PHY 712 Electrodynamics 10-10:50 PM MWF Olin 103

Notes for Lecture 30:

 Start reading Chap. 14 Radiation by moving charges1. Motion in a line
2. Motion in a circle
3. Spectral analysis of radiation

24	Mon: 03/13/2023	Chap. 9	Radiation from localized oscillating sources	$\# 17$	$03 / 17 / 2023$
$\mathbf{2 5}$	Wed: $03 / 15 / 2023$	Chap. 9	Radiation from oscillating sources		
$\mathbf{2 6}$	Fri: $03 / 17 / 2023$	Chap. 9 \& 10	Radiation and scattering	$\# 18$	$03 / 20 / 2023$
$\mathbf{2 7}$	Mon: $03 / 20 / 2023$	Chap. 11	Special Theory of Relativity	$\# 19$	$03 / 24 / 2023$
$\mathbf{2 8}$	Wed: $03 / 22 / 2023$	Chap. 11	Special Theory of Relativity		
$\mathbf{2 9}$	Fri: $03 / 24 / 2023$	Chap. 11	Special Theory of Relativity	$\# 20$	$03 / 27 / 2023$
$\mathbf{3 0}$	Mon: $03 / 27 / 2023$	Chap. 14	Radiation from moving charges	$\# 21$	$03 / 29 / 2023$
$\mathbf{3 1}$	Wed: $03 / 29 / 2023$	Chap. 14	Radiation from accelerating charged particles		
$\mathbf{3 2}$	Fri: $03 / 31 / 2023$	Chap. 14	Synchrotron radiation		

PHY 712 -- Assignment \#21

March 27, 2023
Start reading Chap. 14 in Jackson .

1. Consider an electron moving at constant speed $\beta c \approx c$ in a circular trajectory of radius ρ. Its total energy is $E=\gamma \mathrm{mc}^{2}=200 \mathrm{GeV}$. Estimate the value of the ratio of the energy lost during one full circle to its total energy. Assume that synchroton radius in this case is $\rho=10^{3}$ meters. Note if you use the expression for this process analyzed by Jackson, please explain the details.

Radiation from a moving charged particle

Variables (notation): $\quad \dot{\mathbf{R}}_{q}\left(t_{r}\right) \equiv \frac{d \mathbf{R}_{q}\left(t_{r}\right)}{d t_{r}} \equiv \mathbf{v}$

Liénard-Wiechert fields (cgs Gaussian units):

$$
\begin{align*}
\mathbf{E}(\mathbf{r}, t)= & \frac{q}{\left(R-\frac{\mathbf{v} \cdot \mathbf{R}}{c}\right)^{3}}\left[\left(\mathbf{R}-\frac{\mathbf{v} R}{c}\right)\left(1-\frac{v^{2}}{c^{2}}\right)+\left(\mathbf{R} \times\left\{\left(\mathbf{R}-\frac{\mathbf{v} R}{c}\right) \times \frac{\dot{\mathbf{v}}}{c^{2}}\right\}\right)\right] . \tag{19}\\
& \mathbf{B}(\mathbf{r}, t)=\frac{q}{c}\left[\frac{-\mathbf{R} \times \mathbf{v}}{\left(R-\frac{\mathbf{v} \cdot \mathbf{R}}{c}\right)^{3}}\left(1-\frac{v^{2}}{c^{2}}+\frac{\dot{\mathbf{v}} \cdot \mathbf{R}}{c^{2}}\right)-\frac{\mathbf{R} \times \dot{\mathbf{v}} / c}{\left(R-\frac{\mathbf{v} \cdot \mathbf{R}}{c}\right)^{2}}\right] . \tag{20}
\end{align*}
$$

In this case, the electric and magnetic fields are related according to

$$
\begin{equation*}
\mathbf{B}(\mathbf{r}, t)=\frac{\mathbf{R} \times \mathbf{E}(\mathbf{r}, t)}{R} . \tag{21}
\end{equation*}
$$

$\dot{\mathbf{R}}_{q}\left(t_{r}\right) \equiv \frac{d \mathbf{R}_{q}\left(t_{r}\right)}{d t_{r}} \equiv \mathbf{v} \quad \mathbf{R}\left(t_{r}\right) \equiv \mathbf{r}-\mathbf{R}_{q}\left(t_{r}\right) \equiv \mathbf{R} \quad \dot{\mathbf{v}} \equiv \frac{d^{2} \mathbf{R}_{q}\left(t_{r}\right)}{d t_{r}{ }^{2}}$

Comment --

$$
\begin{gather*}
\mathbf{E}(\mathbf{r}, t)=\frac{q}{\left(R-\frac{\mathbf{v} \cdot \mathbf{R}}{c}\right)^{3}}\left[\left(\mathbf{R}-\frac{\mathbf{v} R}{c}\right)\left(1-\frac{v^{2}}{c^{2}}\right)+\left(\mathbf{R} \times\left\{\left(\mathbf{R}-\frac{\mathbf{v} R}{c}\right) \times \frac{\dot{\mathbf{v}}}{c^{2}}\right\}\right)\right] . \tag{19}\\
\mathbf{B}(\mathbf{r}, t)=\frac{q}{c}\left[\frac{-\mathbf{R} \times \mathbf{v}}{\left(R-\frac{\mathbf{v} \cdot \mathbf{R}}{c}\right)^{3}}\left(1-\frac{v^{2}}{c^{2}}+\frac{\dot{\mathbf{v}} \cdot \mathbf{R}}{c^{2}}\right)-\frac{\mathbf{R} \times \dot{\mathbf{v}} / c}{\left(R-\frac{\mathbf{v} \cdot \mathbf{R}}{c}\right)^{2}}\right] . \tag{20}
\end{gather*}
$$

In this case, the electric and magnetic fields are related according to

$$
\begin{equation*}
\mathbf{B}(\mathbf{r}, t)=\frac{\mathbf{R} \times \mathbf{E}(\mathbf{r}, t)}{R} . \tag{21}
\end{equation*}
$$

Note that (21) can be demonstrated by evaluating $R \times E(r, t)$

Other helpful identities:

$$
\begin{aligned}
& a x(b x c)=b(a \cdot c)-c(a \cdot b) \\
& a \cdot(b x c)=b \cdot(c x a)=c \cdot(a x b)
\end{aligned}
$$

Electric field far from source:

$$
\begin{aligned}
& \mathbf{E}(\mathbf{r}, t)=\frac{q}{\left(R-\frac{\mathbf{v} \cdot \mathbf{R}}{c}\right)^{3}}\left\{\begin{array}{l}
\mathbf{R} \times\left[\left(\mathbf{R}-\frac{\mathbf{v} R}{c}\right) \times \frac{\dot{\mathbf{v}}}{c^{2}}\right]
\end{array}\right\} \\
& \begin{array}{l}
\text { Note that all of the variables }
\end{array} \\
& \begin{array}{ll}
\text { (}(\mathbf{r}, t)=\frac{\mathbf{R} \times \mathbf{E}(\mathbf{r}, t)}{R} & \begin{array}{l}
\text { equations right hand side of the }
\end{array} \\
\text { Let } \hat{\mathbf{R}} \equiv \frac{\mathbf{R}}{R} \quad \boldsymbol{\beta} \equiv \frac{\mathbf{v}}{c} \quad \quad \begin{array}{l}
\dot{\boldsymbol{\beta}} \equiv \frac{\dot{\mathbf{v}}}{c}
\end{array} \\
\mathbf{E}(\mathbf{r}, t)=\frac{q}{c R(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{3}}\{\hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]\}
\end{array} \\
& \mathbf{B}(\mathbf{r}, t)=\hat{\mathbf{R}} \times \mathbf{E}(\mathbf{r}, t)
\end{aligned}
$$

Poynting vector:

$$
\begin{aligned}
& \mathbf{S}(\mathbf{r}, t)=\frac{c}{4 \pi}(\mathbf{E} \times \mathbf{B}) \\
& \mathbf{E}(\mathbf{r}, t)=\frac{q}{c R(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{3}}\{\hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]\} \\
& \mathbf{B}(\mathbf{r}, t)=\hat{\mathbf{R}} \times \mathbf{E}(\mathbf{r}, t) \quad \mathbf{E} \times(\hat{\mathbf{R}} \times \mathbf{E}(\mathbf{r}, t))=\hat{\mathbf{R}}|\mathbf{E}|^{2}-\mathbf{E}(\hat{\mathbf{R}} \cdot \mathbf{E}) \\
& \mathbf{S}(\mathbf{r}, t)=\frac{c}{4 \pi} \hat{\mathbf{R}}|\mathbf{E}(\mathbf{r}, t)|^{2}=\frac{q^{2}}{4 \pi c R^{2}} \hat{\mathbf{R}} \frac{|\hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]|^{2}}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{6}}
\end{aligned}
$$

Note: We have used the fact that
$\hat{\mathbf{R}} \cdot \mathbf{E}(\mathbf{r}, t)=0$ which follows from the vector identities.

Power radiated

$$
\begin{aligned}
& \mathbf{S}(\mathbf{r}, t)=\frac{c}{4 \pi} \hat{\mathbf{R}}|\mathbf{E}(\mathbf{r}, t)|^{2}=\frac{q^{2}}{4 \pi c R^{2}} \hat{\mathbf{R}} \frac{|\hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]|^{2}}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{6}} \\
& \frac{d P}{d \Omega}=\mathbf{S} \cdot \hat{\mathbf{R}} R^{2}=\frac{q^{2}}{4 \pi c} \frac{|\hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]|^{2}}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{6}}
\end{aligned}
$$

In the non-relativistic limit: $\quad \beta \ll 1$
$\left.\left.\frac{d P}{d \Omega}=\frac{q^{2}}{4 \pi c} \right\rvert\, \hat{\mathbf{R}} \times[\hat{\mathbf{R}} \times \dot{\boldsymbol{\beta}}]\right]^{2}=\frac{q^{2}}{4 \pi c^{3}}|\dot{\mathbf{v}}|^{2} \sin ^{2} \Theta$

Radiation from a moving charged particle

Radiation power in non-relativistic case -- continued

$$
\begin{aligned}
& \frac{d P}{d \Omega}=\frac{q^{2}}{4 \pi c^{3}}|\dot{\mathbf{v}}|^{2} \sin ^{2} \Theta \\
& P=\int d \Omega \frac{d P}{d \Omega}=\frac{2}{3} \frac{q^{2}}{c^{3}}|\dot{\mathbf{v}}|^{2}
\end{aligned}
$$

Radiation distribution in the relativistic case

$$
\frac{d P}{d \Omega}=\mathbf{S} \cdot \hat{\mathbf{R}} R^{2}=\left.\frac{q^{2}}{4 \pi c} \frac{|\hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]|^{2}}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{6}}\right|_{t_{r}=t-R / c}
$$

This expression gives us the energy per unit field time t. We are often interested in the power per unit retarded time $t_{r}=t-R / c$:

$$
\begin{aligned}
& \frac{d P_{r}(t)}{d \Omega}=\frac{d P(t)}{d \Omega} \frac{d t}{d t_{r}} \quad \frac{d t}{d t_{r}}=1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}} \\
& \frac{d P_{r}\left(t_{r}\right)}{d \Omega}=\left.\frac{q^{2}}{4 \pi c} \frac{|\hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]|^{2}}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{5}}\right|_{t_{r}=t-R / c}
\end{aligned}
$$

Some details -

The power derived from the Poynting vector in terms of the field times is given by:
$\frac{d P}{d \Omega}=\mathbf{S} \cdot \hat{\mathbf{R}} R^{2}=\left.\frac{q^{2}}{4 \pi c} \frac{|\hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]|^{2}}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{6}}\right|_{t_{r}=t-R / c}$
The integrated power would be given by
$W=\int d t \frac{d P(t)}{d \Omega}=\int d t_{r}\left(\frac{d t}{d t_{r}} \frac{d P(t)}{d \Omega}\right) \frac{d P_{r}\left(t_{r}\right)}{d \Omega}$

More comments

$$
\begin{aligned}
& t_{r}=t-\frac{\left|\mathbf{r}-\mathbf{R}_{q}\left(t_{r}\right)\right|}{c} \\
& t=t_{r}+\frac{\left|\mathbf{r}-\mathbf{R}_{q}\left(t_{r}\right)\right|}{c} \\
& \frac{d t}{d t_{r}}=1+\left(-\frac{d \mathbf{R}_{q}\left(t_{r}\right)}{c d t_{r}}\right) \cdot \frac{\mathbf{r}-\mathbf{R}_{q}\left(t_{r}\right)}{\left|\mathbf{r}-\mathbf{R}_{q}\left(t_{r}\right)\right|}=1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}} \\
& \rightarrow \quad \frac{d P_{r}\left(t_{r}\right)}{d \Omega}=\left.\frac{q^{2}}{4 \pi c} \frac{|\hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]|^{2}}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{5}}\right|_{t_{r}=t-R / c}
\end{aligned}
$$

Why do you think it useful to measure the power as energy per unit retarded time P_{r} ?

1. Jackson likes to torture us.
2. There should be no difference.
3. ???

Radiation distribution in the relativistic case -- continued

$$
\frac{d P_{r}\left(t_{r}\right)}{d \Omega}=\left.\frac{q^{2}}{4 \pi c} \frac{|\hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]|^{2}}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{5}}\right|_{t_{r}=t-R / c}
$$

For linear acceleration: $\quad \boldsymbol{\beta} \times \dot{\boldsymbol{\beta}}=0$

$$
\frac{d P_{r}\left(t_{r}\right)}{d \Omega}=\left.\frac{q^{2}}{4 \pi c} \frac{|\hat{\mathbf{R}} \times(\hat{\mathbf{R}} \times \dot{\boldsymbol{\beta}})|^{2}}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{5}}\right|_{t_{r}=t-R / c}=\frac{q^{2}}{4 \pi c^{3}}|\dot{\mathbf{v}}|^{2} \frac{\sin ^{2} \theta}{(1-\beta \cos \theta)^{5}}
$$

Power from linearly accelerating particle

$$
\frac{d P_{r}\left(t_{r}\right)}{d \Omega}=\left.\frac{q^{2}}{4 \pi c} \frac{|\hat{\mathbf{R}} \times(\hat{\mathbf{R}} \times \dot{\boldsymbol{\beta}})|^{2}}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{5}}\right|_{t_{r}=t-R / c}=\frac{q^{2}}{4 \pi c^{3}}|\dot{\mathbf{v}}|^{2} \frac{\sin ^{2} \theta}{(1-\beta \cos \theta)^{5}}
$$

Polar plots:

Note - two separate plots are introduced in order to see the drastic change of scale at values of β close to 1 .

Power from linearly accelerating particle

$$
\begin{aligned}
& \frac{d P_{r}\left(t_{r}\right)}{d \Omega}=\left.\frac{q^{2}}{4 \pi c} \frac{|\hat{\mathbf{R}} \times(\hat{\mathbf{R}} \times \dot{\boldsymbol{\beta}})|^{2}}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{5}}\right|_{t_{r}=t-R / c}=\frac{q^{2}}{4 \pi c^{3}}|\dot{\mathbf{v}}|^{2} \frac{\sin ^{2} \theta}{(1-\beta \cos \theta)^{5}} \\
& P_{r}\left(t_{r}\right)=\int \frac{d P_{r}\left(t_{r}\right)}{d \Omega} d \Omega=\frac{2}{3} \frac{q^{2}}{c^{3}}|\dot{\mathbf{v}}|^{2} \gamma^{6} \text { where } \gamma \equiv \frac{1}{\sqrt{1-\beta^{2}}}=\frac{E}{m c^{2}} \\
& \frac{P_{r}(\gamma)}{P_{r}(1)}
\end{aligned}
$$

Power distribution for linear acceleration -- continued

$$
\begin{aligned}
& P_{r}\left(t_{r}\right)=\int \frac{d P_{r}\left(t_{r}\right)}{d \Omega} d \Omega=\frac{2}{3} \frac{q^{2}}{c^{3}}|\dot{\mathbf{v}}|^{2} \gamma^{6} \quad \text { where } \gamma \equiv \frac{1}{\sqrt{1-\beta^{2}}}
\end{aligned}
$$

Power distribution for circular acceleration

$$
\left.\underbrace{\boldsymbol{\beta}}_{\mathbf{x}} \overbrace{\left.\frac{d P_{r}\left(t_{r}\right)}{d \Omega}=\frac{q^{2}}{4 \pi c} \mathbf{y} \mathbf{y} \hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]\right]^{2}}^{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{5}}\right|_{t_{r}=t-R / c} ^{\mathbf{r}}
$$

$$
\begin{aligned}
&=\left.\frac{q^{2}}{4 \pi c} \frac{|\dot{\boldsymbol{\beta}}|^{2}(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{2}-(\hat{\mathbf{R}} \cdot \dot{\boldsymbol{\beta}})^{2}\left(1-\beta^{2}\right)}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{5}}\right|_{t_{r}=t-R / c} \\
& P_{r}\left(t_{r}\right)=\int d \Omega \frac{d P_{r}\left(t_{r}\right)}{d \Omega}=\frac{2}{3} \frac{q^{2}}{c^{3}}|\dot{\mathbf{v}}|^{2} \gamma^{4} \\
& \text { PHY 712 Spring 2023-- Lecture 30 }
\end{aligned}
$$

Summary of results --For linear acceleration --

$\frac{d P_{r}\left(t_{r}\right)}{d \Omega}=\left.\frac{q^{2}}{4 \pi c} \frac{|\hat{\mathbf{R}} \times(\hat{\mathbf{R}} \times \dot{\boldsymbol{\beta}})|^{2}}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{5}}\right|_{t_{r}=t-R / c}=\frac{q^{2}}{4 \pi c^{3}}|\dot{\mathbf{v}}|^{2} \frac{\sin ^{2} \theta}{(1-\beta \cos \theta)^{5}}$

Power distribution for circular acceleration

$$
\begin{aligned}
\frac{d P_{r}\left(t_{r}\right)}{d \Omega} & =\left.\frac{q^{2}}{4 \pi c} \frac{|\dot{\boldsymbol{\beta}}|^{2}(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{2}-(\hat{\mathbf{R}} \cdot \dot{\boldsymbol{\beta}})^{2}\left(1-\beta^{2}\right)}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{5}}\right|_{t_{r}=t-R / c} \\
& =\frac{q^{2}}{4 \pi c^{3}} \frac{|\dot{\mathbf{v}}|^{2}}{(1-\beta \cos (\theta))^{3}}\left(1-\frac{\cos ^{2} \theta \sin ^{2} \phi}{\gamma^{2}(1-\beta \cos (\theta))^{2}}\right)
\end{aligned}
$$

Angular integrals for the two cases -
Linear acceleration

$$
P_{r}\left(t_{r}\right)=\int \frac{d P_{r}\left(t_{r}\right)}{d \Omega} d \Omega=2 \pi \int \frac{q^{2}}{4 \pi c^{3}}|\dot{\mathbf{v}}|^{2} \frac{\sin ^{2} \theta d \sin \theta}{(1-\beta \cos \theta)^{5}}=\frac{2}{3} \frac{q^{2}}{c^{3}}|\dot{\mathbf{v}}|^{2} \gamma^{6}
$$

Circular acceleration

$$
\begin{aligned}
P_{r}\left(t_{r}\right)=\int \frac{d P_{r}\left(t_{r}\right)}{d \Omega} d \Omega & =\int d \phi d \sin \theta \frac{q^{2}}{4 \pi c^{3}} \frac{|\dot{\mathbf{v}}|^{2}}{(1-\beta \cos (\theta))^{3}}\left(1-\frac{\cos ^{2} \theta \sin ^{2} \phi}{\gamma^{2}(1-\beta \cos (\theta))^{2}}\right) \\
& =\frac{2}{3} \frac{q^{2}}{c^{3}}|\dot{\mathbf{v}}|^{2} \gamma^{4}
\end{aligned}
$$

Power distribution for circular acceleration

$$
\begin{aligned}
\frac{d P_{r}\left(t_{r}\right)}{d \Omega} & =\left.\frac{q^{2}}{4 \pi c} \frac{|\dot{\boldsymbol{\beta}}|^{2}(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{2}-(\hat{\mathbf{R}} \cdot \dot{\boldsymbol{\beta}})^{2}\left(1-\beta^{2}\right)}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{5}}\right|_{t_{t}=t-R / c} \\
& =\frac{q^{2}}{4 \pi c^{3}} \frac{|\dot{\mathbf{v}}|^{2}}{(1-\beta \cos (\theta))^{3}}\left(1-\frac{\cos ^{2} \theta \sin ^{2} \phi}{\gamma^{2}(1-\beta \cos (\theta))^{2}}\right)
\end{aligned}
$$

Spectral composition of electromagnetic radiation
Previously we determined the power distribution from a charged particle:

$$
\frac{d P(t)}{d \Omega}=\mathbf{S} \cdot \hat{\mathbf{R}} R^{2}=\frac{q^{2}}{4 \pi c} \frac{|\hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]|^{2}}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{6}}
$$

$$
\equiv|\boldsymbol{a}(t)|^{2}
$$

where

$$
\left.\boldsymbol{a}(t) \equiv \sqrt{\frac{q^{2}}{4 \pi c}} \frac{\mid \hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]]}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{3}}\right|_{t_{r}=t-R / c}
$$

Time integrated power per solid angle:

$$
\frac{d W}{d \Omega}=\int_{-\infty}^{\infty} d t \frac{d P(t)}{d \Omega}=\int_{-\infty}^{\infty} d t|\boldsymbol{a}(t)|^{2}=\int_{\substack{-\infty \\ \text { PHY } 712 \text { Spring } 2023 \text {-- Lecture } 30}}^{\infty} d \omega|\tilde{a}(\omega)|^{2}
$$

Spectral composition of electromagnetic radiation -- continued
Time integrated power per solid angle :
$\frac{d W}{d \Omega}=\int_{-\infty}^{\infty} d t \frac{d P(t)}{d \Omega}=\int_{-\infty}^{\infty} d t|\boldsymbol{a}(t)|^{2}=\int_{-\infty}^{\infty} d \omega|\widetilde{\boldsymbol{a}}(\omega)|^{2}$
Fourier amplitude :
$\widetilde{\boldsymbol{a}}(\omega) \equiv \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d t \boldsymbol{a}(t) e^{i \omega t} \quad \boldsymbol{a}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d \omega \tilde{\boldsymbol{a}}(\omega) e^{-i \omega t}$
Parseval's theorem
Marc-Antoine Parseval des Chênes 1755-1836 http://www-history.mcs.st-andrews.ac.uk/Biographies/Parseval.html

Checking:

Fourier amplitude:

$$
\begin{aligned}
& \tilde{\boldsymbol{a}}(\omega) \equiv \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d t \boldsymbol{a}(t) e^{i \omega t} \quad \boldsymbol{a}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d \omega \tilde{\boldsymbol{a}}(\omega) e^{-i \omega t} \\
& \begin{aligned}
\int_{-\infty}^{\infty} d t|\boldsymbol{a}(t)|^{2} & =\int_{-\infty}^{\infty} d t\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d \omega \tilde{\boldsymbol{a}}(\omega) e^{-i \omega t}\right)\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d \omega^{\prime} \tilde{\boldsymbol{a}}^{*}\left(\omega^{\prime}\right) e^{i \omega^{\prime} t}\right) \\
& =\int_{-\infty}^{\infty} d \omega \tilde{\boldsymbol{a}}(\omega) \int_{-\infty}^{\infty} d \omega^{\prime} \tilde{\boldsymbol{a}}^{*}\left(\omega^{\prime}\right)\left(\frac{1}{2 \pi}\right) \int_{-\infty}^{\infty} d t e^{i\left(\omega^{\prime}-\omega\right) t} \\
& =\int_{-\infty}^{\infty} d \omega \tilde{\boldsymbol{a}}(\omega) \int_{-\infty}^{\infty} d \omega^{\prime} \tilde{\boldsymbol{a}}^{*}\left(\omega^{\prime}\right) \delta\left(\omega^{\prime}-\omega\right)=\int_{-\infty}^{\infty} d \omega|\tilde{\boldsymbol{a}}(\omega)|^{2}
\end{aligned}
\end{aligned}
$$

Spectral composition of electromagnetic radiation -- continued

Consequences of Parseval's analysis:
$\frac{d W}{d \Omega}=\int_{-\infty}^{\infty} d t \frac{d P(t)}{d \Omega}=\int_{-\infty}^{\infty} d t|\boldsymbol{a}(t)|^{2}=\int_{-\infty}^{\infty} d \omega|\tilde{\boldsymbol{a}}(\omega)|^{2}$
Note that: $\tilde{\boldsymbol{a}}(\omega)=\tilde{\boldsymbol{a}}^{*}(-\omega)$
$\frac{d W}{d \Omega}=\int_{-\infty}^{\infty} d \omega|\tilde{\boldsymbol{a}}(\omega)|^{2}=\int_{0}^{\infty} d \omega\left(|\tilde{\boldsymbol{a}}(\omega)|^{2}+|\tilde{\boldsymbol{a}}(-\omega)|^{2}\right) \equiv \int_{0}^{\infty} d \omega \frac{\partial^{2} I}{\partial \Omega \partial \omega}$
$\frac{\partial^{2} I}{\partial \Omega \partial \omega} \equiv 2|\tilde{\boldsymbol{a}}(\omega)|^{2}$

What is the significance of $\frac{\partial^{2} I}{\partial \Omega \partial \omega}$?

1. It is purely a mathematical construct
2. It can be measured

Spectral composition of electromagnetic radiation -- continued

For our case:

$$
\left.\boldsymbol{a}(t) \equiv \sqrt{\frac{q^{2}}{4 \pi c}} \frac{\mid \hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{3}}\right|_{t_{r}=t-R / c}
$$

Fourier amplitude:

$$
\begin{aligned}
\tilde{\boldsymbol{a}}(\omega) & \equiv \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d t e^{i \omega t} \boldsymbol{a}(t) \\
& =\sqrt{\left.\frac{q^{2}}{8 \pi^{2} c} \int_{-\infty}^{\infty} d t e^{i \omega t} \frac{|\hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]|}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{3}}\right|_{t_{r}=t-R / c}}
\end{aligned}
$$

Spectral composition of electromagnetic radiation -- continued
Fourier amplitude :

$$
\begin{aligned}
\tilde{\boldsymbol{a}}(\omega) & \equiv \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d t \boldsymbol{a}(t) e^{i \omega t} \\
& =\left.\sqrt{\frac{q^{2}}{8 \pi^{2} c}} \int_{-\infty}^{\infty} d t \frac{\mid \hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{3}}\right|_{t_{r}=t-R / c} e^{i \omega t} \\
& =\left.\left.\sqrt{\frac{q^{2}}{8 \pi^{2} c}} \int_{-\infty}^{\infty} d t_{r} \frac{d t \mid \hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{d t_{r}}\right|_{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{3}}\right|_{t_{r}=t-R / c} e^{i \omega\left(t_{r}+R\left(t_{r}\right) / c\right)} \\
& =\left.\sqrt{\frac{q^{2}}{8 \pi^{2} c}} \int_{-\infty}^{\infty} d t_{r} \frac{\mid \hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{2}}\right|_{t_{r}=t-R / c} e^{i \omega\left(t_{r}+R\left(t_{r}\right) / c\right)}
\end{aligned}
$$

Spectral composition of electromagnetic radiation -- continued

Exact expression :

$$
\tilde{\boldsymbol{a}}(\omega)=\left.\sqrt{\frac{q^{2}}{8 \pi^{2} c}} \int_{-\infty}^{\infty} d t_{r} \frac{\mid \hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{2}}\right|_{t_{r}=t-R / c} e^{i \omega\left(t_{r}+R\left(t_{r}\right) / c\right)}
$$

Recall: $\quad \dot{\mathbf{R}}_{q}\left(t_{r}\right) \equiv \frac{d \mathbf{R}_{q}\left(t_{r}\right)}{d t_{r}} \equiv \mathbf{v} \quad \mathbf{R}\left(t_{r}\right) \equiv \mathbf{r}-\mathbf{R}_{q}\left(t_{r}\right) \equiv \mathbf{R}$
For $r \gg R_{q}\left(t_{r}\right) \quad R\left(t_{r}\right) \approx r-\hat{\mathbf{r}} \cdot \mathbf{R}_{q}\left(t_{r}\right) \quad$ where $\quad \hat{\mathbf{r}} \equiv \frac{\mathbf{r}}{r}$
At the same level of approximation: $\hat{\mathbf{R}} \approx \hat{\mathbf{r}}$

Spectral composition of electromagnetic radiation -- continued Exact expression:
$\tilde{\boldsymbol{a}}(\omega)=\sqrt{\left.\frac{q^{2}}{8 \pi^{2} c} \int_{-\infty}^{\infty} d t_{r} \frac{|\hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]|}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{2}}\right|_{t_{t_{r}=t-R / c}} e^{i \omega\left(t_{r}+R\left(t_{r}\right) c\right)}}$
Approximate expression:
$\tilde{\boldsymbol{a}}(\omega)=\left.\sqrt{\frac{q^{2}}{8 \pi^{2} c}} e^{i \omega(r / c)} \int_{-\infty}^{\infty} d t_{r} \frac{\mid \hat{\mathbf{r}} \times[(\hat{\mathbf{r}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{r}})^{2}}\right|_{t_{r}=t-R / c} e^{i \omega\left(t_{r}-\dot{\mathbf{r}} \cdot \mathbf{R}_{q}\left(t_{r}\right) / c\right)}$
Resulting spectral intensity expression:
$\frac{\partial^{2} I}{\partial \omega \partial \Omega}=\left.\left.\frac{q^{2}}{4 \pi^{2} c}\left|\int_{-\infty}^{\infty} d t_{r} \frac{\mid \hat{\mathbf{r}} \times[(\hat{\mathbf{r}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}] / 2023}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{r}})^{2}}\right|_{\text {PHY 712 Spping 2023-Lecture 30 }}\right|_{t_{r}=t-R / c} e^{i \omega\left(t_{r}-\hat{\mathbf{r}} \cdot \mathbf{R}_{q}\left(t_{r}\right) / c\right)}\right|^{2}$

Example - radiation from a collinear acceleration burst
$\frac{\partial^{2} I}{\partial \omega \partial \Omega}=\left.\frac{q^{2}}{4 \pi^{2} c}\left|\int_{-\infty}^{\infty} d t_{r} \frac{\mid \hat{\mathbf{r}} \times[(\hat{\mathbf{r}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{r}})^{2}}\right|_{t_{r}=t-R / c} e^{i \omega\left(t_{r}-\hat{\mathbf{r}} \cdot \mathbf{R}_{q}\left(t_{r}\right) c\right)}\right|^{2}$
Suppose that $\dot{\boldsymbol{\beta}}=\left\{\begin{array}{cc}\frac{\hat{\boldsymbol{\beta}} \Delta v}{c \tau} & 0<t_{r}<\tau \\ 0 & \text { otherwise }\end{array}\right.$
$\frac{\partial^{2} I}{\partial \omega \partial \Omega}=\frac{q^{2}}{4 \pi^{2} c^{3}}\left|\frac{\hat{\mathbf{r}} \times[\hat{\mathbf{r}} \times \hat{\boldsymbol{\beta}}] \mid \Delta v}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{r}})^{2} \tau}\right|^{2}\left|\int_{0}^{\tau} d t_{r} e^{i \omega\left(t_{r}-\hat{\mathbf{r}} \cdot \boldsymbol{\beta}_{t}\right)}\right|^{2} \quad$ Let $\boldsymbol{\beta} \cdot \hat{\mathbf{r}}=\beta \cos \theta$
$\frac{\partial^{2} I}{\partial \omega \partial \Omega}=\frac{q^{2}}{4 \pi^{2} c^{3}}\left(\frac{\Delta v \sin \theta}{(1-\beta \cos \theta)^{2}} \frac{\sin (\omega \tau(1-\beta \cos \theta) / 2)}{(\omega \tau(1-\beta \cos \theta) / 2)}\right)^{2}$

Example:

$$
\begin{aligned}
& \text { Suppose that } \dot{\boldsymbol{\beta}}=\left\{\begin{array}{cl}
\frac{\hat{\boldsymbol{\beta}} \Delta v}{c \tau} & 0<t_{r}<\tau \\
0 & \text { otherwise }
\end{array}\right. \\
& \frac{\partial^{2} I}{\partial \omega \partial \Omega}=\frac{q^{2}}{4 \pi^{2} c^{3}}\left(\frac{\Delta v \sin \theta}{(1-\beta \cos \theta)^{2}} \frac{\sin (\omega \tau(1-\beta \cos \theta) / 2)}{(\omega \tau(1-\beta \cos \theta) / 2)}\right)^{2}
\end{aligned}
$$

Example: "Bremsstrahlung" radiation

Spectral composition of electromagnetic radiation -- continued

Alternative expression --
It can be shown that:

$$
\frac{\hat{\mathbf{r}} \times[(\hat{\mathbf{r}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{r}})^{2}}=\frac{d}{d t_{r}}\left(\frac{\hat{\mathbf{r}} \times(\hat{\mathbf{r}} \times \boldsymbol{\beta})}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{r}})}\right)
$$

Integration by parts and assumptions about the integration limit behaviors shows that the spectral intensity depends on the following integral:
$\frac{\partial^{2} I}{\partial \omega \partial \Omega}=\left.\left.\frac{q^{2} \omega^{2}}{4 \pi^{2} c}\right|_{-\infty} ^{\infty} d t_{r}\left[\hat{\mathbf{r}} \times\left(\hat{\mathbf{r}} \times \boldsymbol{\beta}\left(t_{r}\right)\right)\right] e^{i \omega\left(t_{r}-\hat{\mathbf{r}} \cdot \mathbf{R}_{q}\left(t_{r}\right) / c\right)}\right|^{2}$

