PHY 712 Electrodynamics
10-10:50 AM MWF Olin 103

Notes for Lecture 28:
Continue reading Chap. 11 -
Theory of Special Relativity

A. Lorentz transformation relations
B. Electromagnetic field transformations

C. Connection to Liénard-Wiechert potentials
for constant velocity sources
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Presenter Notes
Presentation Notes
In this lecture, we will continue our discussion of Special Relativity.    In particular, we will discuss how the E and B fields transform between two relatively moving reference frame.    Using a particular example, we will be able to show that our results for transformed fields are consistent with the results we obtain using the analysis using the Lienard-Wiechert potentials discussed earlier.
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Presenter Notes
Presentation Notes
The HW relates to results derived in class --


Some ideas from webpage --
PHY 712 Electrodynamics

IMWF 10-10:50 AM/Olin 103 Webpage: mp:waw.wfu.eduf~nata|ief523p_hy712;\

\Instructor: Natalie Holzwarth |0ffice:300 OPL|e-mail:natalie@wfu.edu‘

Some Ideas for Computational Project

The purpose of the "Computational Project” is to provide an opportunity for you to study a topic of
your choice in greater depth. The general guideline for your choice of project is that it should have
something to do with electrodynamics, and there should be some degree of computation or
analysis with the project. The completed project will include a short write-up and a ~15 min
presentation to the class. You may design your own project or use one of the following list (which
will be updated throughout the term).

Evaluate the Ewald sum of various ionic crystals using Maple or a programing language.
(Template available in Fortran code.)

Work out the details of the finite difference or finite element methods.

Work out the details of the hyperfine Hamiltonian as discussed in Chapter 5 of Jackson.
Work out the details of Jackson problem 7.2 and related problems.

Work out the details of reflection and refraction from birefringent materials.

Analyze the Kramers-Kronig transform of some optical data or calculations.

Determine the classical electrodynamics associated with an infrared or optical laser.
Analyze the radiation intensity and spectrum from an interesting source such as an atomic or
molecular transition, a free electron laser, etc.

Work out the details of Jackson problem 14.15.
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PHysics HHURSDAY

CoLLoqQuiuM Marci 23. 2023

Beyond BCS: An Exact Model for
Superconductivity and Mottness

The Bardeen-Cooper-Schrieffer (BCS) theory of
superconductivity described all superconductors until the
1986 discovery of the high-temperature counterpart in the
cuprate ceramic matenals. This discovery has challenged
conventional wisdom as these matenals are well known to
violate the basic tenets of the Landau Fermi liquid theory of
metals, crucial to the BCS solution.  Precisely what should
be used to replace Landau's theory remains an open
question. The natural question arises: What is the simplest
model for a non-Fermi liquid that yields tractable results.
Our work builds[1] on an overlooked symmetry that is
broken in the normal state of generic models for the

cuprates and hence serves as a fixed point. A surprise is Professor Phil lp

that this fixed point also exhibits Cooper's instability[2,2]. Pl . ll ]

However, the resultant superconducting state differs 11 113' S

drastically[3] from that of the standard BCS theory. For Department of Physics

example the famous Hebel-Slichter peak is absent and the The Grainger College of Engineering

elementary excitations are no longer linear combinations of University of ILlinois

particles and holes but rather are superpositions of Urbana-Champaign =
composite excitations. Our analysis here points a way N Ote ea rl Ie r
forward in computing the superconducting properties of 2:30 pm - Olin 105* u

strongly correlated electron matter. Reception at 3:30pm - Olin Entrance tl m e a n d
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. Convenient notation :
Lorentz transformations
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Presenter Notes
Presentation Notes
We will continue to use the stationary and moving reference frames introduced in the previous lecture.     In this case, the relative motion is along the x-axis.   Of course, there is nothing special about this choice, but we will use it throughout this lecture.


Lorentz transformations -- continued

For the moving frame with v =vX :

(7 B,
£ - B, Y,
0 0
. 0 0
X X'
=L| "
y y
\z) \Z
Notice:

2,2 2 2
ct —x —Yy

0

0
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0

2 202 2 2 2
-z =ct"—x"—y" " -2

S = O O



Presenter Notes
Presentation Notes
This slide reviews the transformations of the time and position 4-vector.


Velocity relationships

1 ! '
Consider: u_ = Uity u = "y U = “.
X

l+wu' /c® 7 yv(1+vu'x/cz) ) j/v(1+vu'x/cz).

) = 1 _ 1+vu' /c’

Co =) JI-(uve) 1-(v/e)
=y.c=7,(nctBru')

=y, =7, (' +7,0) =7, (7,0 F By.c)

— ! _ '
j yuuy - yuvu y yuuz - yuvu z

Note that = yvy/u.(1+vu 'x/cz)

/7/010\ ( yu'c \
yuux 7/u'u'x

V.U, y.u',

\7/uu2/ \yu'u'Z/




Special theory of relativity and Maxwell’'s equations

Continuity equation: é;—'[t) +V-J=0
Lorenz gauge condition: ! 88;(; +V-A=0
c
2
Potential equations: 12 %;) —V°® =47p
c
2
A
L TA _yep 27y
c- ot c
Field relations: E=-VO- 10A
c Ot

B=VxA


Presenter Notes
Presentation Notes
This slide reviews the relevant equations for the continuity of our sources, and for Maxwell’s equations in terms of the scalar and vector potentials, and for the relationship of the E and B fields to the scalar and vector potentials.


More 4-vectors: a =10,1,2,3}

Time and position : = X

(04

Charge and current : = J

(94

Vector and scalar potentials : —|



Presenter Notes
Presentation Notes
Here we identify 4-vectors of  time-position, charge and current sources, and scalar and vector potentials.


( A
Lorentz transformations 7o np 000
p_| 7P 00
’ 0 0O 1 O
Lo 0 o0 1,
Time and space: X =Lx“=L7x”
Charge and current : J =L J*=L"J”

Vector and scalar potential : A% = £ 4" = £7 4"

1 )

3 [

Notation: Ly = Z LPx” Repeatgd index
p=0 summation
convention
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Presenter Notes
Presentation Notes
It is reasonable to postulate that each of these three 4-vectors transform from one reference frame to another with the Lorentz transformation.


4-vector relationships

(et (A%

X Al 0 . a

& r & (A ,A): upper index 4 - vector A“ for (a = 0,1,2,3)
Y

\z) 4

Keeping track of signs - - lower index 4 - vector 4, = (AO ,—A)

Derivative operators (defined with different sign convention):

ok :(i,_Vj aa :(i,Vj
cOt cOt


Presenter Notes
Presentation Notes
In addition to the 4-vectors we have defined up to now, which are written with an upper index alpha,  we will also need to define a lower index version of the 4-vector which just means that the space part is taken with a minus sign.    We also need a notation for derivatives with respect to time and space given with the partial symbol.   It turns out that for consistency, the upper and lower signs  needed for the derivative operator, the upper and lower signs must be given as indicated.     While Jackson’s conventions are consistent throughout his text,    other textbooks may use other sign conventions.


.

Special theory of relativity and Maxwell’'s equations

Continuity equation:
Lorenz gauge condition:

Potential equations:

Field relations:

Z_I[t)JrV-J:O > 9.J°=0

l ag+v.A=0 > aaA“:()
c Ot
1 2
¢’ (Ztg}_vch:m,o 4
0,004 ==L
1 ‘A o
: %2 _via=2Ty ¢
C 4 C
E-_vp_L %A
c O 399

B=VxA


Presenter Notes
Presentation Notes
Here we exercise our new notation to write the important equations.    I have to admit that the new notation looks quite compact, (pretty, intriguing?)   But what about the E and B fields,   how does the new notation work for them?


From the scalar and vector potentials, we can determine
the E and B fields and then relate them to 4-vectors,
finding --

E-_vp_19A Ex:—aq)—an:—(@OAl—ﬁle)
c Ot Ox  cot
0A
g0 % (g )
g oy cot
£ =0 U (g o)
Oz cot
B:VXA B :aAZ_aAy:_(82A3—63A2)
0y Oz
By — agx _aaAz :_(83141 _alA3)
z X
0A
p o0 U (o )

S Ox Oy


Presenter Notes
Presentation Notes
Writing out the 6 equations for all of the E and B field components, we see that the new notation has a very nice pattern, but each field component  has two indices!!!    We can thus conclude that the 6 E and B field components are part of  a 4x4 matrix or tensor.


“ Field strength tensor FY = (@“Aﬂ —aﬂA“)

For stationary frame

(0 -E, —E, —E,)
v _| B2 0 -B. B,
E, B, 0 -B,
\E. -B, B, 0,

For moving frame

0 -E'. -E'| -E'
F'a’BE Ex O _BZ By
E'' B. 0 -B'
E' -B' B' 0

z y x J


Presenter Notes
Presentation Notes
Therefore we can define the field strength tensor and assign each of  the 6 field components and their negative values to an entry in the 4x4 field strength tensor.      From this logic, we can then deduce that  the field strength tensor transforms  as a tensor with a Lorentz transformation sandwich.   Evaluating the multiplication of the three matrices,  we obtain the result given on the last line.     


Summary --

Field strength tensor

F% =

(0

~E, -E,
0 -B.
B, 0
-B, B,

F =(p°4” -5 4°)

F'¥ =

0
E
E
E

X

Y

z




.

=» This analysis shows that the E and B fields must be
treated as components of the field strength tensor and that in
order to transform between inertial frames, we need to use the
tensor transformation relationships:

Transformation of field strength tensor

FP =L L7

7
- 7P,
0
0
0 —~E'

X

E' 0
r(E'+B,8.) 7(B.+BE)
]/V(E'Z—ﬂVB'y) _7/\/( 'y_ﬂvE'z)

y.p, 0 0
o 00
0 1 O
0 0 1
~y(E",+8,B.) -7(E.-B.B)



Presenter Notes
Presentation Notes
Therefore we can define the field strength tensor and assign each of  the 6 field components and their negative values to an entry in the 4x4 field strength tensor.      From this logic, we can then deduce that  the field strength tensor transforms  as a tensor with a Lorentz transformation sandwich.   Evaluating the multiplication of the three matrices,  we obtain the result given on the last line.     


anerse transformation of field strength tensor

v, —np 00
FreB — p-lay s p 168 £l =75, Yy 0 0
' ' ! 0 0 1 0
0 0 0 1
0 -E, -7,(E,-B,B.) -7,(E.+BB,)
.l = 0 n(B-pE) £(5+AE)
v.(E,~BB.) 7,(B.-BE,) 0 -B,
v,(E.+B,B,) —7.(B,+BE.) B, 0
Summary of results:
E'X — X B')C — B)C
£, = (Ey_'BB) B'y:7(8y+ﬂvE)
E'.=y,(E.+B3B, B'.=y,(B.-BE,)



Presenter Notes
Presentation Notes
Using the same logic, it is possible to evaluate the inverse transformation.   The last result is the same as given in Jackson Eq. 11.148.


@)omparison of the two transformations

v, B, 00
Fob — pr e p b P = v.B, v, 00
v v 10 0 1 0
0 0 0 1
0 —E' —VV(E'ﬁﬂVB'Z) —yv(E'z—ﬂvB'y)
o _ E', 0 -7, (B+BE,) 1,(B,-BE.)
r(E +pB.) 7 (B.+BE) 0 -B
y(E.-BB,) 7B -BE") B, 0
v B, 00
b — p-lay o p-1p £l = -7.0, v 0 0
v v v 0 0 10
0 0 0 1
0 -k ~7.(E,~B.B.) -7.(E.+BB,)
| B 0 1. (B.=BE,) 7.(B+AE.)
v,(E,~BB.) 7,(B.-BE,) 0 -B,
v,(E.+BB,) —r.(B,+BE.) B, 0
03/22/2023 PHY 712 Spring 2023 -- Lecture 28

18


Presenter Notes
Presentation Notes
Comparing the various transformations.


.

Example: Fields in moving frame:
—vt'X + by
E' :%(x'f(-l—y'f’): Q( - y322
A ]/" 1\ 2 2
A y ya ((—Vl) +b )
_ e B'=0
74
b—
q
_ sX > X

2 /7 Fields 1n stationary frame:

E =E' B =B’
E =y,(E'+5B") B,=7.(B,~AE"
E =y,(E.-BB") B.=y,(B.+BE")
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Presenter Notes
Presentation Notes
Now, consider a particular example discussed in Section 11.10 of Jackson.    A particle sits at the origin of the moving frame.   The E and B fields are measured  at the point b yhat in the stationary frame.   What are the values of the fields measured in the stationary frame?    


.

Example: Fields in moving frame:
—vt'X + by
N E' =L (x's+y'y)= q(—v'%+ }22
y | Y ’ ((—vy +27)
B — B'=0
"4
b F; : : .
q ields in stationary frame:
— > X >X’E e q(—Vt')
X X 3/2
2 /7 ((—vt')2 +b2)
Fields in stationary frame: B C\ q (Q/Vb)
EXZE'X BXZB'X Ey_j/V(Ey _((_vld)2+b2)3/2
E =y (E'\+BB") B, =y,(B',~BE")
E =y,(E.-BB") B.=y,(B.+BE") B.=y. (,BVE ,y) _ Q(}/V,Bvb)

() +07)
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Presenter Notes
Presentation Notes
It is easy to write the fields in the moving frame, since the particle is stationary in that frame.   Then we use the transformation equations to find the fields in the stationary frame.    We are not quite done, because the expressions involve the time measured in the moving frame.


.

Example: Fields in moving frame:
L —vt'X + by
A y A y’ E':%(x'x+y y)= q( vz Zy/)z
r ((—vt') +b )3
B _—) B'=0
"4
b~ q Fields 1n stationary frame:
_ sxX > X —
' q\—vyt
E}C =FE x ( 5 ) 3/2
2 2’ ((—V]/Vf) +b2)
| q(7,b
Ey—YV(Ey): (2 )23/2
Expression in terms of ((“’W) +b )

consistent coordinates

t'=yt

03/22/2023

q(7,B.b)

B.=y,(BE",)=

3/2

((-vr0)" +5°)
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Presenter Notes
Presentation Notes
Using the time-coordinate transformation we can then write the fields measured in the stationary frame in terms of the time appropriate to that frame.
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Presenter Notes
Presentation Notes
This plot shows the y component of the electric field as measured in the stationary frame plotted as a function of time.   For large gamma, there is a large peak at t=0.


Examination of this system from the viewpoint of the
the Lienard-Wiechert potentials (temporarily keeping Sl units)

dR (?)
dt

P, =g (r-R (1) I0,0=qR,(HFT-R, (1) R, ()=

v ar P! (t'—(t—|r—r'|/c))

CD(r,t)— o

”d3rd I, t) (= (- r—r'|/c))

A(r,t)=
(r:1) 47zeo 'r—r'|

Evaluating integral over ¢':

_[_i dt' f(t)S(t'=(t=|r =R (t")| /c)) = /()

“R,(,) (r-R,(:)
clr—R,(1,)]



Presenter Notes
Presentation Notes
Do these results make sense?     In order to check the results, we can calculate the fields directly in the stationary frame using the methods we discussed several lectures ago using the Lienard-Wiechert potentials.   Here we review some of those equations.


Examination of this system from the viewpoint of the
the Lienard-Wiechert potentials — continued (Sl units)

o, =—1

41e, R_V'R
c
q \4
A(r,t)=
(r:1) dre,c” p V'R
c
dR,(t,)
where R=r-R (,) v=—o
dt,
OA(r, 1)

E(r,t) =-VO(r,t)— Py

B(r,t) =V xA(r,t)


Presenter Notes
Presentation Notes
More equations.



.

Examination of this system from the viewpoint of the
the Lienard-Wiechert potentials — continued (Sl units)



Presenter Notes
Presentation Notes
Finally the E and B fields obtained from that analysis.


Examination of this system from the viewpoint of the
the Lienard-Wiechert potentials — (Gaussian units)

—Rxv v\ v-R Rxv/c
B(rat):% R 3[1_62_'_ 2 j_ R
L L
B(r,t)zRX];(r’t).
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Presenter Notes
Presentation Notes
Here are the equations in cgs Gaussian units that we are now using.


= Examination of this system from the viewpoint of the
the Lienard-Wiechert potentials — continued (Gaussian units)

VR Vv
E(r,/)=—1 R-YE |-
V- RT c ¢* || For our example:

R== R (t)=v& r=by

i | R=by—vix  R=V’i*+b’

2
q
B(r,t) == 1——2j v=1% trzt—£

c (R v Rj3 ( c c

This should be equivalent to the result given in Jackson (11.152):
—vytX + yby

(0> +yp0)?)

ypbz
(0 +p0)?)”

E(x,y,z,t)=E(0,b,0,¢t) =¢q

B(x,y,z,t)=B(0,b,0,t)=¢q


Presenter Notes
Presentation Notes
Now to evaluate the equations, we need to consider the constant velocity trajectory of our example.    We will continue this discussion on Wednesday.


Summary --

0 y y’ Transformation equations:
E =E' B =B'
B - ' ! ' '
v E =y,(E'+BB") B,=y,(B',-BE")
b-‘ ! ' ' !
q EZ:}/V(EZ_ﬂVBy) BZ:yv(BZ+IBvEy)
- 3 G x’
’ For our example, B'=0 and £'_and E'  are nontrivial
z /2 * !
The nontrivial fields in the stationary frame are
E =E'
E =y,E" Is this result consistent with the
B.=yBE" the Lienard-Wiechert analysis?
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