PHY 712 Electrodynamics
10-10:50 AM MWF Olin 103
Notes for Lecture 38:
Quantum effects in electrodynamics

Connections to experiment

a. Coherent states
b. Squeezed states

c. More complicated states
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-

Radiation from localized oscillating sources

03/17/2023

24 (Mon: 03/13/2023 |Chap. 9 #17

25 |Wed: 03/15/2023 |Chap. 9 Radiation from oscillating sources

26 |Fri: 03/17/2023 Chap. 9 & 10 Radiation and scattering #18 |03/20/2023
27 |Mon: 03/20/2023 |Chap. 11 Special Theory of Relativity #19 |03/24/2023
28 |Wed: 03/22/2023 |Chap. 11 Special Theory of Relativity

29 |Fri: 03/24/2023  |Chap. 11 Special Theory of Relativity #20 |03/27/2023
30 [Mon: 03/27/2023 |Chap. 14 Radiation from moving charges #21 03/29/2023
31 [Wed: 03/29/2023 |Chap. 14 Radiation from accelerating charged particles #22 03/31/2023
32 |Fri: 03/31/2023  |Chap. 14 Synchrotron radiation and Compton scattering |[#23 04/3/2023
33 [Mon: 04/03/2023 |Chap. 15 Radiation from collisions of charged particles

34 |Wed: 04/05/2023 |Chap. 13 Cherenkov radiation

35 |Fri: 04/07/2023 Special topic: E & M aspects of superconductivity

36

Mon: 04/10/2023

Special topic: Quantum Effects in E & M

37

Wed: 04/12/2023

Special topic: Quantum Effects in E & M

38

Fri: 04/14/2023

Special topic: Quantum Effects in E & M

Mon: 04/17/2023

Presentations |

Wed: 04/19/2023 Presentations Il
Fri: 04/21/2023 Presentations lll
39 |Mon: 04/24/2023 Review
40 \Wed: 04/26/2023 Review

04/14/2023
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Presenter Notes
Presentation Notes
 


PHY 712 Presentation Schedule

There will be 3 or 4 ~12-minute presentations each day

Monday, April 17, 2023

Name

Presentation topic

1 | Arezoo Nameny

Scanning electron microscopy

2 | Lee Pryor Jackson Problem 11.5
3 | Moti Mirhosseini Jackson Problem 7.22
4

04/14/2023
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Wednesday, April 19, 2023

Name Presentation topic
1
2 | Katie Koch NOPAs
3 | Evan Kumar Spectral Analysis of the Free Electron Laser
4 | Banasree Sarkar Mou 2D computational Optical imaging with FDTD in photonics
and electrodynamics
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Friday, April 21, 2023

Name Presentation topic
1 | David Carchipulla-Morales Ewald Summation
2 | Zezhong Zhang Electromagnetism of the Earth and other stars
3 | Samuel Griffith Hyperfine Hamiltonian
4 | Caela Flake
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Recommended reading

P ICA)
COHERENCI

DUANTUM
OFTI1CS

Princeton U Press 2010 Cambridge U Press 1995
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More comments about the coherent state

Previously we discussed Glauber’s coherent state (which Prof.
Kandada assures me is well realized as the output of continuous
wave (CW) lasers) formed as a superposition of single photon

eigenstates ot 12

|ca> = Z(; < N |n> based on a single mode n — n,_where «
-

1s a complex number. It turns out these states do not form a complete
representation of the system; in fact they are "over complete".

It 1s sometimes convenient to represent these coherent states

as a shift of the vacuum state |O> .

2

lc, )= e exp(aa* )| 0)
Note that the operator D(a, a*) = ol exp (aa‘k) 1S unitary

and D' (8,8 )a D(B,B )=a+p andD'(B,B )a’ D(B.5 )=a"+p’



Further analysis and modifications of the “coherent state”

Recall that we can write the EM Hamiltonian for a single mode o, = @ — -
1

H = —ha)(aTa + aaT) where [a,aq =1
2

Define convenient unitless operators

X=(a'+a) and T=_(a'-a) =[XF]-

H=hw(f(2+f’2)

L
2

From the Heisenberg uncertainty ideas applied to the standard deviations:

ARAT > L
4



In terms of the eigenstates of the EM Hamiltonian:

Hln)= hw(n+1j\ 9

st (o

:>AXAY—2(n+ lj

2



For the coherent state:

AX = <ca cha>—<caXca> :§:AY
~oo

In this sense, the coherent state represents the minimum
uncertainty process. For the pure phonon eigenstates,
only the vacuum state has this minimum uncertainty.



We can use the operators X and Y to describe the EM fields:

Electric field:
OA ha) ikr—iot —(ik-r—i
E = —E = E(l‘,t) =l§ > Oﬁka (akaek oy _aiae (ik wkt))
hao, s : 0 :
=— 22 5 . (Xka sin(k-r—iot)+iY,, cos(k-r- za)kt))
ko
Magnetic field:
B=VxA =B(rt)= lz kxg,_ (akaeik'r_i%’ — aliae_(ik'r_iw"t))

2Ve0

——22 2V€0 kxg,_ (Xka sin(k-r—iw,t)+iY,, cos(k-r —ia)kt))



Plot of possible standard deviations (Figure from Prof. A. Kandada)

— Any photon number state

| =

—- Coherent state

N

AX

>

1
2

It is possible tqg modify the coherent state to produce fields with
other properties within the blue region of the plot.

. N |
The hyperbolic curve represents AXAY=—

4

— Can reduce/increase AX and increase/reduce AY
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Notion of a "squeezed" state --

First, note that the pure coherent state can be written:

)= XL )= o

where |O> is the vacuum state and o = Ae'" is a complex number

n —|0(| /2

To form a "squeezed" state we introduce a multiplicative operator

—(*a"——Ca q .
S = ¢? 2 where { = Sehg 1S a complex number
p



Better(?) description of squeezed states thanks to Berman ad
Malinovsky =» two-photon coherent state
Model Hamiltonian for such a state --

H=1a""+1"a> for some given parameter A
Eigenstates of this Hamiltonian are called "squeezed" states

and can be written as a product of a coherent state ‘a> and a

"squeezing" operator with parameter z:

ol 1 ]
‘a,z> = exp(omﬁ)exp(z(—zc[r2 +za’ )j‘0>
\ J
' \ ' ) Y
Coherent state “Squeezing” Vacuum

operator operator state



Properties of the squeezed state continued --

2 exp(aa’t)exp (%(—chr2 +za’ )j‘0>

For z = re”, it is possible to show that

N

|2

_ e
a,z)=e

. 2
a,z)y=sinh’ r+|a|

(a,z|a’ala,z)=(a,z

2 * . -0 |2 .
<a,z (AN) a cosh »—a sinhr elg‘ +2sinh® rcosh” r

o,z) =

Also, for the field operators X and 7, itis possible to show:
A\2 . A2 1 .
(AX) :l‘coshr—sinhr ¢ (AY) :—‘coshr+sinhr e’
4 4

2

(A)A()(Af) = i(‘cosh2 r —sinh® r ™



oot ()7}~ (st s ¢

|
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Squeezed states can be generated by taking a photon of
frequency o and using devices to generate two photons

of frequency /2.  * e —
- Coherent state
i With =0

) 0
From Mandel & Wolf 3
LQ
= —0
T = Q\\}'-

Coherent state
with |a|>0

&

(a
(k)

L ; A“%y_mqmplitude




More complicated states
Notion of “entangled” states (according to Berman and
Malinovsky) -

Example involving two particles

Suppose we have component 1 which can have states @ and b

component 2 which can have states ¢ and d
= ‘(a1 +cz)(b1 +d, )> = ‘(a1 +c, )>‘(b1 +d, )> = |a1b1 +a,d, +c,b, +czd2>

separable

— | ac, + b1d2> Cannot be written as two factors;

entangled

also discussed as correlation effects
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