PHY 712 Electrodynamics 10-10:50 AM MWF Olin 103

Notes for Lecture 31:

Continue reading Chap. 14 -
Radiation by moving charges

1. Angular dependence of radiation from an accelerating particle
2. Spectral analysis of radiation
3. Detailed analysis of synchrotron radiation

24 Mon: 03/13/2023	Chap. 9	Radiation from localized oscillating sources	\#17	03/17/2023
25 Wed: 03/15/2023	Chap. 9	Radiation from oscillating sources		
26 Fri: 03/17/2023	Chap. 9 \& 10	Radiation and scattering	\#18	03/20/2023
27 Mon: 03/20/2023	Chap. 11	Special Theory of Relativity	\#19	03/24/2023
28 Wed: 03/22/2023	Chap. 11	Special Theory of Relativity		
29 Fri: 03/24/2023	Chap. 11	Special Theory of Relativity	\#20	03/27/2023
30 Mon: 03/27/2023	Chap. 14	Radiation from moving charges	\#21	03/29/2023
31 Wed: 03/29/2023	Chap. 14	Radiation from accelerating charged particles	\#22	03/31/2023
32 Fri: 03/31/2023	Chap. 14	Synchrotron radiation		

PHY 712 -- Assignment \#22

Continue reading Chap. 14 in Jackson. This problem is designed to demonstrate Parseval's theorem using the definitions given in the lecture notes and on Page 674 in Jackson. We will use the example
$A(t)=K e^{-(t T)^{2}}$,
where K and T are positive constants.

1. Find the Fourier transform of $A(t)$.
2. Evaluate the integral of the squared modulus of $A(t)$ between $-\infty \leq t \leq \infty$.
3. Evaluate the integral of the squared modulus of the Fourier transform of $A(t)$ between $-\infty \leq \omega \leq \infty$.

PhYsics

Wednesday

PhD Thesis presentation as colloquium this week.

Colloquium

Studies in blood and blood protein therapeutics

In the path of finding therapies and solutions to selective problematic issues of human life, carbon monoxide (CO) poisoning is a subject of study. CO poisoning is a crucial cause of human mortality and does not have any approved antidotal therapy up to date. The only current treatments have debatable efficacy with short and long-term side effects. Our long-term goal is to find a point-of-care device for intravenous injections of treatments to the poisoned victims promptly after diagnosis. A successful antidote will rapidly bind and slowly release CO so that it consumes CO in the blood. Laser pulse flash photolysis technique which fully releases CO from its binding molecule, heme, has been employed to measure the binding association rates of proposed antidotes. Due to the high affinity of Nitric Oxide (NO) molecules for hemoglobin, NO becomes a suitable choice for measuring the dissociation rates of CO replacement with NO in the targeted protein antidotes. We successfully showed the beneficial candidacy of two hemoproteins [StHb and NEMHb] in comparison with R-state hemoglobin and equine myoglobin Our data highlighted their therapeutic potential for point-of-care antidotal therapy of CO poisoning.
Another persisting problem is the daily and possibly fatal occurrence of unwanted blood clot formation in the blood-contacting devices in modern medicine. Formation of blood clots is often a beneficial process to stop bleeding and repair damage after a wound. However, clot formation when there is no wound can lead to a great degree of morbidity and mortality; this process is called thrombosis. Despite all of the advances made, failure rates are still as high as 6%, and up to $1 / 3$ of neonates and children suffer thrombosis complications from extracorporeal circulation devices. Thus, device thrombosis is a significant complication in otherwise life-saving interventions, and methods to locally reduce thrombosis would be advantageous. NO is a known anti-platelet agent that can prevent thrombosis. We hypothesize that nitrite increases NO bioavailability through a mechanism involving RBC bioactivation, and this action is potentiated with red light illumination that can be used for treatments aimed at decreasing device thrombosis. The collected data from our innovative

Ellie Alipour
Ph.D. Defense, Wake Forest University

3:00 pm - ZSR 404*
Note: For additional information on the seminar, contact wfuphys@wfu.edu

Refreshments at 2:30- Olin Entrance

Radiation from a moving charged particle

Variables (notation): $\quad \dot{\mathbf{R}}_{q}\left(t_{r}\right) \equiv \frac{d \mathbf{R}_{q}\left(t_{r}\right)}{d t_{r}} \equiv \mathbf{v}$

Electric field far from source:

$$
\begin{aligned}
& \begin{array}{l}
\mathbf{E}(\mathbf{r}, t)=\frac{q}{\left(R-\frac{\mathbf{v} \cdot \mathbf{R}}{c}\right)} \\
\mathbf{B}(\mathbf{r}, t)=\frac{\mathbf{R} \times \mathbf{E}(\mathbf{r}, t)}{R}
\end{array} \\
& \text { Let } \quad \hat{\mathbf{R}} \equiv \frac{\mathbf{R}}{R} \quad \boldsymbol{\beta} \equiv \frac{\mathbf{v}}{c} \quad \dot{\boldsymbol{\beta}} \equiv \frac{\dot{\mathbf{v}}}{c} \\
& \mathbf{E}(\mathbf{r}, t)=\frac{q}{c R(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{3}}\{\hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]\} \\
& \mathbf{B}(\mathbf{r}, t)=\hat{\mathbf{R}} \times \mathbf{E}(\mathbf{r}, t)
\end{aligned}
$$

Poynting vector:

$$
\begin{aligned}
& \mathbf{S}(\mathbf{r}, t)=\frac{c}{4 \pi}(\mathbf{E} \times \mathbf{B}) \\
& \mathbf{E}(\mathbf{r}, t)=\frac{q}{c R(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{3}}\{\hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]\} \\
& \mathbf{B}(\mathbf{r}, t)=\hat{\mathbf{R}} \times \mathbf{E}(\mathbf{r}, t)
\end{aligned}
$$

$$
\mathbf{S}(\mathbf{r}, t)=\frac{c}{4 \pi} \hat{\mathbf{R}}|\mathbf{E}(\mathbf{r}, t)|^{2}=\frac{q^{2}}{4 \pi c R^{2}} \hat{\mathbf{R}} \frac{|\hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]|^{2}}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{6}}
$$

Power radiated

$$
\begin{aligned}
& \mathbf{S}(\mathbf{r}, t)=\frac{c}{4 \pi} \hat{\mathbf{R}}|\mathbf{E}(\mathbf{r}, t)|^{2}=\frac{q^{2}}{4 \pi c R^{2}} \hat{\mathbf{R}} \frac{|\hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]|^{2}}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{6}} \\
& \frac{d P}{d \Omega}=\mathbf{S} \cdot \hat{\mathbf{R}} R^{2}=\frac{q^{2}}{4 \pi c} \frac{|\hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]|^{2}}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{6}}
\end{aligned}
$$

Spectral composition of electromagnetic radiation
Previously we determined the power distribution from
a charged particle:

$$
\begin{aligned}
& \begin{aligned}
\frac{d P(t)}{d \Omega}=\mathbf{S} \cdot \hat{\mathbf{R}} R^{2} & \left.=\frac{q^{2}}{4 \pi c} \right\rvert\, \hat{\mathbf{R}} \\
& \equiv|\boldsymbol{a}(t)|^{2}
\end{aligned}
\end{aligned}
$$

where $\left.\quad \boldsymbol{a}(t) \equiv \sqrt{\frac{q^{2}}{4 \pi c}} \frac{\mid \hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{3}}\right|_{t_{r}=t-R / c}$
Time integrated power per solid angle:

Spectral composition of electromagnetic radiation -- continued
Time integrated power per solid angle :
$\frac{d W}{d \Omega}=\int_{-\infty}^{\infty} d t \frac{d P(t)}{d \Omega}=\int_{-\infty}^{\infty} d t|\boldsymbol{a}(t)|^{2}=\int_{-\infty}^{\infty} d \omega|\widetilde{\boldsymbol{a}}(\omega)|^{2}$
Fourier amplitude :
$\widetilde{\boldsymbol{a}}(\omega) \equiv \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d t \boldsymbol{a}(t) e^{i \omega t} \quad \boldsymbol{a}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d \omega \tilde{\boldsymbol{a}}(\omega) e^{-i \omega t}$
Parseval's theorem
Marc-Antoine Parseval des Chênes 1755-1836 http://www-history.mcs.st-andrews.ac.uk/Biographies/Parseval.html

Spectral composition of electromagnetic radiation -- continued

Consequences of Parseval's analysis:
$\frac{d W}{d \Omega}=\int_{-\infty}^{\infty} d t \frac{d P(t)}{d \Omega}=\int_{-\infty}^{\infty} d t|\boldsymbol{a}(t)|^{2}=\int_{-\infty}^{\infty} d \omega|\tilde{\boldsymbol{a}}(\omega)|^{2}$
Note that: $\tilde{\boldsymbol{a}}(\omega)=\tilde{\boldsymbol{a}}^{*}(-\omega)$
$\frac{d W}{d \Omega}=\int_{-\infty}^{\infty} d \omega|\widetilde{\boldsymbol{a}}(\omega)|^{2}=\int_{0}^{\infty} d \omega\left(|\widetilde{\boldsymbol{a}}(\omega)|^{2}+|\widetilde{\boldsymbol{a}}(-\omega)|^{2}\right) \equiv \int_{0}^{\infty} d \omega \frac{\partial^{2} I}{\partial \Omega \partial \omega}$
$\frac{\partial^{2} I}{\partial \Omega \partial \omega} \equiv 2|\widetilde{\boldsymbol{a}}(\omega)|^{2}$

Spectral composition of electromagnetic radiation -- continued

For our case:

$$
\left.\boldsymbol{a}(t) \equiv \sqrt{\frac{q^{2}}{4 \pi c}} \frac{\mid \hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{3}}\right|_{t_{r}=t-R / c}
$$

Fourier amplitude:

$$
\begin{aligned}
\tilde{\boldsymbol{a}}(\omega) & \equiv \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d t e^{i \omega t} \boldsymbol{a}(t) \\
& =\sqrt{\left.\frac{q^{2}}{8 \pi^{2} c} \int_{-\infty}^{\infty} d t e^{i \omega t} \frac{|\hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]|}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{3}}\right|_{t_{r}=t-R / c}}
\end{aligned}
$$

Spectral composition of electromagnetic radiation -- continued
Fourier amplitude :

$$
\begin{aligned}
\tilde{\boldsymbol{a}}(\omega) & \equiv \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d t \boldsymbol{a}(t) e^{i \omega t} \\
& =\left.\sqrt{\frac{q^{2}}{8 \pi^{2} c}} \int_{-\infty}^{\infty} d t \frac{\mid \hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{3}}\right|_{t_{r}=t-R / c} e^{i \omega t} \\
& =\sqrt{\frac{q^{2}}{8 \pi^{2} c}} \int_{-\infty}^{\infty} d t_{r} \frac{d t \mid \hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{d t_{r}}| |_{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{3}} e_{t_{r}=t-R / c}^{i \omega\left(t_{r}+R\left(t_{r}\right) / c\right)} \\
& =\left.\sqrt{\frac{q^{2}}{8 \pi^{2} c}} \int_{-\infty}^{\infty} d t_{r} \frac{\mid \hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{2}}\right|_{t_{r}=t-R / c} e^{i \omega\left(t_{r}+R\left(t_{r}\right) / c\right)}
\end{aligned}
$$

Spectral composition of electromagnetic radiation -- continued

Exact expression :

$$
\tilde{\boldsymbol{a}}(\omega)=\left.\sqrt{\frac{q^{2}}{8 \pi^{2} c}} \int_{-\infty}^{\infty} d t_{r} \frac{\mid \hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{2}}\right|_{t_{r}=t-R / c} e^{i \omega\left(t_{r}+R\left(t_{r}\right) / c\right)}
$$

Recall: $\quad \dot{\mathbf{R}}_{q}\left(t_{r}\right) \equiv \frac{d \mathbf{R}_{q}\left(t_{r}\right)}{d t_{r}} \equiv \mathbf{v} \quad \mathbf{R}\left(t_{r}\right) \equiv \mathbf{r}-\mathbf{R}_{q}\left(t_{r}\right) \equiv \mathbf{R}$
For $r \gg R_{q}\left(t_{r}\right) \quad R\left(t_{r}\right) \approx r-\hat{\mathbf{r}} \cdot \mathbf{R}_{q}\left(t_{r}\right) \quad$ where $\quad \hat{\mathbf{r}} \equiv \frac{\mathbf{r}}{r}$
At the same level of approximation: $\hat{\mathbf{R}} \approx \hat{\mathbf{r}}$

Spectral composition of electromagnetic radiation -- continued Exact expression:
$\tilde{\boldsymbol{a}}(\omega)=\sqrt{\left.\frac{q^{2}}{8 \pi^{2} c} \int_{-\infty}^{\infty} d t_{r} \frac{|\hat{\mathbf{R}} \times[(\hat{\mathbf{R}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]|}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{2}}\right|_{t_{t_{r}=t-R / c}} e^{i \omega\left(t_{r}+R\left(t_{r}\right) c\right)}}$
Approximate expression:
$\tilde{\boldsymbol{a}}(\omega)=\left.\sqrt{\frac{q^{2}}{8 \pi^{2} c}} e^{i \omega(r / c)} \int_{-\infty}^{\infty} d t_{r} \frac{\mid \hat{\mathbf{r}} \times[(\hat{\mathbf{r}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{r}})^{2}}\right|_{t_{r}=t-R / c} e^{i \omega\left(t_{r}-\dot{\mathbf{r}} \cdot \mathbf{R}_{q}\left(t_{r}\right) / c\right)}$
Resulting spectral intensity expression:
$\frac{\partial^{2} I}{\partial \omega \partial \Omega}=\left.\left.\frac{q^{2}}{4 \pi^{2} c}\left|\int_{-\infty}^{\infty} d t_{r} \frac{\mid \hat{\mathbf{r}} \times[(\hat{\mathbf{r}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{r}})^{2}}\right|_{\text {PHY } 7122 \text { Spping 2023-Lecture 31 }}^{2}\right|_{t_{r}=t-R / c} e^{i \omega\left(t_{r}-\hat{\mathbf{r}} \cdot \mathbf{R}_{q}\left(t_{r}\right) / c\right)}\right|^{2}$
\rightarrow Spectral form of radiation far from source:

$$
\frac{\partial^{2} I}{\partial \omega \partial \Omega}=\left.\frac{q^{2}}{4 \pi^{2} c}\left|\int_{-\infty}^{\infty} d t_{r} \frac{\mid \hat{\mathbf{r}} \times[(\hat{\mathbf{r}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{r}})^{2}}\right|_{t_{r}=t-R / c} e^{i \omega\left(t_{r}-\hat{\mathbf{r}} \cdot \mathbf{R}_{q}\left(t_{r}\right) / c\right)}\right|^{2}
$$

In order to analyze this expression, we need to know the particle trajectory $\mathbf{R}_{q}\left(t_{r}\right)$, its velocity $\boldsymbol{\beta} c=\frac{d \mathbf{R}_{q}\left(t_{r}\right)}{d t_{r}}$, and its acceleration $\dot{\boldsymbol{\beta}} c=\frac{d^{2} \mathbf{R}_{q}\left(t_{r}\right)}{d t_{r}^{2}}$.

Spectral composition of electromagnetic radiation - more detailed treatment --

Alternative expression --
It can be shown that:

$$
\frac{\hat{\mathbf{r}} \times[(\hat{\mathbf{r}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{r}})^{2}}=\frac{d}{d t_{r}}\left(\frac{\hat{\mathbf{r}} \times(\hat{\mathbf{r}} \times \boldsymbol{\beta})}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{r}})}\right)
$$

Integration by parts and assumptions about the integration limit behaviors shows that the spectral intensity depends on the following integral:
$\frac{\partial^{2} I}{\partial \omega \partial \Omega}=\left.\left.\frac{q^{2} \omega^{2}}{4 \pi^{2} c}\right|_{-\infty} ^{\infty} d t_{r}\left[\hat{\mathbf{r}} \times\left(\hat{\mathbf{r}} \times \boldsymbol{\beta}\left(t_{r}\right)\right)\right] e^{i \omega\left(t_{r}-\hat{\mathbf{r}} \cdot \mathbf{R}_{q}\left(t_{r}\right) / c\right)}\right|^{2}$

Some details --

Spectral intensity expression that needs to be evaluated:
$\frac{\partial^{2} I}{\partial \omega \partial \Omega}=\left.\frac{q^{2}}{4 \pi^{2} c}\left|\int_{-\infty}^{\infty} d t_{r} e^{i \omega\left(t_{r}-\hat{\mathbf{r}} \cdot \mathbf{R}_{q}\left(t_{r}\right) / c\right)} \frac{\mid \hat{\mathbf{r}} \times[(\hat{\mathbf{r}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{r}})^{2}}\right|_{t_{t_{r}=t-R / c} \mid}\right|^{2}$
It can be shown that: $\frac{\hat{\mathbf{r}} \times[(\hat{\mathbf{r}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{r}})^{2}}=\frac{d}{d t_{r}}\left(\frac{\hat{\mathbf{r}} \times(\hat{\mathbf{r}} \times \boldsymbol{\beta})}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{r}})}\right)$

$$
\begin{aligned}
& \left.\int_{-\infty}^{\infty} d t_{r} e^{i o\left(t_{r}-\hat{\mathbf{R}} \cdot \mathbf{R}_{q}\left(t_{r}\right) c\right)} \frac{\mid \hat{\mathbf{r}} \times[(\hat{\mathbf{r}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta} \cdot \hat{\mathbf{r}})^{2}}\right|_{t_{r=t-R / c}}=\int_{-\infty}^{\infty} d t_{r} e^{i o\left(t_{r}+-\mathbf{R}_{\boldsymbol{R}}\left(t_{r}\right) c\right)} \frac{d}{d t_{r}}\left(\frac{\hat{\mathbf{r}} \times\left(\hat{\mathbf{r}} \times \boldsymbol{\beta}\left(t_{r}\right)\right)}{\left(1-\boldsymbol{\beta}\left(t_{r}\right) \cdot \hat{\mathbf{r}}\right)}\right)
\end{aligned}
$$

Spectral composition of electromagnetic radiation -- continued When the dust clears, the spectral intensity depends on the following integral:
$\frac{\partial^{2} I}{\partial \omega \partial \Omega}=\frac{q^{2} \omega^{2}}{4 \pi^{2} c}\left|\int_{-\infty}^{\infty} d t_{r} e^{i \omega\left(t_{r}-\hat{\mathbf{r}} \cdot \mathbf{R}_{q}\left(t_{r}\right) / c\right)}\left[\hat{\mathbf{r}} \times\left(\hat{\mathbf{r}} \times \boldsymbol{\beta}\left(t_{r}\right)\right)\right]\right|^{2}$
In order to analyze this expression, we need to know the particle trajectory $\mathbf{R}_{q}\left(t_{r}\right)$, its velocity $\boldsymbol{\beta} c=d \mathbf{R}_{q}\left(t_{r}\right) / d t_{r}$.

Recall that the spectral intensity is related to the time integrated power:
$\int_{-\infty}^{\infty} d t \frac{d P(t)}{d \Omega}=\int_{-\infty}^{\infty} d \omega \frac{\partial^{2} I}{\partial \omega \partial \Omega}$

Synchrotron radiation light source installations

Synchrotron at Brookhaven National Lab, NY

$$
E_{c}=3 \mathrm{GeV} \quad \text { X-ray radiation }
$$

https://www.bnl.gov/ps/

Overview of developed beamlines.

Advanced photon source, Argonne National Laboratory

https://www.aps.anl.gov/

Spectral intensity relationship:

$$
\frac{\partial^{2} I}{\partial \omega \partial \Omega}=\left.\frac{q^{2} \omega^{2}}{4 \pi^{2} c} \int_{-\infty}^{\infty} d t_{r} e^{i \omega\left(t_{r}-\hat{\mathbf{r}} \cdot \mathbf{R}_{q}\left(t_{r}\right) / c\right)}\left[\hat{\mathbf{r}} \times\left(\hat{\mathbf{r}} \times \boldsymbol{\beta}\left(t_{r}\right)\right)\right]\right|^{2}
$$

$\mathbf{R}_{q}\left(t_{r}\right)=\rho \hat{\mathbf{x}} \sin \left(v t_{r} / \rho\right)$

$$
+\rho \hat{\mathbf{y}}\left(1-\cos \left(v t_{r} / \rho\right)\right)
$$

$\boldsymbol{\beta}\left(t_{r}\right)=\beta\left(\hat{\mathbf{x}} \cos \left(v t_{r} / \rho\right)+\hat{\mathbf{y}} \sin \left(v t_{r} / \rho\right)\right)$
For convenience, choose:
$\hat{\mathbf{r}}=\hat{\mathbf{x}} \cos \theta+\hat{\mathbf{z}} \sin \theta$

$$
\begin{aligned}
& \mathbf{R}_{q}\left(t_{r}\right)=\rho \hat{\mathbf{x}} \sin \left(v t_{r} / \rho\right) \\
& \quad+\rho \hat{\mathbf{y}}\left(1-\cos \left(v t_{r} / \rho\right)\right)
\end{aligned} \quad \begin{aligned}
& \boldsymbol{\beta}\left(t_{r}\right)=\beta\left(\hat{\mathbf{x}} \cos \left(v t_{r} / \rho\right)+\hat{\mathbf{y}} \sin \left(v t_{r} / \rho\right)\right)
\end{aligned}
$$

For convenience, choose:
$\hat{\mathbf{r}}=\hat{\mathbf{x}} \cos \theta+\hat{\mathbf{z}} \sin \theta$

Note that we have previous shown that in the radiation zone, the Poynting vector is in the $\hat{\mathbf{r}}$ direction; we can then choose to analyze two orthogonal polarization directions:

$$
\begin{gathered}
\boldsymbol{\varepsilon}_{\|}=\hat{\mathbf{y}} \quad \boldsymbol{\varepsilon}_{\perp}=-\hat{\mathbf{x}} \sin \theta+\hat{\mathbf{z}} \cos \theta \\
\hat{\mathbf{r}} \times(\hat{\mathbf{r}} \times \boldsymbol{\beta})=\beta\left(-\boldsymbol{\varepsilon}_{\|} \sin \left(v t_{r} / \rho\right)+\boldsymbol{\varepsilon}_{\perp} \sin \theta \cos \left(v t_{r} / \rho\right)\right)
\end{gathered}
$$

$$
\begin{aligned}
& \quad \uparrow z \\
& \frac{d^{2} I}{d \omega d \Omega}=\frac{q^{2} \omega^{2}}{4 \pi^{2} c}\left|\int_{-\infty}^{\infty} \hat{\mathbf{r}} \times(\hat{\mathbf{r}} \times \beta) \mathrm{e}^{i \omega\left(t-\hat{\mathbf{r}} \cdot \mathbf{R}_{q}(t) / c\right)} d t\right|^{2} \\
& \frac{d^{2} I}{d \omega d \Omega}=\frac{q^{2} \omega^{2} \beta^{2}}{4 \pi^{2} c}\left\{\left|C_{\|}(\omega)\right|^{2}+\left|C_{\perp}(\omega)\right|^{2}\right\} \\
& C_{\|}(\omega)=\int_{-\infty}^{\infty} d t \sin (v t / \rho) \mathrm{e}^{i \omega\left(t-\frac{\rho}{c} \cos \theta \sin (v t / \rho)\right)} \\
& C_{\perp}(\omega)=\int_{-\infty}^{\infty} d t \sin \theta \cos (v t / \rho) \mathrm{e}^{i \omega\left(t-\frac{\rho}{c} \cos \theta \sin (v t / \rho)\right)}
\end{aligned}
$$

We will analyze this expression for two different cases. The first case, is appropriate for man-made synchrotrons used as light sources. In this case, the light is produced by short bursts of electrons moving close to the speed of light ($v \approx c\left(1-1 /\left(2 \gamma^{2}\right)\right.$) passing a beam line port. In addition, because of the design of the radiation ports, $\theta \approx 0$, and the relevant integration times t are close to $t \approx 0$. This results in the form shown in Eq. 14.79 of your text. It is convenient to rewrite this form in terms of a critical frequency $\omega_{c} \equiv \frac{3 c \gamma^{3}}{2 \rho}$.

$$
\begin{aligned}
\frac{d^{2} I}{d \omega d \Omega}= & \frac{3 q^{2} \gamma^{2}}{4 \pi^{2} c}\left(\frac{\omega}{\omega_{c}}\right)^{2}\left(1+\gamma^{2} \theta^{2}\right)^{2}\left\{\left[K_{2 / 3}\left(\frac{\omega}{2 \omega_{c}}\left(1+\gamma^{2} \theta^{2}\right)^{\frac{3}{2}}\right)\right]^{2}\right. \\
& \left.+\frac{\gamma^{2} \theta^{2}}{1+\gamma^{2} \theta^{2}}\left[K_{1 / 3}\left(\frac{\omega}{2 \omega_{c}}\left(1+\gamma^{2} \theta^{2}\right)^{\frac{3}{2}}\right)\right]^{2}\right\}
\end{aligned}
$$

Some details:

Modified Bessel functions

$$
K_{1 / 3}(\xi)=\sqrt{3} \int_{0}^{\infty} d x \cos \left[\frac{3}{2} \xi\left(x+\frac{1}{3} x^{3}\right)\right] \quad K_{2 / 3}(\xi)=\sqrt{3} \int_{0}^{\infty} d x x \sin \left[\frac{3}{2} \xi\left(x+\frac{1}{3} x^{3}\right)\right]
$$

Exponential factor
$\omega\left(t_{r}-\hat{\mathbf{r}} \cdot \mathbf{R}_{q}\left(t_{r}\right) / c\right)=\omega\left(t_{r}-\frac{\rho}{c} \cos \theta \sin \left(v t_{r} / \rho\right)\right)$
In the limit of $t_{r} \approx 0, \quad \theta \approx 0, v \approx c\left(1-\frac{1}{2 \gamma^{2}}\right)$
$\omega\left(t_{r}-\hat{\mathbf{r}} \cdot \mathbf{R}_{q}\left(t_{r}\right) / c\right) \approx \frac{\omega t_{r}}{2 \gamma^{2}}\left(1+\gamma^{2} \theta^{2}\right)+\frac{\omega c^{2} t_{r}{ }^{3}}{6 \rho^{2}}=\frac{3}{2} \xi\left(x+\frac{1}{3} x^{3}\right)$
where $\xi=\frac{\omega \rho}{3 c \gamma^{3}}\left(1+\gamma^{2} \theta^{2}\right)^{3 / 2}$ and $x=\frac{c \gamma t_{r}}{\rho\left(1+\gamma^{2} \theta^{2}\right)^{1 / 2}}$

$$
\begin{aligned}
\frac{d^{2} I}{d \omega d \Omega}= & \frac{3 q^{2} \gamma^{2}}{4 \pi^{2} c}\left(\frac{\omega}{\omega_{c}}\right)^{2}\left(1+\gamma^{2} \theta^{2}\right)^{2}\left\{\left[K_{2 / 3}\left(\frac{\omega}{2 \omega_{c}}\left(1+\gamma^{2} \theta^{2}\right)^{\frac{3}{2}}\right)\right]^{2}\right. \\
& \left.+\frac{\gamma^{2} \theta^{2}}{1+\gamma^{2} \theta^{2}}\left[K_{1 / 3}\left(\frac{\omega}{2 \omega_{c}}\left(1+\gamma^{2} \theta^{2}\right)^{\frac{3}{2}}\right)\right]^{2}\right\}
\end{aligned}
$$

By plotting the intensity as a function of ω, we see that the intensity is largest near $\omega \approx \omega_{c}$. The plot below shows the intensity as a function of ω / ω_{c} for $\gamma \theta=0,0.5$ and 1 :

More details

$$
\begin{aligned}
& \frac{d^{2} I}{d \omega d \Omega}=\frac{d^{2} I_{\|}}{d \omega d \Omega}+\frac{d^{2} I_{\perp}}{d \omega d \Omega} \\
& \frac{d^{2} I_{\|}}{d \omega d \Omega}=\frac{3 q^{2} \gamma^{2}}{4 \pi^{2} c}\left(\frac{\omega}{\omega_{c}}\right)^{2}\left(1+\gamma^{2} \theta^{2}\right)^{2}\left[K_{2 / 3}\left(\frac{\omega}{2 \omega_{c}}\left(1+\gamma^{2} \theta^{2}\right)^{\frac{3}{2}}\right)\right]^{2} \\
& \frac{d^{2} I_{\perp}}{d \omega d \Omega}=\frac{3 q^{2} \gamma^{2}}{4 \pi^{2} c}\left(\frac{\omega}{\omega_{c}}\right)^{2}\left(1+\gamma^{2} \theta^{2}\right)^{2} \frac{\gamma^{2} \theta^{2}}{1+\gamma^{2} \theta^{2}}\left[K_{1 / 3}\left(\frac{\omega}{2 \omega_{c}}\left(1+\gamma^{2} \theta^{2}\right)^{\frac{3}{2}}\right)\right]^{2}
\end{aligned}
$$

The above analysis applies to a class of man-made facilities dedicated to producing intense radiation in the continuous spectrum. For more specific information on man-made synchrotron sources, the following web page is useful: http://www.als.lbl.gov/als/synchrotron sources.html.

On the Classical Radiation of Accelerated Electrons

Julian Schwinger
Harvard University, Cambridge, Massachusetts

(Received March 8, 1949)

This paper is concerned with the properties of the radiation from a high energy accelerated electron, as recently observed in the General Electric synchrotron. An elementary derivation of the total rate of radiation is first presented, based on Larmor's formula for a slowly moving electron, and arguments of relativistic invariance. We then construct an expression for the instantaneous power radiated by an electron moving along an arbitrary, prescribed path. By casting this result into various forms, one obtains the angular distribution, the spectral distribution, or the combined angular and spectral distributions of the radiation. The method is based on an examination of the rate at which the electron irreversibly transfers energy to the electromagnetic field, as determined by half the difference of retarded and advanced electric field intensities. Formulas are obtained for an arbitrary chargecurrent distribution and then specialized to a point charge. The total radiated power and its angular distribution are obtained for an arbitrary trajectory. It is found that the direc-
tion of motion is a strongly preferred direction of emission at high energies. The spectral distribution of the radiation depends upon the detailed motion over a time interval large compared to the period of the radiation. However, the narrow cone of radiation generated by an energetic electron indicates that only a small part of the trajectory is effective in producing radiation observed in a given direction, which also implies that very high frequencies are emitted. Accordingly, we evaluate the spectral and angular distributions of the high frequency radiation by an energetic electron, in their dependence upon the parameters characterizing the instantaneous orbit. The average spectral distribution, as observed in the synchrotron measurements, is obtained by averaging the electron energy over an acceleration cycle. The entire spectrum emitted by an electron moving with constant speed in a circular path is also discussed. Finally, it is observed that quantum effects will modify the classical results here obtained only at extraordinarily large energies.

DOI:https://doi.org/10.1103/PhysRev.75.1912

