

PHY 712 Electrodynamics 11-11:50 AM in Olin 103

Class notes for Lecture 4:

Reading: Chapter 1 in JDJ

- 1. Review of electrostatics with onedimensional examples
- 2. Poisson and Laplace Equations
- 3. Green's Theorem and its use in electrostatics

4 PM Olin 101

Physics COLLOQUIUM

THURSDAY

January 19, 2023

Mechanical behaviour of fibrin fibres, network and plasma clots: how altered structures change mechanical response

The fibrin network is a 3-dimensional self-assembled structure where the backbone of the network forms within minutes after the initiation of blood clotting. To fulfil its mechanical task as the scaffold of the clot, it possesses remarkable mechanical properties: fibrin needs to be tough to properly seal wounds in highly variable flow conditions such as in the arteries and veins, yet flexible enough to prevent clot rupture. Here I will show an atomic-force microscopy (AFM)- and a magnetic tweezer- based micro-rheology method to study the local mechanical behaviour of fibrin and blood plasma clots. With these methods we have shown how mechanical properties alter in such pathologic conditions as anti-phospholipid syndrome due to impaired platelet contraction or in autoimmune-linked conditions where fibrinogen gets citrullinated.

Using lateral fibre pulling, a method elaborated by Prof. Martin Guthold and established in Leeds by Dr. Stephen Baker, we found that covalent crosslinking induced by FXIIIa increased fibre toughness. However, the location of crosslinking is of importance: crosslinking on the γ-chain had a more prominent effect while crosslinking on the α-chain leads only to minor, insignificant changes. Interestingly, our recent results using fibrinogen variants with partial and complete absence of the αC-region have also
PHY 712 Spring 2023 -- Lecture 4

Timea Feller, Ph.D. University of Leeds, UK

4:00 pm - Olin 101* Note: For additional information on the seminar, contact wfuphys@wfu.edu

Reception at 3:30pm - Olin Entrance

PHY 712 Electrodynamics

MWF 10-10:50 AM Olin 103 Webpage: http://www.wfu.edu/~natalie/s23phy712/

Instructor: Natalie Holzwarth Office: 300 OPL e-mail: natalie@wfu.edu

Course schedule for Spring 2023

(Preliminary schedule -- subject to frequent adjustment.)

	Lecture date	JDJ Reading	Topic	HW	Due date
1	Mon: 01/9/2023	Chap. 1 & Appen.	Introduction, units and Poisson equation	<u>#1</u>	01/13/2023
2	Wed: 01/11/2023	Chap. 1	Electrostatic energy calculations	<u>#2</u>	01/18/2023
3	Fri: 01/13/2023	Chap. 1	Electrostatic energy calculations thanks to Ewald	<u>#3</u>	01/18/2023
	Mon: 01/16/2023		MLK Holiday no class		
4	Wed: 01/18/2023	Chap. 1 & 2	Electrostatic potentials and fields	#4	01/20/2023

PHY 712 – Problem Set #4

Continue reading Chaper 1 & 2 in **Jackson**

1. Consider a one-dimensional charge distribution of the form:

$$\rho(x) = \begin{cases} 0 & \text{for } x < -a \\ \rho_0 \sin(\pi x/a) & \text{for } -a \le x \le a \\ 0 & \text{for } x > a, \end{cases}$$

where ρ_0 and a are constants.

- (a) Solve the Poisson equation for the electrostatic potential $\Phi(x)$ with the boundary conditions $\Phi(-a) = 0$ and $\frac{d\Phi}{dx}(-a) = 0$.
- (b) Find the corresponding electrostatic field E(x).
- (c) Plot $\Phi(x)$ and E(x).
- (d) Discuss your results in terms of elementary application of Gauss's Law arguments.

Your questions -

From Paul -- How do the charged impurities act in the semiconductor junction?

Brief Comment – The example is an idealization of a real system which we suppose can be experimentally constructed. Given that constructed charge density profile, the corresponding electrostatic potential profile results.

From Banasree -- I did not understand how exactly we should determine boundary condition to get electrostatic potential, should we be considering boundary condition only in the negative range?

Brief Comment – In general for a 2nd order equation (Poisson equation) we should have two conditions.

Comment on HW #1

Recall that we "proved" the following identity:

$$\nabla^2 \left(\frac{1}{r}\right) = -4\pi \delta^3(\mathbf{r}) = -4\pi \ \delta(x)\delta(y)\delta(z)$$
Three dimensional δ function

Poisson and Laplace Equations

We are concerned with finding solutions to the Poisson equation:

 $\nabla^2 \Phi_P(\mathbf{r}) = -\frac{\rho(\mathbf{r})}{\varepsilon_0}$

and the Laplace equation:

$$\nabla^2 \Phi_L(\mathbf{r}) = 0$$

The Laplace equation is the "homogeneous" version of the Poisson equation. The Green's theorem allows us to determine the electrostatic potential from volume and surface integrals:

integrals:

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_V d^3r' \rho(\mathbf{r}') G(\mathbf{r}, \mathbf{r}') +$$

$$\frac{1}{4\pi}\int_{S}d^{2}r'\left[G(\mathbf{r},\mathbf{r}')\nabla'\Phi(\mathbf{r}')-\Phi(\mathbf{r}')\nabla'G(\mathbf{r},\mathbf{r}')\right]\cdot\hat{\mathbf{r}}'.$$

Poisson equation -- continued

Note that we have previously shown that the differential and integral forms of Coulomb's law is given by:

$$\nabla^2 \Phi(\mathbf{r}) = -\frac{\rho(\mathbf{r})}{\varepsilon_0} \quad \text{and} \quad \Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_V d^3 r' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

Generalization of analysis for non-trivial boundary conditions:

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_V d^3r' \rho(\mathbf{r}') G(\mathbf{r}, \mathbf{r}') + \frac{1}{4\pi} \int_S d^2r' \left[G(\mathbf{r}, \mathbf{r}') \nabla' \Phi(\mathbf{r}') - \Phi(\mathbf{r}') \nabla' G(\mathbf{r}, \mathbf{r}') \right] \cdot \hat{\mathbf{r}}'.$$

General comments on Green's theorem

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_{V} d^3r' \rho(\mathbf{r}') G(\mathbf{r}, \mathbf{r}') + \frac{1}{4\pi} \int_{S} d^2r' \left[G(\mathbf{r}, \mathbf{r}') \nabla' \Phi(\mathbf{r}') - \Phi(\mathbf{r}') \nabla' G(\mathbf{r}, \mathbf{r}') \right] \cdot \hat{\mathbf{r}}'.$$

This general form can be used in 1, 2, or 3 dimensions. In general, the Green's function must be constructed to satisfy the appropriate (Dirichlet or Neumann) boundary conditions. Alternatively, or in addition, boundary conditions can be adjusted using the fact that for any solution to the Poisson equation, $\Phi_P(\mathbf{r})$ other solutions may be generated by use of solutions of the Laplace equation

$$\Phi(\mathbf{r}) = \Phi_P(\mathbf{r}) + C\Phi_L(\mathbf{r})$$
, for any constant C.

Physics Today **56**(12), 41 (2003); https://doi.org/10.1063/1.1650227

The Green of Green Functions

In 1828, an English miller from Nottingham published a mathematical essay that generated little response. George Green's analysis, however, has since found applications in areas ranging from classical electrostatics to modern quantum field theory.

Lawrie Challis and Fred Sheard

Nottingham, an attractive and thriving town in the English Midlands, is famous for its association with Robin Hood, whose statue stands in the shadow of the castle wall. The Sheriff of Nottingham still has a special role in the city government although happily no longer strikes terror into the hearts of the good citizens.

Recently a new attraction, a windmill, has appeared on the Nottingham skyline (see figure 1). The sails turn on windy days and the adjoining mill shop sells packets of stone ground flour but also, more surprisingly, tracts on mathematical physics. The connection between the flour and the physics is part of the mill's unique character and is explained by a plaque once attached to the side of the mill tower that said.

HERE LIVED AND LABOURED GEORGE GREEN MATHEMATICIAN B.1793–D.1841. his family built a house next to the mill, Green spent most of his days and many of his nights working and indeed living in the mill. When he was 31, Jane Smith bore him a daughter. They had seven children in all but never married. It was said that Green's father felt that Jane was not a suitable wife for the son of a prosperous tradesman and landowner and threatened to disinherit him.

Little is known about Green's life from 1802 until 1823. In particular, it is not known whether he received any help in his mathematical development or if he was entirely self-taught. He may have received help from John Toplis, a fellow of Queens' College in the University of Cambridge and headmaster of the Nottingham Grammar School. Toplis's translation of Pierre-Simon Laplace's book *Mécanique Céleste*, published in Nottingham in 1814, seems a likely source of Green's interest in potential theory. The work was unusual in Britain at that time inasmuch as Toplis used Gottfried Leibniz's more convenient notation for differentials rather than Isaac Newton's. Because Green adapted the Leibniz notation, it seems plausible that Green was influenced by Toplis, but there is no evidence that Toplis acted in any way as his tutor.

In 1823, Green joined the Nottingham Subscription Library, the center of intellectual activity in the town. The library was situated in Bromley House (see figure 2). Library membership provided Green with encouragement.

"Derivation" of Green's Theorem

Poisson equation:
$$\nabla^2 \Phi(\mathbf{r}) = -\frac{\rho(\mathbf{r})}{\varepsilon_0}$$

Green's relation: $\nabla'^2 G(\mathbf{r}, \mathbf{r}') = -4\pi \delta^3 (\mathbf{r} - \mathbf{r}')$.

Divergence theorm:
$$\int_{V} d^{3}r \ \nabla \cdot \mathbf{A} = \oint_{S} d^{2}r \ \mathbf{A} \cdot \hat{\mathbf{r}}$$

Let
$$\mathbf{A} = f(\mathbf{r})\nabla g(\mathbf{r}) - g(\mathbf{r})\nabla f(\mathbf{r})$$

$$\int_{V} d^{3}r \, \nabla \cdot (f(\mathbf{r}) \nabla g(\mathbf{r}) - g(\mathbf{r}) \nabla f(\mathbf{r})) = \oint_{S} d^{2}r \, (f(\mathbf{r}) \nabla g(\mathbf{r}) - g(\mathbf{r}) \nabla f(\mathbf{r})) \cdot \hat{\mathbf{r}}$$

$$\int_{V} d^{3}r \left(f(\mathbf{r}) \nabla^{2} g(\mathbf{r}) - g(\mathbf{r}) \nabla^{2} f(\mathbf{r}) \right)$$

"Derivation" of Green's Theorem

Poisson equation:
$$\nabla^2 \Phi(\mathbf{r}) = -\frac{\rho(\mathbf{r})}{\varepsilon_0}$$

Green's relation: $\nabla'^2 G(\mathbf{r}, \mathbf{r}') = -4\pi \delta^3 (\mathbf{r} - \mathbf{r}')$.

$$\int_{V} d^{3}r \left(f(\mathbf{r}) \nabla^{2} g(\mathbf{r}) - g(\mathbf{r}) \nabla^{2} f(\mathbf{r}) \right) = \oint_{S} d^{2}r \left(f(\mathbf{r}) \nabla g(\mathbf{r}) - g(\mathbf{r}) \nabla f(\mathbf{r}) \right) \cdot \hat{\mathbf{r}}$$

$$f(\mathbf{r}) \leftrightarrow \Phi(\mathbf{r}) \qquad g(\mathbf{r}) = G(\mathbf{r}, \mathbf{r}')$$

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_V d^3r' \rho(\mathbf{r}') G(\mathbf{r}, \mathbf{r}') +$$

$$\frac{1}{4\pi} \int_{S} d^{2}r' \left[G(\mathbf{r}, \mathbf{r}') \nabla' \Phi(\mathbf{r}') - \Phi(\mathbf{r}') \nabla' G(\mathbf{r}, \mathbf{r}') \right] \cdot \hat{\mathbf{r}}'.$$

Example of charge density and potential varying in one dimension

Consider the following one dimensional charge distribution:

$$\rho(x) = \begin{cases} 0 & \text{for } x < -a \\ -\rho_0 & \text{for } -a < x < 0 \\ +\rho_0 & \text{for } 0 < x < a \\ 0 & \text{for } x > a \end{cases}$$

We want to find the electrostatic potential such that

$$\frac{d^2\Phi(x)}{dx^2} = -\frac{\rho(x)}{\varepsilon_0},$$

with the boundary condition $\Phi(-\infty) = 0$ and $\frac{d\Phi}{dx}(-\infty) = 0$

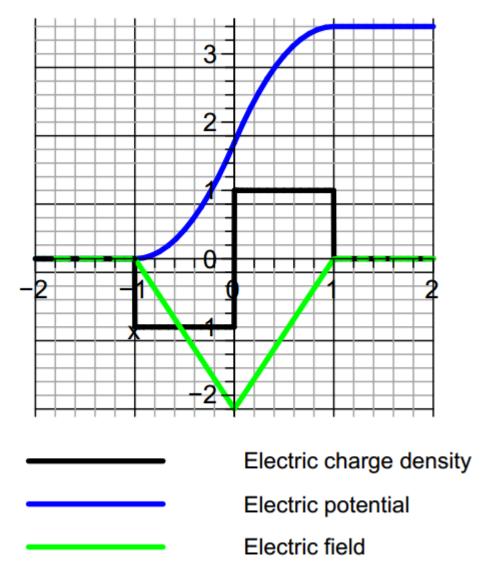
Electrostatic field solution

The solution to the Poisson equation is given by:

$$\Phi(x) = \begin{cases} 0 & \text{for } x < -a & \text{Laplace} \\ \frac{\rho_0}{2\varepsilon_0}(x+a)^2 & \text{for } -a < x < 0 \\ -\frac{\rho_0}{2\varepsilon_0}(x-a)^2 + \frac{\rho_0 a^2}{\varepsilon_0} & \text{for } 0 < x < a \\ \frac{\rho_0}{\varepsilon_0}a^2 & \text{for } x > a \end{cases} \quad \begin{array}{c} \text{Poisson} \\ \text{Laplace} \end{cases}$$

The electrostatic field is given by:

$$E(x) = \begin{cases} 0 & \text{for } x < -a \\ -\frac{\rho_0}{\varepsilon_0}(x+a) & \text{for } -a < x < 0 \\ \frac{\rho_0}{\varepsilon_0}(x-a) & \text{for } 0 < x < a \\ 0 & \text{for } x > a \end{cases}.$$



Comment about the example and solution

This particular example is one that is used to model semiconductor junctions where the charge density is controlled by introducing charged impurities near the junction.

The solution of the Poisson equation for this case can be determined by piecewise solution within each of the four regions. Alternatively, from Green's theorem in one-dimension, one can use the Green's function

$$\Phi(x) = \frac{1}{4\pi\varepsilon_0} \int_{-\infty}^{\infty} G(x, x') \rho(x') dx' \quad \text{where} \quad G(x, x') = 4\pi x_{<}$$

x should be take as the smaller of x and x'.

Notes on the one-dimensional Green's function

The Green's function for the one-dimensional Poisson equation can be defined as a solution to

the equation:
$$\nabla^2 G(x, x') \equiv \frac{\partial^2}{\partial x^2} G(x, x') = -4\pi \delta(x - x')$$

Here the factor of 4π is not really necessary, but ensures consistency with your text's treatment of the 3-dimensional case. The meaning of this expression is that x' is held fixed while taking the derivative with respect to x.

Construction of a Green's function in one dimension

Consider two independent solutions to the homogeneous equation

$$\nabla^2 \phi_i(x) = 0$$

where i = 1 or 2. Let

$$G(x,x') = \frac{4\pi}{W}\phi_1(x_<)\phi_2(x_>).$$

This notation means that $x_{<}$ should be taken as the smaller of x and x' and $x_{>}$ should be taken as the larger.

W is defined as the "Wronskian":

$$W \equiv \frac{d\phi_1(x)}{dx}\phi_2(x) - \phi_1(x)\frac{d\phi_2(x)}{dx}.$$

Summary

$$\nabla^{2}G(x,x') = -4\pi\delta(x-x')$$

$$G(x,x') = \frac{4\pi}{W}\phi_{1}(x_{<})\phi_{2}(x_{>})$$

$$W = \frac{d\phi_{1}(x)}{dx}\phi_{2}(x) - \phi_{1}(x)\frac{d\phi_{2}(x)}{dx}$$

$$\lim_{\epsilon \to 0} \left(\frac{dG(x,x')}{dx}\Big|_{x=x'+\epsilon} - \frac{dG(x,x')}{dx}\Big|_{x=x'-\epsilon}\right) = -4\pi$$

One dimensional Green's function in practice

$$\Phi(x) = \frac{1}{4\pi\varepsilon_0} \int_{-\infty}^{\infty} G(x, x') \rho(x') dx'$$

$$= \frac{1}{4\pi\varepsilon_0} \left\{ \int_{-\infty}^{x} G(x, x') \rho(x') dx' + \int_{x}^{\infty} G(x, x') \rho(x') dx' \right\}$$

For the one-dimensional Poisson equation, we can construct the Green's function by choosing $\phi_1(x) = x$ and $\phi_2(x) = 1$; W = 1:

$$\Phi(x) = \frac{1}{\varepsilon_0} \left\{ \int_{-\infty}^x x' \rho(x') dx' + x \int_x^\infty \rho(x') dx' \right\}.$$

$$G(x, x') = 4\pi x_{<}$$

This expression gives the same result as previously obtained for the example $\rho(x)$ and more generally is appropriate for any neutral charge distribution.

Question -- How do we know which one of x and x' is the x_< term?

$$G(x, x') = 4\pi x_{<}$$

$$\Phi(x) = \frac{1}{\mathcal{E}_{0}} \left\{ \int_{-\infty}^{x} x' \rho(x') dx' + x \int_{x}^{\infty} \rho(x') dx' \right\}.$$

$$x' < x \qquad x' > x$$

Orthogonal function expansions and Green's functions

Suppose we have a "complete" set of orthogonal functions $\{u_n(x)\}$ defined in the interval $x_1 \le x \le x_2$ such that

$$\int_{x_1}^{x_2} u_n(x) u_m(x) \ dx = \delta_{nm}.$$

We can show that the completeness of this functions implies that

$$\sum_{n=1}^{\infty} u_n(x)u_n(x') = \delta(x - x').$$

This relation allows us to use these functions to represent a Green's function for our system. For the 1-dimensional Poisson equation, the Green's function satisfies

$$\frac{\partial^2}{\partial x^2}G(x,x') = -4\pi\delta(x-x').$$

Orthogonal function expansions –continued

Therefore, if

$$\frac{d^2}{dx^2}u_n(x) = -\alpha_n u_n(x),$$

where $\{u_n(x)\}$ also satisfy the appropriate boundary conditions, then we can write 1 Green's functions as

$$G(x, x') = 4\pi \sum_{n} \frac{u_n(x)u_n(x')}{\alpha_n}.$$

Example

For example, consider the example discussed earlier in the interval $-a \le x \le a$ with

$$\rho(x) = \begin{cases}
0 & \text{for } x < -a \\
-\rho_0 & \text{for } -a < x < 0 \\
+\rho_0 & \text{for } 0 < x < a \\
0 & \text{for } x > a
\end{cases} \tag{24}$$

We want to solve the Poisson equation with boundary condition $d\Phi(-a)/dx = 0$ and $d\Phi(a)/dx = 0$. For this purpose, we may choose

$$u_n(x) = \sqrt{\frac{1}{a}} \sin\left(\frac{[2n+1]\pi x}{2a}\right). \tag{25}$$

The Green's function for this case as:

$$G(x,x') = \frac{4\pi}{a} \sum_{n=0}^{\infty} \frac{\sin\left(\frac{[2n+1]\pi x}{2a}\right) \sin\left(\frac{[2n+1]\pi x'}{2a}\right)}{\left(\frac{[2n+1]\pi}{2a}\right)^2}.$$
 (26)

Example – continued

$$\Phi(x) = \frac{\rho_0 a^2}{\epsilon_0} \left(16 \sum_{n=0}^{\infty} \frac{\sin\left(\frac{[2n+1]\pi x}{2a}\right)}{([2n+1]\pi)^3} + \frac{1}{2} \right).$$

Constant shift to allow $\Phi(0) = 0$.

