparing the result with the
original Dirac equation, we see that the equivalence of (3.346) and (3.60) can be
established if there exists S, such that

(S5 't SE = i,
(SH 'y¥SE = —v,.

In the standard (Dirac-Pauli) representation, vy, and «y, are purely real while ,
and «y, are purely imaginary. It is easy to see that in this representation,

So =, = S& = (S¥)! (3.350)

(3.349)

INote that +* is to be represented by a single column matrix, since ¢»* (complex con-
jugate) rather than +* (Hermitian conjugate) enters.
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will do:}
(=) Vi
Y2 Yo (Y2 =— §V2p?
(—s) Y3 (3.351)
Y2V1Ye = —V4-

Since we have demonstrated the existence of an S, that satisfies (3.349), we have
proved the equivalence of (3.345) and (3.60).

It is very important to note that S, = ry, is true only in the standard (Dirac-
Pauli) representation. In fact the particular forms of S, depend on the particular
representations we happen to use. For instance, in the Majorana representation
in which v, is purely imaginary and v, is purely real, * is simply +* itself, as
can readily be seen by complex-conjugating (3.60).§ This situation should be
contrasted with the parity case where S, = «, (up to a phase factor) holds in any
representation.

What does (3.346) mean for some of the familiar wave functions we have obtained
in the previous sections? Take, for instance, the first of the £ > 0 plane-wave
solutions (3.114). We have

mc? 0 ip-x @)T
NEP T [" (p) exp ( 7

h
0 0 0 —1 1 *
0 0 1 0 0 i
E+mc? exp(—lp x+12)
TNT2ZEV | 01 0 0 Ppsc/(E + me?) h "k
—1 0 O 0/ \(py + ipo)c/(E + mc?)
—(p1 — ip)c/(| E] 4 mc?)
_ JE+ mc? psc/(lE| + me?) __ip-x |, i|E|t
=N 2EV 0 exP( R TR )
—1
_ @ ip-x | i|E|t\.
IEI S U (— p)exp( Bx i ) (3.352)

Note that the eigenvalues of —iaV and ik(9/dt) are —p and —| E| respectively.
Similarly

mc? ¥s [’””(p)exp ip-x ll;t)]*: mc? u(”( p)eXp( zph-x i|£3|z>.

EV [E|V
(3.353)

IMore generally we have S = 7v,, where 7 is an undetermined phase factor; however,
this phase factor can be set to 1 by convention.

§In a more advanced treatment of the subject the relations (3.346) and (3.349) are often
written as ¢ = C+%, C~'v,C = —o7, where T stands for “transpose.” In the standard
representation C = 7,7, up to a phase factor since V% = v,y (Yv,)" = v, 7, ¥ Y* = yfr*.
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Thus the charge-conjugate wave function ° obtained from the positive-energy
plane-wave solution 2 by means of (3.346) is the wave function for a negative-
energy plane wave whose magnitude of the energy is the same and whose momen-
tum is opposite. Moreover, the spin direction (or if p is not along the z-axis, the
expectation value of 2) is also reversed since the index 4(3) goes with the index
1(2). If we now invoke the hole theory, we see that the charge-conjugate wave
function describes the dynamical behavior of the negative-energy state whose
absence appears as the E > 0 positron of the same p and same {Z) (cf. Table 3-4).
Likewise, when +r represents a negative-energy electron state whose absence
appears as the positron state of p and {2, then +° represents the positive-energy
electron state of p and {Z).

As another example, let us compare the probability distribution «*+)r with the
corresponding °*)° where for the sake of definiteness, » may be taken to be
the wave function for the ground state of the hydrogen atom. In general, we have

“I’CW’C - ('Yz‘l’*)+('Y2‘l’*) — ‘P*MI’* — ‘I’W’ (3.354),

For the electron in the hydrogen atom, the A,(= —iAd,) that appears in (3.60)
is | e|/4mr; U, according to (3.345), is a solution to the Coulomb energy problem
in the negative electrostatic potential —|e|/4zr. Evidently the energy eigenvalue
of 4 is the negative of that of 4» because of the complex conjugation that appears
in (3.346). Thus the relation (3.354) implies that the negative-energy electron going
around the negative electrostatic potential has the same probability distribution
as the corresponding positive-energy electron going around the positive electro-
static potential. This means that in an electrostatic potential that appears repulsive
to the positive-energy electron (for example, in the Coulomb field of the antipro-
ton), the negative-energy electron behaves dynamically as though it were in an
attractive force field. Invoking now the hole-theoretic interpretation, we see that
an antiatom in which a positron is bound to the center by 4, = —|el|/dmr looks
like the usual atom in which an electron is bound to the center by 4, = |e|/4xr.

\ We define the charge-conjugation operation such that its application on the
electron (positron) state of momentum p and the spin-expectation value h(Z)/2
results in the positron (electron) state of momentum p and the spin-expectation
value r(Z>/2. The equivalence of (3.345) and (3.60) implies that if (X, 7) charac-
terizes the space-time behavior of an E > 0 electron state in a potential 4,, then
its charge-conjugate wave function °(x, f) characterizes the space-time behavior
of the negative-energy electron state whose absence appears as the charge-conjugate
(positron) state in the potential —A4,.

When we start computing the expectation values of the various dynamical
variables using +/°, we obtain results which may appear somewhat confusing at
first sight. For example, if we naively evaluate the expectation value of p with
respect to r and ¢, we obtain the result: {p)> is opposite to {p>, as can be seen
directly from (3.352) and (3.353) for the free-particle case, and similarly for (3.
But we know that the momentum and the spin direction are unchanged under
charge conjugation which transforms the electron state of momentum p and
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(3> into the positron state of momentum p and <Z) (not —p and —(2)). This
peculiarity is due to the fact that in the unquantized Dirac theory the so-called
charge-conjugate wave function +»* is not the wave function of the charge-con-
jugate state but rather that of the state (subject to the potential whose sign is
opposite to the original one) whose absence appears as the charge-conjugate
state.

What is even more striking, the space integral of the charge density

0 = e Jrpdix=e [rpdix, (3.355)

which is the total charge, cannot possibly change its sign when we replace 4r by
its charge-conjugate wave function 4, in sharp contrast to the Klein-Gordon
case where the substitution ¢ === ¢* results in the reversal of the charge-current
density (cf. Egs. 1.55 and 3.127).1 Actually this is expected because when +r is
a positive-energy wave function, 1” is the wave function for an E < 0 negatively
charged particle even though it “behaves dynamically” like a positively charged
particle in an external electromagnetic field. For a more satisfactory formulation
of charge conjugation, it is essential to quantize the electron field according to
Fermi-Dirac statistics.

3-10. QUANTIZATION OF THE DIRAC FIELD

Difficulties of the unquantized Dirac theory. One of the great triumphs of rela-
tivistic quantum theory is that it has succeeded in providing a theoretical frame-
work within which we can discuss quantitatively a variety of physical phenomena
involving the creation and annihilation of various particles. We learned in the
last chapter that the “natural language” used to describe the creation and an-
nihilation of photons is that of quantum field theory. In the previous section
we did discuss phenomena such as pair creation and pair annihilation. The lan-
guage used there, however, is very different from that of quantum field theory;
instead of saying that the number of electrons is not conserved in pair production,
we have argued that the number of electrons actually is conserved and that all that
happens is just the escalation of a negative-energy electron. In other words, we
have tried to describe phenomena such as pair production without abandoning
the single-particle interpretation of the Dirac wave function according to which
the space integral of ' is a constant of the motion even in the presence of the
electromagnetic interaction. In doing so, however, we were forced to depart very
radically from the single-particle theory itself; in fact, we had to introduce a sea
of an infinite number of negative-energy particles.

There are essentially two reasons why the hole-theoretic description works.
First, as we have already mentioned, crucial to the success of the hole theory is
the assumption that the electron obeys the Pauli exclusion principle. Second,

IIn'f‘act ajrtafr cannot have its sign changed under any transformation that preserves its
positive-definite form.
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although electrons and positrons can be created or annihilated, the basic interac-
tion in electrodynamics is such that the difference between the number of (positive-
energy) electrons and the number of (positive-energy) positrons,

N = N(e™) — N(e"), (3.356)
is conserved. In the hole-theoretic description what we do is just set
N(ez>0) = N(e7),
N(ez.,) = —N(e*) + constant background,
so that the newly defined electron number, given by the sum
N' = N(ez>0) + N(ez ), (3.358)

is necessarily conserved whenever (3.356) is conserved.
In the “real world” there are nonelectromagnetic phenomena which do not
conserve (3.356). Take, for instance, a beta (plus) decay

p—n+et -+ (3.359)

Although the free proton cannot undergo this disintegration process because
of energy conservation, a proton bound in a nucleus can emit a positron and
neutrino and turns itself into a neutron. In the hole-theoretic interpretation we
may try to attribute the presence of the e* in the final state to the absence of a
negative-energy electron in the Dirac sea. But where is the electron which used
to occupy the now vacated negative-energy state? It is apparent that the proba-
bility of finding the electron is no longer conserved.{

(3.357)

Second quantization. Our beta-decay example reveals that it is actually much
more sensible to construct a formalism in which we allow electrons and positrons
to be destroyed or created more freely. Guided by the success of the quantum
theory of radiation, we are tempted to follow, as much as possible, the quantiza-
tion procedure we used in the photon case. We shall first construct a “classical”
theory of the Dirac field using the standard Lagrangian formalism of Chapter 1
and then quantize the dynamical excitations of the Dirac field by replacing the
Fourier coefficients by creation and annihilation operators. At this stage it is not
completely clear whether this method is a legitimate one. As we emphasized in
Section 2-3, the classical field theory is a limit of the quantum field theory where
the occupation number goes to infinity, but we know that the occupation number
of a particular electron state is at most one. However, let us go ahead with the
Lagrangian formulation of the classical Dirac field.§

1We might argue that in this 8* process a negative-energy electron gives up its charge
to the proton and gets escalated to a (positive-energy) neutrino state. But note that the
electron and the neutrino are different particles which must be described by different
wave equations.

§The reader who is unhappy with our procedure may study an alternative, more axio-
matic, approach based on J. Schwinger’s action principle, discussed, for instance, in
Chapter 1 of Jauch and Rohrlich (1955). In Schwinger’s formalism the field variables
are treated as operators from the very beginning.
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The basic free-field Lagrangian density from which the field equation may be
derived is taken to be

£ = __Ch‘p')'n(a/axn)‘l’ - mc2'¢”‘1’
= —Ch{a(V,)as(@/0x,)Vrs — MC? SapPara, (3.360)

which is a Lorentz invariant scalar density. In the Lagrangian formulation each
of the four components of 4» and + is to be regarded as an independent field
variable. Varying r, [which actually stands for (yr*),(v.),.] we obtain four Euler-
Lagrange equations of the form .% /2y, = 0 which can be summarized as the
single Dirac equation (3.31). To obtain the field equation for +, we first make
the replacement

—ch J‘a(')’u)aﬁ 'a_i.— "I’B —>ch (aaTu lI_j')a ('Yu)aﬁ "!’/3’ (3361)

which is justified since the difference is just a four-divergence. Varying g we
then get the adjoint equation (3.46). The “canonical momentum” = conjugate

to 4Jr isf
— AP )es = IR} (3.362)

g =

3(3‘!’3/30
The Hamiltonian density is then obtainable by the standard prescription (1.4):

H = chaaigﬁ — %

0

— o iy %1: - up%a"’ + ‘I"Y’“ax ) + metfp

= YH(—ihca-V + Bmc?)yr. (3.363)
Thus the total Hamiltonian of the free Dirac field is
H= [ ' (—ihca-V + Bmc)p dx. (3.364)

Since the plane-wave solutions (3.114) and (3.115) taken at ¢ = O form a com-
plete orthonormal set, an arbitrary four-component field at £ = 0 can be expanded
in free-particle plane waves. The Dirac field +» becomes a quantized field if we
replace the Fourier coefficients in the plane-wave expansion by operators of the
type considered at the end of Section 2-2. We have

mc () (r) k] z/h 365
X, t 2 b(Hu( )e P (3.365)
where 4/ is now an operator assumed to act on state vectors in occupation number
space. We interpret b and b{’t as respectively the annihilation and the creation
operators for state (p, 7). A single electron state characterized by (p, r) is represented
by b{’t (0)|0>. As we have already seen in Chapter 2, the Pauli exclusion prin-

tAs we have written the Lagrangian density, the canonical momentum conjugate to
T vanishes.
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ciple is guaranteed if we use the Jordan-Wigner anticommutation relations (cf.

Eq. 2.49)
(b6, b5} = 8,7 8pps

{5, b5} = 0, (3.366)
(b, b1 = 0,
from which it follows that the eigenvalue of the number operator defined by
N = bt bSD (3.367)
is zero or one.

We assume that the Hamiltonian operator of the quantized Dirac field has the
same form as the classical expression (3.363). We then have}

z": ( m_62bl<)r>+u(r>+(p)e—ip~x/h)(—ihca-V + Bmc?)
> 222 \WTE

me? pony, o .
X ( ﬁllb,(,’,)u" (p) e® "/”) d*x

mc*E'’

— i (Nt |Br) 1,1t T ('
% ?; 2 8pp«/wbp b uH(p)u(p’)

=3 BB =3 % 16, (3.368)

because of the orthogonality and normalization relations (3.106) and (3.110),
and the energy momentum relation

1,2
E = 4A[p P+ mict  for r = { T (3.369)

Recall that by our definition, the creation and annihilation operators b§”* and
by’ are time-dependent operators. Their time dependence can be inferred from the
Heisenberg equation of motion,

. i i ls 2,
by = —;l—[H, b= :FTbE,”IE[ for r= {3’ 4,
(3.370)
bt = —i—[H b = iLb<’>|E| for r= L2,
TR T TR 3,4,
where we have taken advantage of the very useful relation
{AB, C] = A{B, C} — {4, C}B. (3.371)
Thus we have
1,2,
bl(rr)(t) = b,(,”(O) eTiEIL/R for r= {3 4 (3.372)

IPreviously we used the symbol H for the Hamiltonian operator (—ikcat-V + Bmc?)
acting on the Dirac wave function. In this section, H stands for the total Hamiltonian
operator of the free Dirac field acting on state vectors in occupation-number space.
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" and a similar relation for b{*(t). The expansion (3.365) now becomes

T T ip- ] E t
+ 2 5°0)u(p) exp ["’T" + "T'D (3.373)

The quantized free field is now seen to satisfy the same field equation (viz. the
Dirac equation) as the one derived from the classical variational principle. Note
that this is not a priori self-evident; recall, in particular, that b and ' can no
longer be written as linear combinations of P and Q satisfying [Q, P] = ih. What is
even more striking, the form of the field equation obtainable from the Heisenberg
equation of motion is the same whether the creation and annihilation operators
satisfy anticommutation relations or commutation relations, as the reader may
readily verify.} Mathematically this remarkable feature is a consequence of the
fact that the commutator [4B, C] that appears in (3.371) can also be written as

[4B, C] = A[B, C] + [4, C]B. (3.374)

From the fact that we can get the same field equation whether the electron satisfies
Fermi-Dirac statistics or Bose-Einstein statistics, we may be tempted to infer that
quantum field theory does not “know” which statistics the electron is supposed
to satisfy. This inference, however, is not correct, as we shall see shortly.

At this point it turns out to be more convenient to redefine the » and ' so that
they now become time-independent operators. We do this because we would like
to exhibit the time dependence of the field operator 4r more explicitly. We set

bl()r)(new) — bl()r)(old)(o)’
1,2, (3.375)
3, 4.

The form of the anticommutation relations is unchanged under this replacement.

In the previous sections the symbol +» stood for a single-particle wave function
while in the present section the same symbol r is used to denote the quantized
Dirac field which is an operator that can act on state vectors in occupation-number
space. To distinguish between the two possibilities the wave function fr is often
called a c-number field; the field operator v, a g-number field. We naturally ask:
what is the connection between the c-number 2 and the g-number +»? For a single-
particle plane-wave state the desired connection is easily established:

bl()T)(old)(t) — bl(’T)(new) eiiIEIt/h fOI‘ F = {

,lp‘(c—number) — <O I,‘#‘(q»number) |bl()r)+¢0>’ (3'376)
Where yp(@nunben jg given by (3.373) with by replacing b3°(0). To see this, just note
0155765 |0> = &,,.8pp- (3.377)

s:tNt(‘)te' that (3.368) would still be valid even if the electron satisfied Bose-Einstein
atistics.
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Therefore, for r = 1, 2, we have

COfpeommen |6y = [ME urpyexp (1IBX — 21), (3.378)
which is indeed the wave function for a positive-energy plane wave characterized
by (p, r). The transition from Ascmmmben) to qfp@numben jg sometimes called second
quantization.} Although in the above example we considered just a single-particle
state, it is important to keep in mind that, in general, @™ can actually
operate on the state vector for an assembly of electrons (and positrons). The Dirac
equation in the quantized theory should be regarded as a differential equation
that determines the dynamical behavior of the entire aggregate of electrons (and
positrons).

Let us now go back to the expression for the Hamiltonian operator (3.368),
which is.unchanged under the replacement (3.375). This expression for the total
Hamiltonian makes good sense since we showed in Chapter 2 that bt b (whose
eigenvalue is zero or one) is to be interpreted as the number operator. The energy
of a one-electron state characterized by (p, r) is just | E| or —| E| depending on
whether r = 1, 2 or r = 3, 4. The total energy of an ensemble of E > 0 electrons
is just the sum of the energies of the individual electrons.

We can also compute the total charge operator. Following steps analogous to
(1.51) through (1.54), we can readily show that iywy,r satisfies the continuity
equation. Assuming that the charge density operator is given by eltyr even in
the g-number theory, we get for the total charge operator,

Q= e[ tpdx
=2 B 2 3 (ne' /N TEETD 8y b1 B u () (o)
—e3 sz;l BB, (3.379)
This is again expected.§ As for the total momentum of the Dirac field we may
start with (cf. Problem 1-1)
Po=—i [T dx, (3.380)

where _
0L a0V, 0% (3.381)

3.-41‘: = —a(aT‘/am axk axk 3(31[_fa/ax4)

We then obtain
P=—ih f PV dix =3 T pbOtby. (3.382)
P T

1By first quantization one simply means p(classical — __jpY  etc. for the dynamical
variables of a single particle.

§Recall that the negative-energy electron has electric charge e = — |e| even though it
“behaves dynamically” like a positively charged particle.
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" Positron operators and positron spinors. Although (3.368), (3.379), and (3.382)

are satisfactory from the hole-theoretic point of view, the persistent appearance
of negative energies seems somewhat distasteful. It is much better to have a for-
malism in which the free-particle energy is always positive while the total charge
is positive or negative (depending on whether there are more positrons or electrons).
With this aim in mind let us define 5, dyp), u®(p), and v(p) with s = 1, 2 such
that
by = b, (r=35) forr=1,2,
ot — b {s =1 forr=4, (3.383)
s=2 forr=3;
and

@) =u"@), (r=s) forr=1,2,

s=1 forr=4, (3.389)
s=2 forr=23.

v9(p) = Fu(—p) {

The basic motivation for all this stems from the fact that the annihilation of a
negative-energy electron of momentum —P and spin-down appears as the creation
of a positron with momentum +p and spin-up. We later see that d* (d) can indeed
be interpreted as the creation (annihilation) operator of a positron. We have
reshuffled the order of the r- and s-indices and inserted minus signs in such a way
that

S *(@) = yau*(p) = v9(p),
Sev(B) = @) = u ),

with the same s (= 1, 2) (cf. 3.352). Note that the d and d* satisfy the same anticom-
mutation relations as the b and the b*:

{dl(73)9 dl()s’)ir} = 888" Spp',

(3.385)

{dp, d$} = (o, dgt} = 0. (3.386)
We also have
(b, 5} = (b9, di"} = b, dg)
= {bp", df} = 0. (3.387)

For later purposes it turns out to be useful to collect formulas for u and v. First,
(3.105) now becomes

(iv-p + mcu®(p) = 0,
(—iy-p 4+ mcpw®(p) = 0,

Wh.ere P = (p, iE/c) with E positive, even in the equation for »“)(p). The orthogo-
nality and normalization relations (3.106) and (3.110) become

UODUD) = 8u(Elme®), o @Y(p) = 8. (Elme),
P (—P)u(p) = u(—p)o(p) = O,

(3.388)

(3.389)
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where E is again understood to be positive. In terms of #*)(p) and #*)(p) we obtain
from the Hermitian conjugate of (3.388),

#®x(p)(iy+p + mec) =0,
o) (—iy-p + mc) =0,

where we have used (diy-p + mc)ty, = o (Fiy-p + mc). It is also straight-
forward to prove with the aid of (3.389)

a(Pyu(p) = 8,  T(PVI(P) = — O,
#p)(p) = 5@UOP) = O,

for example, by multiplying the first expression of (3.388) from the left by a“"(p)ry,,
multiplying the first expression of (3.390) (with s replaced by s') from the right by
v.4°(p), and adding the two. The expansions for 4» and 4 now take the form

+ d§ o (p) exp [_’,‘: o+ ’—ﬂ)
7 (3392)

(3.390)

(3.391)

T = 7 3 3T (a5 e [ B - 1

+ b ) exp | X L)),

where from now on it is understood that E shall always stand for the positive square
root /|p?|c® + m’c*. Note that in obtaining (3.392) from (3.373) we used the
fact that the sum over p runs over a/l directions (—p as well as p).

Going back to the Hamiltonian operator and the total charge operator, we
can now rewrite (3.368) and (3.379) as follows:

H=3 3% EGPbY — d4dsy)
P s
= Zpl S EGPTEY + dPtdy — 1), (3.393)
and
Q=eY T bPDY + dsde)H)
P s
=eX T (bPbY —dPtdy + 1). (3.394)
P 3

We recall that the anticommutation relations for the d and d' are completely
identical in from with those of the b and b*. This means, among other things, that
the eigenvalue of dtd” is one or zero. From (3.393) and (3.394) we see that
if we interpret d’*d§" as the number operator for a positive-energy positron,
then we have the following satisfactory result: A state with an extra positron has
the expected extra positive energy and positive (—e = | el) charge. Thus we take

NE® = by, NE&9 = detd (3.395)
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to be the occupation-number operators for the electron and the positron state
characterized by (p, 5). In hole-theory language, where r runs from 1 to 4, the ap-
plication of an E < 0 electron creation operator b%%* to the “physical vacuum”
must result in a null state since all the negative-energy states are already filled.
In our new notation this means that the application of d{*? to the vacuum must
result in a null state. This is reasonable if d{"? is to be understood as the annihila-
tion operator for a positron with (p, 5); in the vacuum there is no positron to be
annihilated. So for the vacuum state we require

by’|0> =0, 40> =0. (3.396)

From the anticommutation relation between N{™9, d§®, and d$*, it follows
that the eigenvalue of N{"® is zero for the vacuum state and one for a single
positron state di?*|0) (cf. Eqs. 2.55 through 2.57). In other words, d{t is the
creation operator for a positron.

The expressions (3.393) and (3.394) are still not completely satisfactory. It is
true that according to (3.393) the vacuum is the state with the lowest possible
energy; however, if we apply H to the vacuum state, we get —3,3, E which is — oo.
Physically this means that the infinite negative energy of the Dirac sea has not
yet been properly subtracted. We can redefine the energy scale so that H applied
to |0) gives a zero eigenvalue. We then have

H=3 3 ENG + Ng) (3.397)

Whose eigenvalue is necessarily positive semidefinite. Similarly subtracting the
infinite negative charge of the Dirac sea, we obtain

Q=eX X (N&o — Ny)
P s
= ~lel T X (N5 — Npo), (3.398)
This subtraction procedure amounts to starting with the charge density}

p = et — ety (3.399)

No_te that, unlike the total charge in the c-number theory (3.355) which is neces-
sarily negative, the eigenvalue of (3.398) can be negative or positive. Now at last
We can forget completely about negative energy electrons, the picturesque Dirac
sea, the negatively charged particles with E < 0 that behave like positively charged
Particles, the absence of p appearing as the presence of —p, and all that. From now
on we can work with electrons and positrons of positive energies only.

We have seen that once we define both the energy and the charge of the vacuum
State to be zero, then the total energy of the Dirac field is necessarily positive

{The expression (3.399) can be shown to be equal to
(€/2)(Yrtafr — A TyfptT)

which is not zero in the g-number theory. This method of eliminating the undesirable
vacuum expectation value is due to W. Heisenberg.
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semidefinite, while the total charge can be negative or positive. We emphasize
that in obtaining this satisfactory result the anticommutation relations for the
creation and annihilation operators have played a crucial role. Had we used com-
mutation relations instead, we would have ended up with an expression for the
Hamiltonian operator whose eigenvalue has no lower bound [since b b with
r=3,4 in (3.368) can take on an arbitrarily large positive number]. Thus the
Dirac field must be quantized according to Fermi-Dirac statistics if we demand
that there be a state with the lowest energy. We have actually illustrated a special
case of a very general theorem which states that half-integral spin fields must be
quantized according to Fermi-Dirac statistics while integer spin fields must be
quantized according to Bose-Einstein statistics. This spin-statistics theorem,
first proved by W. Pauli in 1940, is one of the crowning achievements of relativistic
quantum theory.
Let us now look at the total momentum operator (3.382). We get

P =3 2 p®'b + dyde)h)
p s=1,2
= 2 L PHEY + X B (—p)(—ditdy + 1)

P 3=12
= 2 TP + Ng) (3.400)

(since >,p = 0). This justifies our earlier assertion that the physical momentum
of the positron state d{”*|0) is p, not —p (cf. Eq. 3.384).

In order to convince ourselves that 5%t|0> and diPt]0> with the same
(p, 5) really are an electron and a positron state with the same spin direction, it is
instructive to work out the effect of applying the spin operator to these states.
Taking the spin density to be (4/2)»' 34 we obtain

S, = (8/2) f P b dix (3.401)
for the z-component of the spin operator.} For an electron,
S3b57* |0) = [S5, 511 [0
= 2 [0 Sl b} @] 0)
2
5 T U R)E uP)B [0, (3.402)

IWi'thin the framework of the Lagrangian formalism the ultimate Justification for inter-
preting (A/2)Jr* 34/ as the spin density rests on the fact that the constancy of

[ 1=ihx x ¥)s + B Z - dox

is guaranteed by the invariance of the Lagrangian density under an infinitesimal rotation
around the z-axis [see, for example, Bjorken and Drell (1965), pp. 17-19, 55]. Note that
no additive constant is needed because, with S; given by (3.401), S;]0> =0 is auto-
matically satisfied by rotational invariance.
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In contrast,
S;dit 0> =[S, dP11]0)>

= A [t a0

2
= — 5 T ) S50 ®) 5| 0). (3.403)

If the free-particle spinor corresponding to an electron state has an eigenvalue
2; = +1, then (3.402) tells us that S, = h/2, as expected. On the other hand,
if we want to describe a positron with spin-up, (3.403) demands that we use a free-
particle spinor v for which the eigenvalue of Z; is minus one. As an example, take
the electron at rest with spin-up. The corresponding free particle spinor is u®(0)
with %; = +1. For the positron state at rest with the same spin direction we are
supposed to use ¥(0) = —u®(0) which indeed has =, = —1. This, of course,
is expected on the basis of the hole theory.

Under the charge conjugation operation defined in the previous section, a single
electron state b’*|0> goes into the corresponding positron state d{t|0> with
the same (p, s). Thus

by = dp, bt = 4 (3.404)

under charge conjugation. We see that the total charge operator (3.398) indeed
changes its sign under charge conjugation in contrast to its c-number analog (3.355),
which always has the same sign. The Hamiltonian operator (3.397) does remain
invariant under charge conjugation, as it should.

In the previous section we also examined the invariance property of the Dirac
equation under e4, — —eA,. In the quantized theory the steps (3.345) through
(3.351) go through just as before if we replace \»* by Pt (where the transpose
operation brings the free-particle spinor back to the column matrix form without
affecting the creation and annihilation operators); 4, given by

Y = yyrt?, (3.405)

is now called the charge-conjugate field (rather than the charge-conjugate wave
function). Using (3.385), we find that 4»“ in the free-field case is given by

| /mcz( () (8 [—ip-x iEt} () () [ip-x_i_EtJ
P W%ZE E byt vy exp h +T + d{Pu(p)exp 7 7 )
(3.406)

Comparing this with (3.392), we see that the transformation

Al —> ¢ (3.407)
is achieved if we make the substitution (3.404) which is precisely the charge con-
Jugation operation; \»° annihilates positrons and creates electrons just as +Jr an-
nihilates electrons and creates positrons.

We shall now briefly mention the anticommutation relations among Yr, Y,
and . First, it is evident that

Wra(x), dra(x)} = {4l (), Yh(x)} = {Fu(x), Fu(x)} = 0, (3.408)
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where x now stands for the four-vector (x, icf). For 4r(x) and 4+*(x'), we have the
equal-time anticommutation relation first written by W. Heisenberg and W. Pauli:

{")lra(x9 t)’ ’\IFZ;(X,, t,)}t=l’ = 8&38(3)(x - X’), (3409)
the proof of which is left as an exercise (Problem 3-13). This also implies
WraX, ), Pol(X', ) = (74)as8V(x — X). (3.410)

As for the anticommutation relation between +» and + at different times, for our
purpose it suffices to remark that {4,(x), Yrs(x')} is a function of the four-vector
x — x’ such that it vanishes when x and x’ are separated by a space-like distance:}

{"l"a(x)’ '\Tfﬁ(x,)} =0
if (3.411)
x—xYP=x—xY—c(t—1P>0.

Because of the anticommutation relation, it is clear that y«(x) and :(x’) do not
commute when x — x’ is spacelike. This is not disturbing since 4» and +r, having
no classical analog, are not “measurable” in the same sense as E and B are measur-
able. On the other hand, for the charge-current density

Jux) = iery, Al — ie0 [Py, e | 0D, (3.412)
which is “measurable,” we obtain from (3.408) and (3.410),
[j.(x),7,(xN =0 if (x—x)>0, (3.413)

where we have used
[4B, CD] = —AC{D, B} + A{C, B}D — C{D, A}B + {C, A}DB. (3.41%9)

Thus measurements of charge-current densities performed at two different points
separated by a spacelike distance cannot influence each other, in agreement with
the causality principle.

Electromagnetic and Yukawa couplings. Let us now talk about the interaction of
electrons and positrons with the electromagnetic field. The Hamiltonian density
for the basic interaction is taken to be

H iy = —iePoy,ApA,, (3.415)

where 4 is now the quantized electron field; 4, can be either classical or quan-
tized. This interaction can be derived from the Lagrangian density

L iy = lePy,rA,, (3.416)
since S, is just the negative of &, whenever %, does not contain time deriva-
tives of field operators. Strictly speaking, ieyry,» should be replaced by (3.412),

but in practice the form (3.415) is sufficient since a constant (c-number) interaction
cannot cause a transition between different states.

1The explicit form of {yra(x), Yra(x)} known as —iS.s(x — x’) may be found in more ad-
vanced textbooks, for example, Mandl (1959), pp. 30-35, pp. 54-55; Schweber (1961),
pp. 180-182, pp. 225-227,
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Fig. 3-8. Four possibilities realized by the interaction (3.415).

In lowest-order perturbation theory (and also in covariant perturbation based
on the interaction representation to be discussed in the next chapter), we may
regard 4 in (3.415) as the free field +r given by (3.392) and look at the effect of
o 'ine ON @ given initial state. It is convenient to decompose each of yr and 4 into
two parts as follows:

1# — 1I,(+) + 11,(—),
=T + T, 3.417)
where
o1 me? 1y, ) ip.x iEt
VO B I w e (B ),
(=) — 1 mc? ()4 44(8) “iP-X iEt
VO = 75 3 T I At e) exp (ZRX 4 1), s

<

I

3

1 9 _ . . .
(+) > % zs: /mEC dS 5(p) exp (lphx . l%t_)’
l 3 O (s —in. .
P33 b o (P 12,

Note that "> (which is called the positive JSrequency part of 4) is linear in the
electron annihilation operators; it can therefore annihilate electrons but cannot
do anything else. Likewise 47, J*, and Y respectively create positrons,
annihilate positrons, and create electrons. So we see that the interaction (3.415)
can do four different types of things, as shown in Fig. 3-8 where the symbol X may
stand for an interaction with an external classical potential, the emission of a
photon, or the absorption of a photon. The question of which of the four pos-
sibilities given in Fig. 3-8 is actually realized in a particular physical process
depends entirely on what kind of initial and final state are present. For instance,
if initially there is only a positron, the action of (3.415) may result in the scattering
of the positron, represented by Fig. 3-8(b). On the other hand, if initially there is
an electron-positron pair, and if we also know that there is neither an electron nor
a positron in the final state, the matrix element of 5, is that of a pair annihilation
process represented by Fig. 3-8(c). Note that in all cases the difference between the
number of electrons and the number of positrons (3.356) is conserved. In Chapter

4 we shall work out a number of problems in quantum electrodynamics based on
(3.415).

QTI
]
|
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The meson-nucleon interaction proposed by H. Yukawa in 1935 is patterned
after (3.415).7 We have
Hine = G, (3.419)

where 2J» and ¢ are now the nucleon and a neutral spin-zero meson field. Note
that +Jr can annihilate nucleons and create antinucleons while 4 can create nu-
cleons and annihilate antinucleons. The constant, G, characterizes the strength
of the coupling of the meson field to the nucleon. Alternatively we may have$§

H i = IGToysfr. (3.420)

Both (3.419) and (3.420) are invariant under proper orthochronous Lorentz trans-
formations, as is evident from Table 3-1. The form of the interaction (3.419)
can be made invariant under space inversion if ¢ in the space-inverted system
is given by

() =), X = (—x,ict). (3.421)

On the other hand (3.420) can also be made invariant under space inversion if ¢
in the space-inverted system is given by

P'(x) = —p(x), x' = (—x, icf), (3.422)

since rysyr changes its sign. If we require that parity be conserved, we may have
either (3.419) only or (3.420) only but not both simultaneously. In the next section
we shall point out that a Yukawa interaction of the type (3.419) leads to an s-wave
emission (absorption) of a meson by the nucleon while an interaction of the type
(3.420) leads to a p-wave emission (absorption). The meson fields that transform
like (3.421) and (3.422) under space inversion are called respectively a scalar
and a pseudoscalar field; the couplings (3.419) and (3.420) are respectively called
a scalar coupling and a pseudoscalar (pseudoscalar) coupling.!! The meson fields
corresponding to the observed neutral spin-zero mesons, 7° and 7, turn out to be
both pseudoscalar. We shall say more about the meson-nucleon interaction when
we discuss the one-pion exchange potential in the next chapter.

3-11. WEAK INTERACTIONS AND PARITY NONCONSERVATION;
THE TWO-COMPONENT NEUTRINO

Classification of interactions. To illustrate the power of the field-theoretic formalism
we have developed in the last section, we shall discuss in this section some simple
examples taken from the physics of so-called “weak interactions.” As is well

1We emphasize that the field-theoretic description of the meson-nucleon interaction
is not as firmly founded as that of the electromagnetic interaction of electrons and posi-
trons. Quantum field theory does, however, provide a convenient language to describe
some phenomena involving mesons and nucleons.

§The factor i is necessary to make the interaction density Hermitian. Note (4ry,r)t =

WYY = —pvs. .
{ISo called to distinguish it from a pseudoscalar (pseudovector) coupling of the type

GFR{mec)@p/dx,) Frvsy .
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known, the basic interactions of elementary particles can be classified into three
categories:

a) strong interactions, for example, n + P—n+p, 77 +p—A+K
p° — ot
b) electromagnetic interactions, for example, e* + e~ — 2y, 4 + p—p-+ n°
2 — A+
¢) weak interactions, for example, n—p-+e +5, ¥+ p—pt+ A,
K* — z* 4 =
To this list we should add a fourth (and the oldest) class of interactions, the grav-
itational interactions. But gravity turns out to be of little interest in our present-
day understanding of elementary particles. What is remarkable is that all four
classes of interactions are characterized by dimensionless coupling constants that
differ by many orders of magnitude; the dimensionless coupling constant that
characterizes electromagnetic interaction is (e’/4nhc) = a ~ t1,. As we shall
show in Section 4-6, for the analogous coupling constant in pion-nucleon physics,
defined as in (3.420), we have (G*/4xhc) ~ 14, which is a typical strong-interaction
coupling constant. In contrast, the constant that characterizes the strength of a
typical weak-interaction process, when defined in a similar manner, turns out to
be as small as 107!2 to 10~'4; this will be illustrated in a moment when we discuss
A decay and pion decay. Gravitational interactions are even weaker; at the same
separation distance the gravitational attraction between two protons is about
10~*" times weaker than the electrostatic repulsion between them.

Another striking feature of the elementary particle interactions is that some
conservation laws which are obeyed to high degrees of accuracy by the strong
and electromagnetic interactions are known to be violated by the weak interac-
tions. In particular, weak-interaction processes in general do not conserve parity.
In this section we shall illustrate this point using the language of quantum field
theory.

Parity. One learns in nonrelativistic quantum mechanics that a state with mo-
mentum p goes into a state with momentum —p under parity, as is evident from
the operator form of momentum, p = —ihV. For instance, in the Schrédinger
theory the plane-wave solution (X, 1) = exp (ip-x/h — iEt/h) goes into (—X, )
= exp [i(—p)-x/h — iEt/h], which we recognize as the plane-wave solution with
Mmomentum opposite to the original one. The orbital angular momentum L is
unchanged under parity since it is given by x X p. Furthermore, we argue
that the spin angular momentum is also even under parity since space inversion
commutes with an infinitesimal rotation. As a result the magnetic moment inter-
action—(ek/2mc)a-B, for instance, is invariant under parity since B does not
change under parity either. From these considerations we expect that in field
theory an electron state b*10> goes into b)t|0> (with the same 5), etc.
We shall see, in a moment, that this is essentially the case except that we
have to be careful with the relative transformation properties of the electron and
positron states.
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In Section 3-4 we proved that the Dirac wave function in the space-inverted
system X' = —X, t’ = ¢ is related to the wave function in the original system by
(X', 1) = y,r(X, 7) (up to a phase factor). The proof given there goes ?hrough
just as well even if 4 stands for the quantized Dirac field. If we now consider the
space inversion operation (commonly called the parity operation) that transforms
x into —X, we see that the functional form of the field operator changes as

'll’\(x9 t) — 1[,«'()(, t) = 'YA"I"‘("X’ t)’ (3423)
since what used to be called X’ = —x is now x. What does this mean? Going back
to the plane-wave expansion of the filed operator, we have

2 ip-x ikt
w30 = 3 5y [ exp (B - 5F)
- dgtyoe@en (BX LB a2
But it is easy to show (cf. Problem 3-4) that

(@) = u(—p),  70O@) = v (3.429)
Note the minus sign preceding the positron spinor, ¥*'(—p); a special case of this
has already been worked out in Section 3-4, where we learned that a positive-
energy at-rest spinor and a negative-energy at-rest spinor behave oppositely under
parity. Thus
2l sy (s ip-x ikt
ya—x ) = T2,/ spuip) exp (B — 5F)

— d$*eO(p) exp (—ip-x _I_lhﬁ)] . (3.426)

h

Comparing this with (3.392) we deduce that the transformation (3.423) is accom-
plished if the creation and annihilation operators change in the following manner:

b(s) — > b(s) d(‘) > _d&‘)

p P p P>

(8)+ (8)+ (s)+ ()t (3'427)
B —> b)Y, dSY —> —dW).

An immediate consequence of this is that a single-particle state with (p, 5) goes
into a state with (—p, s), as expected from nonrelativistic quantum mechanics,
except that a positron state acquires a minus sign,

bt 10y —> LBt |0) = & |0),
dg*|0) —> TILd*0) = —d% |0,

where I1 is the parity operator that acts on state vectors.{
We shall now discuss the physical significance of the minus sign in the second

part of (3.428). Consider, for simplicity, an electron-positron system in which the
electron and the positron are both at rest, hence are in a relative s-state. According

(3.428)

1Using the operator II, we can write (3.427) as I1b{ II™* = b¥), etc. We assume that
the vacuum state is even by convention: I1|0)> = |0.
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to (3.428), such a system transforms as
bR dSO8 | 0> —> —bEdEt 10> (3.429)

under parity. This means that the parity of an s-state e”e* system is odd.i Actually
we could have anticipated this from the hole theory. According to the hole-theoretic
interpretation, what is physically observable is the relative parity between the
completely filled Dirac sea and the Dirac sea with one negative-energy electron
missing. Remembering that parity is a multiplicative concept in the sense that the
parity of a composite system is the product of the parities of the constituent systems,
we infer that the observable parity of the positron is the same as that of the missing
negative-energy electron. But, according to our earlier discussion following (3.179),
the parity of a negative-energy electron at rest is odd (when the phase factor 7 is
so chosen that the parity of a positive-energy electron at rest is even). Hence the
parity of a positron at rest is odd (relative to that of an electron at rest).

If we follow steps similar to (3.423) through (3.429) with a non-Hermitian
(charged) field ¢.(x, £) which transforms as

(X, ) — tdal(—x, 1) (3.430)
under parity, it is not difficult to show that a =~ state and a =»* state transform
in the same way under parity and that a =* =~ system in a relative s-state is even
(in sharp contrast to the e*e~ case). Quite generally, the “intrinsic parity” of the
“antiparticle” is opposite to that of the corresponding “particle” in the fermion
case and is the same in the boson case. This is one of the most important results

of relativistic quantum theory. In Section 4-4, we shall present experimental
evidence in favor of the odd parity of an s-state e*e™ system.

Hyperon decay. So much for the transformation properties of the free-particle
states. Let us now examine how we may describe parity-nonconserving decay
processes using the language of quantum field theory. As a particularly simple
example, we shall consider the decay of a free A hyperon (known to be a spin-}
particle):

A—>p+ = (3.431)
A simple interaction density (operator) that can account for this process is
-%m == d);‘pp(g + g/'YS)"PA + HC, (3432)

where 4, can annihilate A hyperons and create anti-A hyperons,§ 4, can annihi-
late antiprotons and create protons, and ¢! can create 7~ and annihilate z*.
We have added Hc which stands for the “Hermitian conjugate” because, without

1The skeptical reader may demonstrate that this conclusion (which can be verified ex-
perimentally) is independent of our choice 7 = 1 in Y/(x) = 5y,r(x).

§The anti-A hyperon is to be distinguished from the A hyperon. First, even though they
have the same charge (namely, zero), the same mass, and the same lifetime, their magnetic
moments are opposite. Second, annihilations of a Ap system into mesons, for example,
A+ p — K* 4+ n* + =z, have been observed, whereas reactions of the type A +p —
mesons are strictly forbidden.
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it, the interaction density would not be Hermitian.} Explicitly stated,
HC = 11’11; (g* + gl*(YS)(YI\I/‘p(ﬁn

= Pu(g* — g v Wrbs. (3.433)
We see that the He can give rise to processes like
A—>p+ (3.434)

where A and p stand for an anti-A. hyperon and an antiproton. It is a characteristic
feature of the quantum-field-theoretic description that if (3.431) takes place,
then (3.434) must also take place. At the end of this section, we shall show that
this feature is a consequence of what is known as CPT invariance. Experimentally
the decay process (3.434) has indeed been observed to be as follows:

P+p—A+A
L sp 4 2 (3.435)
—>p+ .

We do not actually believe that the Hamiltonian density (3.432) is a “funda-
mental” interaction in nature in the same way as we believe that —ieYyy,red,
is “fundamental.” So many new particles and new decay processes are observed
nowadays in high-energy nuclear physics that if we were to introduce a new funda-
mental interaction every time a new decay process was discovered, a complete
list of the fundamental interactions would become ridiculously long. Anybody
in his right mind would then say that most (or perhaps all) of the interactions in
the list could not possibly be “fundamental.” Unfortunately, as yet we do not
know what the basic interaction mechanisms are which give rise to a phenomeno-
logical interaction of the kind described by (3.432). In any case, for computational
purposes, let us go along with (3.432).

We shall now investigate the transformation properties of (3.432). First, we can
easily see that (3.432) is invariant under a proper orthochronous Lorentz trans-
formation,

1
s

B, = Fosin] Lo
= %{ :,} Yadr, (3.436)

since the form of Si(Sgl) is independent of the type of spin-{ field. Next, we
shall show that the interaction (3.432) is not invariant under parity unless g=0
or g’ = 0. Since +,, s, and ¢, transform under parity as

Yo —> 1oYaPe(—X, 1), Yra —> Na¥sPa(—x, 1), b —> Neba(—X, 1),
(3.437)

1The use of a Hermitian Hamiltonian density is required since the fexpectation value o
the Hamiltonian operator must be real. Furthermore, in Section 4-2 we shall show that
the use of a non-Hermitian Hamiltonian violates probability conservation.
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the interaction density (3.432) changes under the parity operation as follows:

H (X, 1) —> pF nE aph (—X, NPo(—X, 1)(g — g'v)¥a(—x,1) + He.  (3.438)
Suppose g’ = 0; then 5#,,, transforms like a scalar density,
%int(x; t) - fint(_xy t)’ (3439)

provided we choose the phase factors in (3.437) in such a way that Nanin, = 1.
Similarly for g = 0, 5#,,, again transforms like a scalar density provided we set
nsn71ms = —1. However, if both g and g' are nonvanishing, then 2 int Cannot be
made to transform like a scalar density no matter how we choose Tps 7> and 7,.
This is what we mean by saying that the interaction is not invariant under parity.

All this appears somewhat formal. We now wish to exhibit some of the physical
manifestations of the parity-nonconserving interaction (3.432). For this purpose
let us obtain the transition matrix element for this process. First, recall that the
state vectors we have been using are time independent, while the interaction
Hamiltonian density is made up of time-dependent field operators. In the language
of time-dependent perturbation theory, discussed in Section 2-4, a state vector
in our occupation-number space corresponds to a time-independent wave func-
tion u,(x) rather than to a time-dependent one us(x)e~*F+/* Recalling the connec-
tion between the operators in the Heisenberg and the Schrédinger representations,
we see that the matrix element of _[Jf ned®x taken between the initial A state and
the final #~p state corresponds, in the language of Chapter 2, to the matrix ele-
ment of e'*“*H e~/ taken between u,(x) and u/(x); the only new point is
that our Hamiltonian can now change the nature of the particles. Using this facc
and recalling the expression for ¢’ given by (2.109) we see that c(#) in our
case is given by

(1) = (—ifh) < fl j : dr j HlX, ') d x ! i>, (3.440)

where the perturbation is assumed to be turned on at ¢ — 0.1
In the language of quantum field theory the initial and final states in A decay
are given by
|1 = Byt |0),

1f> = a'()bgt|0),

where b§“¥*, b®*7*, and a'(p,) are the creation operators for the A hyperon,
the proton, and the 7~ meson. It is legitimate to replace +fr, by its positive frequency
partr{* since the negative frequency part of 4r, acting on the initial state would
result in a (A + A) state which, because of orthogonality, gives zero when mul-
tiplied by {f|¢tr, from the left. Furthermore, the only part of (" which
contributes is just (1/a/ V) b§**u(p) exp (ip-x/h — iEt/h),since bi% = b9t 0> =0,
unless p” = p, 5" = s5. All this amounts to saying that it is all right to replace the

(3.441)

IWe shall present a more formal discussion of the connection between the transition
matrix and the interaction Hamiltonian in Section 4-2, when we shall discuss the S-matrix
expansion in the interaction representation.
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field operator «Jr, by the wave function of the initial A particle multiplied by the
corresponding annihilation operator. Likewise it is easy to see that ¢} can be
replaced by just

a'(P.) A B 20, V exp (—ip,-X/h + iw,t)
(with ke, = ~/|p. [Pc? + mic?), and 4, can be replaced by
NI CTE, Vb3t @) exp (—ip' X[k -+ iE,1]h).
The result of all this gives

<f f%imdsx|i>

— (F1a" @b | (en/ B2 WS TE (0 (g + 875U (0)

[«/ﬁje p( lp” Q{{) d*x ]exP (zw,t + == ’Et Zml},c t),
(3.442)

where we have assumed that the initial A particle is at rest. Using
(A S)b(A s)t l 0> — (1 (A 3)1‘ (A 3)) | 0> etc.,

it is not difficult to see that {f|a*(p,)b® "y |i> can eventually be reduced to
{0]0> = 1. The exponential time dependence in (3.442) is precisely the kind that
appears in the derivation of the Golden Rule in time-dependent perturbation theory
(cf. Eq. 2.113); if we assume that the perturbation is switched on at = 0 and
acts for a long time, the modulus squared of [} exp (iw.t -+ iE,t' [h — im,c*( [R)dt’
leads to 2wht times the usual & function that expresses energy conservation.
Note also that the space integral in (3.442) simply tells us that the transition matrix
element is zero unless momentum is conserved.

To sum up, the time-dependent matrix element that appears in the Golden
Rule can be obtained immediately from the Hamiltonian operator j.}fimde
just by replacing the quantized field operators in 5, by the appropriate initial
and final wave functions with their time dependence omitted. In other words,
we get the correct results by pretending that the g-number density (3.432) made
up of the field operators is a c-number density made up of the initial- and final-state
wave functions.}

Let us now simplify the spinor product in (3.442). We have

Z(p) (g + &'vs)ui(0)

— [myc® + E, (X(s')+ — (e-p'c) ) g —&\(x®
2m,c* E, + myc®/\—g’ g/\ o
_ /myc* + E, (s')+( , @-pc ) ©
N "o X 8T E )X (3.443)

1In fact this kind of replacement is implicit in the discussions of beta decay that appear
in most textbooks on nuclear physics, for example, Segré (1964), Chapter 9, and Preston
(1964), Chapter 15. We now understand why beta decay can be discussed at an elementary
level without using the language of quantum field theory.
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Assuming that the initial A is polarized with spin along the positive z-axis, we
obtain

o-pc . 1 . [0
(g—i—g E—}——pmc)x() = (a, + a,,cosﬁ)(o) +a,,s1nt9e"<1>, (3.449)
where
a =g, a, = g’([ P’ l C/(Ep + mpcz)) (3~445)

and the angles 6 and ¢ characterize the orientation of p’ relative to the A spin
direction. The physical meaning of g and g’ can now be seen as follows. If g 7= 0,
g’ =0, the final state proton can be described by an si, j, = 4+ wave function
(3). On the other hand, if g =0, g’ + 0, the final proton is in a pure p, j, =1
state described by cos 6(}) - sin 6 €4(3). In other words, the scalar coupling
(the g-term) gives rise to an s 7=~ p system, whereas the pseudoscalar (ry;) coupling
(the g'-term) gives rise to a pL 7 p system. If g and g’ are both nonvanishing, both
s1 and p} are allowed; in other words, the same initial state can go into final states
of opposite parities. Recalling that for g 5= 0, g’ 7= 0 the interaction density (3.432)
is not invariant under parity, we see that an ., that does not transform like
(3.439) under parity indeed gives rise to final states of opposite parities.

We shall digress here and examine the pseudoscalar (pseudoscalar) coupling
of the pion to the nucleon (3.420) which gives rise to processes likep — p + #°.
We may argue that when the proton dissociates itself into a #° and a proton,
the final 7#p system must be in p} state. Unfortunately, such dissociation processes
are forbidden by energy momentum conservation if all the particles are free.
However, taking advantage of a reaction in which the nucleon is bound (specifi-
cally #* + d — p + p) it has been proved possible to show that the =* is pseu-
doscalar (with the convention that the proton and the neutron are both even),
that is, ¢(x, £) — —P(—X, #). Note that if there is just a «; type coupling, parity
is conserved; the “intrinsic” odd parity of the pion is compensated for by the
odd orbital parity.}

Coming back to A decay, we can now compute the decay-angular distribution.
The relative probabilities of observing the proton with spin-up and spin-down
can be obtained immediately from (3.444):

sp%n-up: la, + .a,, cosf |, (3.446)
spin-down: |a,|? sin® 6,
which results in the decay-angular distribution of the proton
1 —acosb, (3.447)
where§
o — 2Re(a,a3) | (3.448)

e FlaF

1An alternative way of understanding what is meant by the intrinsic odd parity of the
pion is to visualize the pion as a very tightly bound state of a nucleon (intrinsically even)
and an antinucleon (intrinsically odd) in a relative s-state.

§The minus sign in (3.447) arises from the fact that the experimentalists usually talk
about the decay-angular distribution of the pion relative to the A spin: 1 + « cos 6™
where cos 8™ = —cos 6.
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Recalling that 6 is measured from the A spin direction, we see that the angular
distribution (3.447) implies that whenever Re(a,ar) #0 or equivalently
Re(gg'*) # 0, there exists an observable effect that depends on {@,>-p’, a pseudo-
scalar quantity that changes its sign under parity.
To really understand the meaning of parity nonconservation in this decay
process, it is instructive to work out the special decay configuration 6§ — 0. This
is shown in Fig. 3-9(a). The transition probability for this process is, according
to (3.446), | a, + a, |* apart from kinematical factors. If we apply the parity opera-
tion to the decay configuration shown in Fig. 3-9(a), we obtain the decay configura-
tion shown in Fig. 3-9(b) since, under parity, momentum changes but spin does
not. However, according to (3.446), the transition probability for the physical
situation described by Fig. 3-9(b) is |a, — a,|* since § = . Thus the transition
probability for [i> —|f> is not the same as that for II|i» — IT| /> unless
Re(a,a}) = 0. Since the configuration in Fig. 3-9(b) is the mirror image of the
configuration in Fig. 3-9(a) apart from a 180° rotation about an axis perpendic-

ular to p’, we conclude that the mirror image of our world looks different from
our world if Re(gg'*) # 0.

Proton T~
Probability Probability
A astap? A as—ap?
T Proton
(a) b

Fig.' 3-9. A decay. Parity conservation w
(which go into each other under space in

ould require that the two decay configurations
transition probability. The gray arrows i

version) be physically realizable with the same
ndicate the spin direction.

Although we cannot prepare a polarized sample of A hyperons using a magnet,

7"+ p—>A + KO (3.449)

Pz incigent X P,. Parity nonconservation
d, in 1957, by a Berkeley group and by
Pisa-Bologna collaboration group who showed that there
are more decay pions emitted with (Px incigent X P) P docay > 0 than with
(Px incigent X Pa)- Px decay << 0. Now, at last, it is possible to communicate even to
intelligent beings in outer space that the incident pion direction, the A direction,
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and the preferential direction of the decay pion, taken in that order, form the
ight-handed system.
axes of what we mean by a right-han . . N i
thrI‘:reior to 1956 practically everybody tacitly assumed that it was “illegal fto
write parity-nonconserving interactions like (3.432). There was a good r.easo; or
this: the success of the parity selection rules in atomic and nuclear physms_ ) bow}sl
that’the principle of parity conservation holds to a high degree4of a;:;:;l;acy in ‘ot
i i i In the years from 1954 to , as various
tromagnetic and strong interactions. : y ! s
zf;erimen{ial groups studied the properties of “strange” mesons called 7+ and 6
which decay via weak interactions as

Tt — 2t 47", 6 — nt + a°, (3.450)

it soon became evident that 7+ and 6* have the same mass and the sam:e1 life;h]r'l;;
i i -like
that a 7-like decay event and a
it therefore appeared natural to assume d 2 Gke
i different decay modes of the same parent p ;
decay event simply represent : ‘ ) Dy
an ingenious argument base y
(now called K*). However, using : . based only on parly
R. H. Dalitz was able to s
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8 could not possibly have the same spin parity. ,
suggest that the = and the : \ ' e same spin parity. Since,
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i i i d the validity of parity conservatio : .
systematically investigate : ] e ity
i i the realm of weak inter
i tions. Their conclusion was that in '
::Igrfsr::v:;ion (which holds extremely well for the strong an:ii glectr;;rrl;rgl:;:;cl
i i « d hypothesis unsupported by ex
interactions) was “only an extrapolate ' e ally
i ’ d a number of experiments tha
evidence.” Furthermore, they suggeste ber ot g
iti i t parity is conserved. (Their ;
sensitive to the question of whether or no conser’ oL of sue-
i i lar distribution of a polari
ted experiments included the dec{ay angul A
1g1§'Sp§ron vI:hich we have been discussing.) As is well known, subseq(lilen; v:;(l};((:erss
ments (beginning with the historic Co®® experiment of C. S VZu ?ln{ Ic worker
and the z-p-¢ experiments of J. I. Friedman and V: L. Telegdiand o h ,.‘dea tha{
L. M. Lederman, and M. Weinrich) have unequivocally supported the i
j .' . ’ . .ty.
teractions in general do not conserve pari .
weél;rlnnirg back to A decay, let us work out the decay rate usmg.the Goldenelrh;l]c;
and (3.442) through (3.446). The cos 6 term drops out as we integrate ov
angles. For the reciprocal of the partial lifetime, we get
1 TA—pn)
- 2h Pmyc® + Ky g BlpPety 4xV |p'[*d|p']
=Y e (1g + E T m,,c2> Qnhy d(E. T By
L3 p

lgl* | l&l (& — mpc2)) 0’| (Ep + mye?), (3.451)
(47rhc 4nhe (E, + myc?) hmyc

I

tFor detailed discussions of the 7-§ puzzle see, for example, Nishijima (1964), pp.
315-323; Sakurai (1964), pp. 47-51.
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where we have used

ap|  _ dlp’|
dE, + E)  [(p'|¢*/E) + (I [} ED] AP
ho E,

If we insert the experimentally measured mean life of the A particle (2.6 x 1010
sec) and the branching ratio into the 7~ p decay mode (known to be about 2),
we obtain

18l 1 000318 ~ 5 « 10-1 (3.453)
47 he ’ dnhe ) )

Thus the dimensionless coupling constants
lgl*/(4zhc)  and  |g']*/(4mhc)

for A decay are seen to be small compared to e?/(4zhc) ~ 11+ by many orders of
magnitude. The interaction responsible for A decay is indeed “weak.”

Fermi theory of beta decay. Historically the theory of weak interactions started
when E. Fermi wrote, in 1932, a Hamiltonian density that involves the proton,
neutron, electron, and neutrino fields to account for nuclear beta decay:

n—-p-+e + . (3.454)

Fermi assumed for simplicity that the derivatives of the field operators do not
appear. With this hypothesis the most general interaction density invariant under
proper orthochronous Lorentz transformations has the form

e;fint = 12 (&pri\b‘n)[‘p‘e]ﬁi(ci + C:')%)"I’v] + HC, (3455)

where}
Pi = 1, Yrs Tros i'Ys'Y)\, Ys. (3456)
We have subscribed to the usual convention according to which the light neutral
particle emitted together with the e~ in (3.454) is an “antineutrino” (#), not a
“neutrino” (v), and the field operator v, annihilates neutrinos and creates antineu-

trinos. Evidently the explicitly written part of (3.455) can account for the neutrino
induced reaction

vr+n—>e -+ p (3.457)

as well as for 8~ decay (3.454). The Hc in (3.455) can describe B* decay, K (electron)
capture, etc.:

p—>n+e* 4+,

e +p—>n+ vy,
since, when explicitly written, it contains the annihilation operators for protons
and electrons and the creation operators for neutrons, positrons, and neutrinos.

(3.458)

$We avoid the indices # and » to prevent possible confusions with muon and neutrino.

3-11 WEAK INTERACTIONS AND PARITY NONCONSERVATION 167

The constants C; and C; characterize the strength of the interactions of type i
(scalar, vector, tensor, axial vector, and pseudoscalar); they have the dimension
of energy times volume. From our earlier discussion on A decay, it is evident that
parity conservation requires either

Ci=0 foralli (p¥n.n¥n, =1),

or (3.459)
C;=0 foralli (p¥muniy, = —1).

If neither of the two possibilities is satisfied, then the interaction density (3.455)
is not invariant under parity.

As it stands, (3.455) contains 10 arbitrary constants (which need not be purely
real). About a quarter-century after the appearance of Fermi’s paper, it finally
became evident that the correct Hamiltonian density that phenomenologically
described nuclear beta decay was

H e = Co(Poyad) [Pera(l + vs)ynd + CalPoiysyain) [eivsya(l + yshp] + He
(3.460)
with
Cr = 6.2 X 1074 MeV cm® = (107%/a/2) m,c*(h/m, c),
CJC,~—12.

The interaction (3.460) with C;, =~ —C, is known as the V — 4 interaction; it was
written, on aesthetic grounds, by E. C. G. Sudarshan and R. E. Marshak, by R. P.
Feynman and M. Gell-Mann, and by J. J. Sakurai in advance of the confirming
experiments. Since the nucleon can be assumed to be nonrelativistic, only the time
component of the vector covariant and the space components of the axial vector
covariant contribute (v, and iry;ry, are “small”) unless the symmetry of the initial
and final nuclear states is such that the expectation values of 1 (the nonrelativistic
limit of +,y,4n) and o, (the nonrelativistic limit of Yroiys¥ejr,) are both zero.
The vector interaction gives the Fermi selection rule AJ = 0, no parity change,
while the axial-vector interaction gives the Gamow-Teller selection rule AJ — 0,
1, no parity change, for the nuclear states.

We shall not discuss in detail the various aspects of nuclear beta decay: the
electron spectrum, the ft-values, forbidden transitions, the electron-neutrino
angular correlation, the angular distributions of electrons from polarized nuclei,
etc. They are treated in standard textbooks on nuclear physics.} We concentrate
on just one aspect of (3.460), namely the physical meaning of (1 4 ;).

(3.461)

Two-component neutrino. The neutrino field fr, can be expanded just as in (3.392).
The only difference is that its mass is consistent with zero, m, << 200 eV/c? ex-
perimentally. The positive frequency part of 4r, is linear in the free-particle spinor
for an annihilated neutrino. So let us investigate the effect of (1 -+ 7vs) on u(p).

1See, for example, Preston (1962), Chapter 15; Killén (1964), Chapter 13.
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As m, — 0, we have

( x(‘) )__ 0 I < X(S) )
"\@-pe/E)x®) = \1 0 a-py®
g.f’ (8)
2—( x® ) (3.462)
Meanwhile
=gy (5 op)log ve)
P (@-pc/E)x®] 0 o-p/lo-p %@
a-.A (s)
=—( :ff ) (3.463)

This means that as m, — 0, the v, operator (sometimes called the chirality oper-
ator}) and the negative of the helicity operator have the same effect on a free-
particle spinor u“X(p). In particular, eigenspinors of - are also eigenspinors of
s With opposite eigenvalues, and (1 + 7s) acting on the free-particle spinor for
a right-handed particle gives zero as m, — 0. It then follows that (1 + Ys)PrsH
annihilates only left-handed (helicity = —1) neutrinos, denoted by v,. Likewise
it is easy to see that

(I + ys)f  creates Vg,

(1 — ;) annihilates 7,

V(L — ;) creates v,

where 75, stands for a right-handed antineutrino. Now the Hc in (3.460) contains
Jr, (1 — ;) since

Pl o] =via +aof 2 [

YAYs

T Ty
= — s ey .46
=) {d:ifysw} v 3.4

where the upper signs are for the space components, the lower for the time com-
ponents. An immediate consequence of this is that the helicity of the neutrino
emitted in K (electron) capture [the second of (3.458)] is —1. This has indeed
been shown to be the case by a beautiful experiment of M. Goldhaber, L. Grodzins,
and A. W. Sunyar. The positive (negative) helicity of the antineutrino (neutrino)
emitted in 8~ (8*) decay has also been inferred from the electron (positron)
polarization and the e~5(e*v) angular correlation (cf. Problem 3-14). Parity con-
servation would require that in a physically realizable process the emission prob-
ability for a right-handed particle be the same as that for a left-handed particle
since the helicity changes sign under parity. It is therefore evident that the interac-
tion (3.460) which produces only »,(¥z) in 8* (8~) decay is incompatible with the
principle of parity conservation.

1This expression is derived from the Greek word Xxetp meaning “hand.” The term “chira-
lity” was first used by Lord Kelvin in a somewhat different context,
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There is another (simpler) way to see the connection between helicity anq chir.a-
lity for a massless particle. Let us go back to (3.26) which was obtained by !mearlz-
ing the Waerden equation. When the fermion mass is zero, the two equations are
completely decoupled,

(ia-V - lé%) P =0, (—ia.v _ iaixo) $® =0,  (3.465)

Let us now postulate that only the first of (3.465) has to do with physical reality.
Evidently a free-particle solution of the ¢ equation in the c-number (wave-

function) language satisfies o-p— —Elc, (3.466)

where E can be positive or negative. This means that the 'helicity of a po§itivc?-
energy neutrino is negative, while the helicity of a n‘e‘gatlve-energy‘ peutrmo is
positive. Using the hole theory, we infer that the helicity of a (positive-energy)
antineutrino is also positive (cf. Table 3-4). We should emphasize that the asser-
tion that the neutrino (antineutrino) is always left-handed (right-handed) makes
sense only if the mass is strictly zero. Otherwise we can easily perform a Lorentz
transformation that changes a left-handed particle into a right-handed one. ‘
Meanwhile, according to Problem 3-5, in the Weyl representation of the Dirac

equation we have

P = (i(::) (3.467)
and
s = (”g (;),' (3.468)

It is then evident that (1 + y,h)r, selects just ¥, that is, only the lower two of
the four components of «f» in the Weyl representation:

I+ )P =2 ( ¢?L)). (3.469)

1It is amusing that the Maxwell equations applying to empty space can allso be writt.ell ig
a form similar to (3.465). The reader may show that (1.57) and (1.58) with p =0, j =
can be combined to give

(-;sv-:';;a)q>=o,
where
00 0 0 01 —1 0
Sl—l(O 0 —1), S2—z( 00 0), S3—1(1 0 0),
01 0 —1 0 0 00
and
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Suppose we demand that only
1+ 'YS)"I’v and 1-pv(l —vs) =1+ %)%]*%

appear in the beta-decay interaction. Because of (3.469) this requirement amounts
to saying that only ¢ and ¢®* appear, hence the neutrinos (antineutrinos)
emitted in B* (8~) decay are necessarily left- (right-) handed. We may argue that
the appearance of only ¢® is due to either (a) an intrinsic property of the free
neutrino itself, or (b) a property of the parity-nonconserving beta-decay interaction
that just happens to select ¢ (and also of other interactions in which the neutrino
participates). If the neutrino mass is strictly zero, the two points of view are,
in practice, completely indistinguishable.f A theory of neutrinos based on
¢® =0, ¥ =0 (or vice versa) is called the two-component theory of the
neutrino.

Historically, the idea that the neutrino is described by ¢* only (or ¢'® only)
was advanced by H. Weyl in 1929; it was rejected by W. Pauli in his Handbuch
article on the grounds that the wave equation for ¢‘~ only (called the Wey! equa-
tion) is not manifestly covariant under space inversion {cf. Problem 3-5). With the
advent of parity nonconservation in 1957 the Weyl equation was revived by A.
Salam, by L. D. Landau, and by T. D. Lee and C. N. Yang.

Muon capture,

po+p—>n+v, (3.470)

can also be described by an interaction of the form (3.455); +r, and yr, are now
replaced by +fr, and +Jr,. The particle »’ whose mass is also consistent with zero
turns out again to be left-handed (its antiparticle 7' is right-handed). For some
years it was generally believed that » and »' were identical; however, motivated
by the experimental absence of u* — e* + o (which can be best understood if
v # v'), B. Pontecorvo and others proposed an experiment to test the assumption
that » is the same as »’. Noting that »’ also appears in

g N4 (3.471)

(because #* can virtually disintegrate into a proton and an antineutron), we can
settle the question of the identity or the nonidentity of » and »’ by examining
whether or not the neutral particle from pion decay (3.471) can induce a high-
energy neutrino reaction, that is,

v +n—¢ +p. (3.472)

In 1962 M. Schwartz and collaborators established experimentally that (3.472)
is forbidden, while

v +n-—p +p (3.473)

is fully allowed for »' from pion decay; these experimental facts are in agreement
with the idea that » and »’ are different.

1In general, you may introduce as many fields as you like without changing the physical
content, so long as the fields introduced are coupled to nothing.
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Pion decay and the CPT theorem. As a final example, let us make a comparison
between

T —>p +V (3.474)
and

n- —>e -+ b (3.475)
It is appealing to assume that the interactions responsible for (3%.474) anfi (3.475)
are the same in form as well as in strength, that is, the interactions are invariant
under

et <> u*, p<—> v, P>, (3.476)

In addition it is reasonable to postulate that in (3.475) the ﬁelq operators Yo
and «Jr, enter in the same combination as in nuclear beta. gecay, viz. in the com-
bination irysya(l + ¥si [Which is also equal to —iveva(l + vshfn]. With
these two hypotheses, the interaction densities may be taken as

_ip b ey He, (3.477)
e = 1 m.c %, wf'e')’s')’l(l + 'Ys)"lf'v] +
for (3.475) and
. .
Hou = i B im0+ 9]+ Ho, (3479)

for (3.474). The constant fis assumed to be universal, that is, the same for.both
(3.474) and (3.475); we have inserted the factor i/m.c just to‘ make (f? /4717'710) dimen-
sionless. Using the same argument as in A decay, we obtain the following for the

7T-€ Process:
o — "*_;;‘ r{:hc (C W/%-ZT) (@)(@:—2) [ideysya(l + ¥5) 0]
g e o[- 52))
(3.479)

where we have suppressed the momentum and spin indices for. the free-p‘af:)lcle.
spinors. The four-gradient acting on the pion plane wave just brings down ipi®[h;
because of energy-momentum conservation we get

ip®iysya(l + 5o, = —ipPya(l + 75)%

= —iiy-p® + v P + V)0

= mec”-‘e(l + 'Ys)”v, (3'480)
where we have used (3.388) and (3.390) with m, = 0. Let us now v'vork in the rest
system of the decaying pion with the z-axis along the aptmeutrmo momentumd
denoted by p. Using the explicit forms of free-partictle spinors (cf. Egs. 3.115 an
3.384), we can easily verify that for p along the quantization axis,

(1 + y)od@ = 200@), (14 7)o@ = 0 (3.481)

as m, — 0, which supports our earlier assertion that (1 + .ry5)4]b‘,<,‘) crgates right-
handed antineutrinos only. The amplitude for the production of a right-handed
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(spin-down) electron with momentum p, = —p is proportional to

m,,CZ . z_
VT VB BRI+ 79)u ()

:_2vac2+E,, mecz—i—Ee(O 1o —_Iple —1
7E, 3E, R SN

_E+mc+plc _ [m.c?
b = e (3.482)

e

as m, — 0, where we have used

E, _ (mi — m)c
- b

Ip| == T

E,+|ple = m,c (3.483)

Note that the use of the normalization convention (3.389) does not cause any

v

2 (=)L + ¥sp(P(p) = 0, (3.484)

which we .coul.d actually have guessed from angular momentum conservation.
gThe pion 1s spinless and the orbital angular momentum cannot have a nonvanish-
ing component al . i i
faftor ponent along p.) The only other thing we must evaluate is the phase-space
[pl’d|p| _ E.|p|* _ Efm — mi)
diE, + E)  m,c® dmic (3.485)

Collecting all the factors and using the Golden Rule, we finally get

1 _<f2 )rni(rni—mi)zc?_

Tn~—>e” +v)  \dxhe hnt, (3.486)
Similarly
1 _ f2 mz(mgr - mz)zc‘z
T~ —p~ +0) (47rhc) : am e (3.487)
What is more significant, the ratio of (3.475) to (3.474) is
'z —>e +9)  (m\*(m: — md)?
T = (E) (me%))Z: 1.3 x 1074, (3.488)

Note that tpe muc‘m.ic decay mode is much more frequent despite the smaller
Q-value available; it is hard to beat the factor (mefm,)? =~ 2.3 x 10-5,

A(;tually thezfgct that the transition probability computed with (3.477) is pro-
portional to m; is not surprising. To see this we first note that, if m, = 0, then

1Iﬁa‘)’s'}’)\(l + 'Ys)‘ll‘u = '\p‘e(l - 'Ys)'YS'YATP‘v
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would create only left-handed electrons. But the simultaneous creation of a left-
handed electron and a right-handed 7 in pion decay is strictly forbidden by angular
momentum conservation. It is therefore expected that the amplitude for (3.473) is
proportional to m,.

Although the result (3.488) was first obtained by M. Ruderman and R. Fink-
elstein as early as 1949, only two years after the discovery of the pion, for a
very long time the experimentalists failed to find the electronic decay mode; the
quoted upper limit was an order of magnitude lower than (3.488). When it became
evident that the electron and neutrino enter in the combination Yrey(1 + ysir,
in beta decay and also in muon decay, the idea of describing pion decay by (3.477)
and (3.478) became so attractive that some theoreticians even said, “The experi-
ments must be wrong.” Truly enough, a number of experiments performed since
1958 at CERN and other places brilliantly confirmed the predicted ratio (3.488).
We mention this example just to emphasize that the power of relativistic quantum
mechanics in making quantitative predictions is not limited to the domain of
electromagnetic interactions.

As a by-product of our calculation we obtain

(f?/4xhc) == 1.8 X 10713, (3.489)

when the observed pion lifetime is inserted in (3.487). So this is again an example
of “weak” interactions. We may also mention that a similar calculation with He
in (3.478) gives the following result:

[(z* —> p* +vp) =D~ —> p~ -+ ) #0,

(3.490)
Tzt — pu* +ve) =T —> p + ) =0.
This means that charge conjugation invariance [which demands I'(z* — p* + vy)
= I(x~ — p~ + 7)), etc.] is violated as well as invariance under parity.
It is very important to note that the equality of the z* and the =~ lifetime holds
despite the breakdown of charge conjugation invariance.
Following E. P. Wigner, we shall define the time-reversal operation which
reverses both momentum and spin. This definition of time reversal agrees with
our intuitive notion of the “reversal of motion.”§ Consider now the product

1The original calculation of Ruderman and Finkelstein was based on the parity conserv-
ing interaction if(h/m.c)(@P=/0x1)YreVsV 10y, The numerical result for the ratio of the
two decay modes is unchanged since )

"l_’e'Y5'Y/\'l!/'u = %["_p‘e'Ys'Y}L(l + (Ys)'\!’u + "Fe'}'s')')t(l - rYs)"!"v],

and the calculation for the emission of a right-handed v proceeds in the same way as
that for the emission of a left-handed ».

§If the final state is not described by a plane wave, a much more careful discussion of
time reversal is needed. This is because time reversal interchanges the roles of an incoming
and an outgoing state. For a detailed discussion of time reversal in both nonrelativistic
and relativistic quantum mechanics, see Sakurai (1964), Chapter 4.
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Fig. 3-10. CPT operation applied to pion decay. The gray arrows indicate the spin
direction.

Table 3-5
TRANSFORMATION PROPERTIES UNDER CHARGE CONJUGATION,
PARITY, TIME REVERSAL, AND CPT

Q p J Helicity
Charge conjugation} — +. + +
Parity + - + —
Time reversal 4+ — — e
CPT — + — —

{By charge conjugation we mean “particle-antiparticle conjugation.”

of charge conjugation, parity, and time reversal, denoted by CPT. The relations
(3.490) are completely consistent with invariance under CPT; the decay configura-
tion obtained by applying CPT is seen to be a physically realizable configuration
with the same transition probability (Fig. 3-10 and Table 3-5).

In the formalism developed in this chapter, the invariance under CPT can be
regarded as a consequence of the use of a Hermitian Hamiltonian. (Actually the
pion decay interaction we have written turns out also to be invariant under CP,
the product of charge conjugation and parity, but it is easy to write down a Her-
mitian Hamiltonian that violates CP invariance; for example, the electric-dipole-
moment interaction of Problem 3-16.) In a more axiomatic formulation of quantum
field theory it can be shown that it is impossible to violate CPT invariance without
drastically altering the structure of the theory. The fact that a wide class of quan-
tum field theories is invariant under CPT was first demonstrated by G. Liiders

and W. Pauli; its physical implications have been extensively discussed by T. D.
Lee, R. Ochme, and C. N. Yang.§

§For a more complete discussion of CPT invariance see Nishijima (1964), pp. 329-339;
Sakurai (1964), Chapter 6; Streater and Wightman (1963), pp. 142-146.
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PROBLEMS

3-1. Prove Eq. 3.13.

3-2. Consider an electron in a uniform and constant magnetic field B along the z-axis.
Obtain the most general four-component positive-energy eigenfunctions. Show that
the energy eigenvalues are given by

E = /mct + 2pi + 2nheleB|
withn = 0, 1, 2, . . . List all the constants of the motion.

3-3. (a) Construct the normalized wave functions for E > 0 plane waves which are

eigenstates of the helicity operator. (The momentum p is not necessarily assumed
to be in the z-direction.) Evaluate the expectation values of Z-p and iv,y-p
— B3P, that is, [V*E-pyrdix = Fivey-phdx and | rivey-pydix =
f 3 -ppdix.
(b) Construct the normalized wave function for an E > 0 transversely polarized
plane wave whose propagation and spin ((Z)) directions are along the positive
z- and the positive x-axes respectively. Evaluate the expectation values of 3, and
Y5y, = BZ..

3-4. Let yn(x, ¢) be the wave function for an E > 0 plane wave.

(a) Show that v, r(—x, ) is indeed the wave function for the E > 0 plane wave
with momentum reversed and the spin direction unchanged.

{b) Show that iZ,yr*(x, —1) is the wave function for the “time-reversed state”
in the sense that the momentum and spin directions are both reversed while the
sign of the energy is unchanged.

3-5. Consider the coupled two-component equations (cf. Eq. 3.26)

0 mc
_i 9 s®GR = 0 ()
l@x,,g“ ¢ h ¢,
. 0 mc
Y D = —TC R’
laxuU“ ¢ h ¢,
of}f) = (o, i), off’ = (o, —1).

(a) Write the above wave equations in the form

(s + )% =0

v (5)

¢(L) '
Obtain the explicit forms of v, and v§ = ¥{v}%;v; and check {v}, v;} = 28,, for
w,v =1,...,5. Find a unitary S that relates the new (Weyl) set {,} and the standard
(Dirac-Pauli) set {v,} via v, = Sv,57".
(b) Without using the invariance properties of the Dirac theory, discussed in

Section 3-4, establish directly the relativistic covariance of the coupled two-com-
ponent equations. In particular, find 2 x 2 matrices S and S such that

¢(1c, L)'(xl) — S(R. L)y d’(R’ L) (x),

where x and x’ are related by a Lorentz transformation along the x,-axis. Discuss

where
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also the covariance of the coupled wave equations under parity; ¢ 2 (x’) = ?,
where x’ = (—x, ict).
(a) Reduce

a"A(p)0  u"X(p) = iu (D) v, u"(p)

to the form x“7*0x where u”(p) and u(p’) are positive-energy free particie
spinors and x® and x©? are the corresponding two-component Pauli spinors.
Assume |p| =|p’|.

(b) The interaction of a neutron with the electromagnetic field can be represented
at low energies by the phenomenological Hamiltonian density

Hiny = —(M,elh/anc)[% W'lp’_/‘o’w“l/‘]; x = —1091.

Using the expression obtained in (a), compute the differential cross section for the
scattering of a slow neutron by an electrostatic field in Born approximation.,
Interpret your results physically. Show, in particular, that even a very slow neutron
can have an attractive short-ranged (6%x)-like) interaction (known as the Foldy
interaction) with an electron. Show also that if this interaction is represented by
an equivalent spherical potential well of radius r, = (e?/4mmec?), then the depth
of the potential is 4.08 keV.}

Using the uncertainty principle, N. Bohr argued that it is impossible to prepare
a beam of free electrons with all spins pointing in the same direction by means
of a Stern-Gerlach type experiment or, more generally, by a selection mechanism
that takes advantage of the classical concept of a particle trajectory.§ Justify Bohr’s
thesis from the point of view of the Dirac theory of the electron. Would this still
be true even if the electron had a large anomalous magnetic moment ?

Consider the unitary operator

_ [mc® +]|E| Bat-pc
V=N"7T1E * 73Eme FTED

where | E| is to be understood as a “square root operator,” A/ €Tp? - mict, which
just gives o/|p[2c® + mic* as its eigenvalue when it acts on the wave function for
a free-particle plane wave.

(a) Show that the application of U to the wave function for a positive- (negative-)
energy plane wave results in a wave function whose lower (upper) two components
are missing.

(b) The above transformation (first considered in 1948 by M. H. Pryce]]) can be
regarded as a change in the representation of the Dirac matrices. Show that the
operator in the usual representation that corresponds to x in the new representa-
tion is

ichBat ic’hB(a X p)p (e X p)

X =X+ 578 ~ 21EF(E] + me® ~ ZE[QE| T md’

(The operator X is sometimes called the mean position operator.)

tAlthough the Foldy interaction is much weaker than the nuclear interaction, it can be
detected experimentally as thermal neutrons are scattered coherently by high-Z atoms.
§The original argument of Bohr can be found in Mott and Massey (1949), p. 61.

|| This transformation is a special case of a class of transformations considered extensively
by L. L. Foldy and S. A. Wouthuysen, and by S. Tani.

3-10.

3-11.

3-12.
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(¢) Prove

X = Lc%p/(E|.
(Note that the expression for X is free from Zitterbewegung, but the nonlocality
of X is the price we must pay.)

At some instant of time (say, ¢ = 0) the normalized wave function for an eléctron
is known to be

AT~

~
’lll‘(X, O) ‘_'\/V

eipsxs/h

d

where a, b, ¢, and d are independent of the space-time coordinates and satisfy
la.l2 + |&]% + fclz‘ <+ |d|* = 1. Find the probabilities of observing the electron
with (i) E > 0 spin-up, (i) E > 0 spin-down, (iii) E < 0 spin-up, and (v E<O
spin-down.

Consider a Dirac particle subject to a (three-dimensional) spherical well potential
Vir)=—V,<0
Vir) =0

for r<r,,
for r>r,

(a) Obtain the exact four-component energy eigenfunctions for j = % (“even”)
bound states, where “even” means even orbital parity for the upper two components.
(b) Set up an equation that determines the energy eigenvalues.

(c) What happens if the strength of the potential is increased so that V, becomes
comparable to or larger than 2mc2?

Discuss how the numbers of nodes of the radial functions G(r) and F(r) of the
hydrogen atom are related to the quantum numbers #, j, and /.

Consider a positive-energy electron at rest with spin-up. Suppose at 1 = 0 we
apply an external (classical vector potential) represented by

A = fi,a cos ot

(where a is space-time independent, and f, stands for a unit vector in the positive
'z-direction). Show that for ¢ > 0 there is a finite probability of finding the electron
In a negative-energy state if the negative-energy states are assumed to be initially
empty. In particular work out quantitatively the following two cases: fio < 2mc?
and fiw &~ 2mc?.

. (@) Prove

3 WP B = 3 0@ B + ()i (~p)]
= 8.a(| El/me?).

(b) Using the above relation, prove the equal-time anticommutation relation
between +r,(x) and +ri(x) (3.409).

. Consider an allowed pure Fermi 8+ decay. Only the vector interaction contributes,

?md it is legitimate to replace v, by rv,. Without using the trace techniques to be
introduced in the next chapter show that the positron-neutrino angular correlation
is given by

1 + (v/c)er cos 6,
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where 6 is the angle between the momenta of e* and ».J Compute also the expecta-

tion value of the positron helicity, and interpret your result, using angular momen-

tum conservation.

3-15. We showed in Section 2-3 that in atomic physics, favored radiative transitions
take place between states of opposite parities, that is, parity must change. Mean-
while, we know that the fundamental electromagnetic interaction conserves parity.
Resolve this paradox.

3-16. (a) Suppose the electron had a static electric dipole moment analogous to the

magnetic moment. Write a Hamiltonian density that represents the interaction
of the electric dipole moment with the electromagnetic field and prove that it is
not invariant under parity.
(b) Show that the electric dipole moment interaction would lead to a mixing
(in the quantum-mechanical sense) between the 2s; and 2pl states of the
hydrogen atom. From the fact that the observed and the calculated Lamb shift
agree within 0.5 Mc, obtain an upper limit on the magnitude of the electric dipole
moment of the electron. (Caution: the relevant matrix element vanishes if the
nonrelativistic wave functions for 253 and 2 p} are used.)

tBecause «v,u(p) = u(—p), it is easy to see that the angular coefficient would be just op-
posite in sign if the interaction were scalar. Historically the vector nature of Fermi transi-
tions was first established by J. S. Allen and collaborators, who showed that the positron
and the neutrino tend to be emitted in the same direction in the 8+ decay of 4%% (almost
pure Fermi).

CHAPTER 4

COVARIANT PERTURBATION THEORY

4-1. NATURAL UNITS AND DIMENSIONS

In relativistic quantum theory it is most convenient to use units in which action
(energy times time) is measured in %, and length divided by time is measured in c.
This system of units is referred to as natural units. When we work in natural units
(as we shall for the remaining part of this book) the symbol m, may mean not only
the electron mass but also any one of the following:

a) reciprocal length -
1y 1
me(__ h/mec) T 38 x 10 "em’ “.1)
b) reciprocal time
1 . 1
m‘~‘<— h/mec2) =129 X 10-7 sec’ (4.2)
¢) energy
my= m,c*) = 0.511 MeV, “.3)
d) momentum
m(= m,c) = 0.511 MeV/c. 4.4)
In natural units the fine-structure constant is simply
e’ 1

*= I T T3T0d (4.5)

In the “pure” electrodynamics of electrons and photons, apart from m, there
1s no other constant that has the dimension of mass or reciprocal length. So, from
purely dimensional considerations, we may argue that the cross section for any
electrodynamic process which is of order e? in the amplitude must be of the order of

a‘.’ N e2 2 1 o

Hf, = (Zn_r) r;g = I, (4-6)
I, being the classical radius of the electron. Indeed, apart from the numerical
factor 87/3, (4.6) is precisely the Thomson cross section computed in Chapter 2.
Working with « and m,, we can form other constants which are familiar from
atomic physics. For instance, the Bohr radius is given by

a, = l/am,, 4.7
so that
S S cq. 1
ao-rz-ro_137.l.m- (48)
The Rydberg energy is simply
Ry.. = @’ m,2 = 13.6 V. 4.9
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