Electrodynamics - PHY712

Lecture 13 - magnetostatic examples Reference: Chap. 5 in J. D. Jackson's textbook.

Calculation of the vector potential for a confined current density
If the current density $\mathbf{J}(\mathbf{r})$ is confined in space, the vector potential in the Coulomb gauge can be calculated from

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{1}
\end{equation*}
$$

Simple example of current density from a rotating charged sphere

Consider the following example corresponding to a rotating charged sphere of radius a, with ρ_{0} denoting the uniform charge density within the sphere and $\boldsymbol{\omega}$ denoting the angular rotation of the sphere:

$$
\mathbf{J}\left(\mathbf{r}^{\prime}\right)= \begin{cases}\rho_{0} \boldsymbol{\omega} \times \mathbf{r}^{\prime} & \text { for } r^{\prime} \leq a \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

In order to evaluate the vector potential (1) for this problem, we can make use of the expansion:

$$
\begin{equation*}
\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\sum_{l m} \frac{4 \pi}{2 l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}} Y_{l m}(\hat{\mathbf{r}}) Y_{l m}^{*}\left(\hat{\mathbf{r}}^{\prime}\right) . \tag{3}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
\mathbf{r}^{\prime}=r^{\prime} \sqrt{\frac{4 \pi}{3}}\left(Y_{1-1}\left(\hat{\mathbf{r}^{\prime}}\right) \frac{\hat{\mathbf{x}}+\mathbf{i} \hat{\mathbf{y}}}{\sqrt{2}}+Y_{11}\left(\hat{\mathbf{r}^{\prime}}\right) \frac{-\hat{\mathbf{x}}+\mathbf{i} \hat{\mathbf{y}}}{\sqrt{2}}+Y_{10}\left(\hat{\mathbf{r}^{\prime}}\right) \hat{\mathbf{z}}\right), \tag{4}
\end{equation*}
$$

we see that the angular integral in Eq. (1) can be simplified with the use of the identity:

$$
\begin{equation*}
\int d \Omega^{\prime} \sum_{l m} Y_{l m}(\hat{\mathbf{r}}) Y_{l m}^{*}\left(\hat{\mathbf{r}}^{\prime}\right) \mathbf{r}^{\prime}=\frac{r^{\prime}}{r} \mathbf{r} \equiv r^{\prime} \hat{\mathbf{r}} \tag{5}
\end{equation*}
$$

Simple example of current density from a rotating charged sphere - continued
Therefore the vector potential for this system is:

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{\mu_{0} \rho_{0} \boldsymbol{\omega} \times \mathbf{r}}{3 r} \int_{0}^{a} d r^{\prime} r^{\prime 3} \frac{r_{<}}{r_{>}^{2}}, \tag{6}
\end{equation*}
$$

which can be evaluated as:

$$
\begin{gather*}
\mathbf{A}(\mathbf{r})= \begin{cases}\frac{\mu_{0} \rho_{0}}{3} \boldsymbol{\omega} \times \mathbf{r}\left(\frac{a^{2}}{2}-\frac{3 r^{2}}{10}\right) & \text { for } r \leq a \\
\frac{\mu_{0} \rho_{0}}{3} \boldsymbol{\omega} \times \mathbf{r} \frac{a^{5}}{5 r^{3}} & \text { for } r \geq a\end{cases} \tag{7}\\
\mathbf{B}(\mathbf{r})=\nabla \times \mathbf{A}(\mathbf{r})=\left\{\begin{array}{ll}
\frac{\mu_{0} \rho_{0}}{3}\left[\boldsymbol{\omega}\left(a^{2}-\frac{6}{5} r^{2}\right)+\frac{3}{5} \mathbf{r}(\boldsymbol{\omega} \cdot \mathbf{r})\right] & \text { for } r \leq a \\
\frac{\mu_{0} \rho_{0}}{3}\left[-\boldsymbol{\omega} \frac{a^{5}}{5 r^{3}}+\frac{3 a^{5}}{5 r^{5}} \mathbf{r}(\boldsymbol{\omega} \cdot \mathbf{r})\right] \quad & \text { for } r \geq a
\end{array} .\right. \tag{8}
\end{gather*}
$$

Another example - current associated with an electron in a spherical atom

In this case, we assume that the current density is due to an electron in a bound atomic state with quantum numbers $\left|n l m_{l}\right\rangle$, as described by a wavefunction $\psi_{n l m_{l}}(\mathbf{r})$, where the azimuthal quantum number m_{l} is associated with a factor of the form $\mathrm{e}^{i m_{l} \phi}$. For such a wavefunction the quantum mechanical current density operator can be evaluated:

$$
\begin{equation*}
\mathbf{J}(\mathbf{r})=\frac{-e \hbar}{2 m_{e} i}\left(\psi_{n l m_{l}}^{*} \nabla \psi_{n l m_{l}}-\psi_{n l m_{l}} \nabla \psi_{n l m_{l}}^{*}\right) \tag{9}
\end{equation*}
$$

Since the only complex part of this wavefunction is associated with the azimuthal quantum number, this can be written:

$$
\begin{equation*}
\mathbf{J}(\mathbf{r})=\frac{-e \hbar}{2 m_{e} i r \sin \theta}\left(\psi_{n l m_{l}}^{*} \frac{\partial}{\partial \phi} \psi_{n l m_{l}}-\psi_{n l m_{l}} \frac{\partial}{\partial \phi} \psi_{n l m_{l}}^{*}\right) \hat{\phi}=\frac{-e \hbar m_{l} \hat{\phi}}{m_{e} r \sin \theta}\left|\psi_{n l m_{l}}\right|^{2} \tag{10}
\end{equation*}
$$

where m_{e} denotes the electron mass and e denotes the magnitude of the electron charge.

Current associated with an electron in a spherical atom - continued

$$
\begin{gather*}
\mathbf{J}(\mathbf{r})=\frac{-e \hbar m_{l} \hat{\phi}}{m_{e} r \sin \theta}\left|\psi_{n l m_{l}}(\mathbf{r})\right|^{2}=\frac{-e \hbar m_{l} \hat{\mathbf{z}} \times \mathbf{r}}{m_{e} r^{2} \sin ^{2} \theta}\left|\psi_{n l m_{l}}(\mathbf{r})\right|^{2} \tag{11}\\
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi}\left(\frac{-e \hbar m_{l}}{m_{e}}\right) \int d^{3} r^{\prime} \frac{\hat{\mathbf{z}} \times \mathbf{r}^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \frac{\left|\psi_{n l m_{l}}\left(\mathbf{r}^{\prime}\right)\right|^{2}}{r^{\prime 2} \sin ^{2} \theta^{\prime}} \tag{12}
\end{gather*}
$$

Note that for some atomic wavefunctions, $\psi_{n l m_{l}}\left(\mathbf{r}^{\prime}\right)$, the evaluation of the vector potential $\mathbf{A}(\mathbf{r})$ simplifies.

Current associated with an electron in a spherical atom - continued

For example, consider the $|n l m=211\rangle$ state of a H atom:

$$
\begin{equation*}
\psi_{211}(\mathbf{r})=-\sqrt{\frac{1}{64 \pi a^{3}}} \frac{r}{a} \mathrm{e}^{-r /(2 a)} \sin \theta \mathrm{e}^{i \phi} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{J}\left(\mathbf{r}^{\prime}\right)=\frac{-e \hbar}{64 m_{e} \pi a^{5}} \mathrm{e}^{-r^{\prime} / a} \hat{\mathbf{z}} \times \mathbf{r}^{\prime} \tag{14}
\end{equation*}
$$

where a here denotes the Bohr radius. Using arguments similar to those above, we find that

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{-e \hbar \mu_{0} \hat{\mathbf{z}} \times \mathbf{r}}{192 m_{e} \pi a^{5} r} \int_{0}^{\infty} d r^{\prime}{r^{\prime}}^{3} \mathrm{e}^{-r^{\prime} / a} \frac{r_{<}}{r_{>}^{2}} \tag{15}
\end{equation*}
$$

This expression can be integrated to give:

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{-e \hbar \mu_{0} \hat{\mathbf{z}} \times \mathbf{r}}{8 m_{e} \pi r^{3}}\left[1-\mathrm{e}^{-r / a}\left(1+\frac{r}{a}+\frac{r^{2}}{2 a^{2}}+\frac{r^{3}}{8 a^{3}}\right)\right] \tag{16}
\end{equation*}
$$

Current associated with an electron in a spherical atom - continued

Previous result:

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{-e \hbar \mu_{0} \hat{\mathbf{z}} \times \mathbf{r}}{8 m_{e} \pi r^{3}}\left[1-\mathrm{e}^{-r / a}\left(1+\frac{r}{a}+\frac{r^{2}}{2 a^{2}}+\frac{r^{3}}{8 a^{3}}\right)\right] \tag{17}
\end{equation*}
$$

Note that for $r \rightarrow \infty$:

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{-e \hbar \mu_{0} \hat{\mathbf{z}} \times \mathbf{r}}{8 m_{e} \pi r^{3}}=\frac{\mu_{0}}{4 \pi}\left(-\frac{e \hbar}{2 m_{e}}\right) \frac{\hat{\mathbf{z}} \times \mathbf{r}}{r^{3}}=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \mathbf{r}}{r^{3}}, \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{m}=\left(-\frac{e \hbar}{2 m_{e}}\right) \hat{\mathbf{z}} . \tag{19}
\end{equation*}
$$

More generally, the magnetic dipole moment is given by:

$$
\begin{equation*}
\mathbf{m}=\frac{1}{2} \int d^{3} r^{\prime} \mathbf{r}^{\prime} \times \mathbf{J}\left(\mathbf{r}^{\prime}\right) . \tag{20}
\end{equation*}
$$

Current associated with an electron in a spherical atom - continued

Note that the general form of the current density for a spherical atom is given by:

$$
\begin{equation*}
\mathbf{J}(\mathbf{r})=\frac{-e \hbar m_{l} \hat{\phi}}{m_{e} r \sin \theta}\left|\psi_{n l m_{l}}(\mathbf{r})\right|^{2}=\frac{-e \hbar m_{l}}{m_{e}} \frac{\hat{\mathbf{z}} \times \hat{\mathbf{r}}}{r \sin ^{2} \theta}\left|\psi_{n l m_{l}}(\mathbf{r})\right|^{2} . \tag{21}
\end{equation*}
$$

Using the general form of the magnetic dipole moment, for an electronic wavefunction of a spherical atom,

$$
\begin{equation*}
\mathbf{m}=\frac{1}{2} \int d^{3} r^{\prime} \mathbf{r}^{\prime} \times \mathbf{J}\left(\mathbf{r}^{\prime}\right)=-\frac{e \hbar m_{l}}{2 m_{e}} \hat{\mathbf{z}} \int d^{3} r^{\prime}\left|\psi_{n l m_{l}}\left(\mathbf{r}^{\prime}\right)\right|^{2}=-\frac{e \hbar}{2 m_{e}} m_{l} \hat{\mathbf{z}} . \tag{22}
\end{equation*}
$$

Systematic multipole analysis of vector potential for a general confined current density $\mathbf{J}(\mathbf{r})$ (assuming $\nabla \cdot \mathbf{J}(\mathbf{r})=0$.

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{23}
\end{equation*}
$$

For field point \mathbf{r} outside of extent of current density:

$$
\begin{gather*}
\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\frac{1}{r}+\frac{\mathbf{r} \cdot \mathbf{r}^{\prime}}{r^{3}} \cdots \tag{24}\\
\mathbf{A}(\mathbf{r}) \approx \frac{\mu_{0}}{4 \pi}\left(\frac{1}{r} \int d^{3} r^{\prime} \mathbf{J}\left(\mathbf{r}^{\prime}\right)+\frac{\mathbf{r}}{r^{3}} \cdot \int d^{3} r^{\prime} \mathbf{r}^{\prime} \mathbf{J}\left(\mathbf{r}^{\prime}\right) \ldots\right) \tag{25}
\end{gather*}
$$

Note that

$$
\begin{gather*}
\int d^{3} r^{\prime} \mathbf{J}\left(\mathbf{r}^{\prime}\right)=0 \tag{26}\\
\mathbf{r} \cdot \int d^{3} r^{\prime} \mathbf{r}^{\prime} \mathbf{J}\left(\mathbf{r}^{\prime}\right)=-\frac{1}{2} \mathbf{r} \times \int d^{3} r^{\prime} \mathbf{r}^{\prime} \times \mathbf{J}\left(\mathbf{r}^{\prime}\right) \equiv \mathbf{m} \times \mathbf{r} \tag{27}
\end{gather*}
$$

Magnetic dipolar field

The magnetic dipole moment is defined by

$$
\begin{equation*}
\mathbf{m}=\frac{1}{2} \int d^{3} r^{\prime} \mathbf{r}^{\prime} \times \mathbf{J}\left(\mathbf{r}^{\prime}\right) \tag{28}
\end{equation*}
$$

with the corresponding potential

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^{2}} \tag{29}
\end{equation*}
$$

and magnetostatic field

$$
\begin{equation*}
\mathbf{B}_{\mathbf{m}}(\mathbf{r})=\frac{\mu_{0}}{4 \pi}\left\{\frac{3 \hat{\mathbf{r}}(\mathbf{m} \cdot \hat{\mathbf{r}})-\mathbf{m}}{r^{3}}+\frac{8 \pi}{3} \mathbf{m} \delta^{3}(\mathbf{r})\right\} \tag{30}
\end{equation*}
$$

Magnetic dipolar field - continued

Some details:

$$
\begin{equation*}
\nabla \times(s \mathbf{V})=\nabla s \times \mathbf{V}+s \nabla \times \mathbf{V} \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
\nabla \times\left(\mathbf{V}_{1} \times \mathbf{V}_{2}\right)=\mathbf{V}_{1}\left(\nabla \cdot \mathbf{V}_{2}\right)-\mathbf{V}_{2}\left(\nabla \cdot \mathbf{V}_{1}\right)+\left(\mathbf{V}_{2} \cdot \nabla\right) \mathbf{V}_{1}-\left(\mathbf{V}_{1} \cdot \nabla\right) \mathbf{V}_{2} \tag{32}
\end{equation*}
$$

For $r>0$:

$$
\begin{equation*}
\nabla \times\left(\frac{\mathbf{m} \times \mathbf{r}}{r^{3}}\right)=\frac{3 \mathbf{r}(\mathbf{m} \cdot \mathbf{r})-r^{2} \mathbf{m}}{r^{5}} \tag{33}
\end{equation*}
$$

Justification for the δ function contribution at the origin of the magnetic dipole

Note: This derivation is very similar to the analogous electrostatic case.
The evaluation of the field at the origin of the dipole is poorly defined, but we make the following approximation.

$$
\begin{equation*}
\mathbf{B}(\mathbf{r} \approx \mathbf{0}) \approx\left(\int_{\text {sphere }} \mathbf{B}(\mathbf{r}) \mathbf{d}^{3} \mathbf{r}\right) \delta^{3}(\mathbf{r}) \tag{34}
\end{equation*}
$$

First we note that

$$
\begin{equation*}
\int_{r \leq R} \mathbf{B}(\mathbf{r}) d^{3} r=R^{2} \int_{r=R} \hat{\mathbf{r}} \times \mathbf{A}(\mathbf{r}) d \Omega . \tag{35}
\end{equation*}
$$

This result follows from the divergence theorm:

$$
\begin{equation*}
\int_{\text {vol }} \nabla \cdot \mathcal{V} \mathbf{d}^{3} \mathbf{r}=\int_{\text {surface }} \mathcal{V} \cdot \mathbf{d A} . \tag{36}
\end{equation*}
$$

Singular contribution to dipolar field - continued

The divergence theorem can be used to prove Eq. (35) for each cartesian coordinate of $\nabla \times \mathbf{A}$ since $\nabla \times \mathbf{A}=\hat{\mathbf{x}}(\hat{\mathbf{x}} \cdot(\nabla \times \mathbf{A}))+\hat{\mathbf{y}}(\hat{\mathbf{y}} \cdot(\nabla \times \mathbf{A}))+\hat{\mathbf{z}}(\hat{\mathbf{z}} \cdot(\nabla \times \mathbf{A}))$. Note that $\hat{\mathbf{x}} \cdot(\nabla \times \mathbf{A})=-\nabla \cdot(\hat{\mathbf{x}} \times \mathbf{A})$ and that we can use the Divergence theorem with $\mathcal{V} \equiv \hat{\mathbf{x}} \times \mathbf{A}(\mathbf{r})$ for the $x-$ component for example:

$$
\begin{equation*}
\int_{\text {vol }} \nabla \cdot(\hat{\mathbf{x}} \times \mathbf{A}) d^{3} r=\int_{\text {surface }}(\hat{\mathbf{x}} \times \mathbf{A}) \cdot \hat{\mathbf{r}} d A=\int_{\text {surface }}(\mathbf{A} \times \hat{\mathbf{r}}) \cdot \hat{\mathbf{x}} d A . \tag{37}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\int_{r \leq R}(\nabla \times \mathbf{A}) d^{3} r=-\int_{r=R}(\mathbf{A} \times \hat{\mathbf{r}}) \cdot(\hat{\mathbf{x}} \hat{\mathbf{x}}+\hat{\mathbf{y}} \hat{\mathbf{y}}+\hat{\mathbf{z}} \hat{\mathbf{z}}) d A=R^{2} \int_{r=R}(\hat{\mathbf{r}} \times \mathbf{A}) d \Omega \tag{38}
\end{equation*}
$$

which is identical to Eq. (35). We can use the identity (as in electrostatic case),

$$
\begin{equation*}
\int d \Omega \frac{\hat{\mathbf{r}}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\frac{4 \pi}{3} \frac{r_{<}}{r_{>}^{2}} \hat{\mathbf{r}^{\prime}} . \tag{39}
\end{equation*}
$$

Singular contribution to dipolar field - continued

Now, expressing the vector potential in terms of the current density:

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int d^{3} r \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{40}
\end{equation*}
$$

the integral over Ω in Eq. 35 becomes

$$
\begin{equation*}
R^{2} \int_{r=R}(\hat{\mathbf{r}} \times \mathbf{A}) d \Omega=\frac{4 \pi R^{2}}{3} \frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \frac{r_{<}}{r_{>}^{2}} \hat{\mathbf{r}^{\prime}} \times \mathbf{J}\left(\mathbf{r}^{\prime}\right) \tag{41}
\end{equation*}
$$

If the sphere R contains the entire current distribution, then $r_{>}=R$ and $r_{<}=r^{\prime}$ so that (41) becomes

$$
\begin{equation*}
R^{2} \int_{r=R}(\hat{\mathbf{r}} \times \mathbf{A}) d \Omega=\frac{4 \pi}{3} \frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \mathbf{r}^{\prime} \times \mathbf{J}\left(\mathbf{r}^{\prime}\right) \equiv \frac{8 \pi}{3} \frac{\mu_{0}}{4 \pi} \mathbf{m} \tag{42}
\end{equation*}
$$

which thus justifies the delta-function contribution in Eq. 30 and results so-called "Fermi contact" contribution in the "hyperfine" interaction.

Magnetic field due to electrons in the vicinity of a nucleus

Contribution due to "orbital" magnetism in a spherical atom

The current density associated with an electron in a bound state of an atom as described by a quantum mechanical wavefunction $\psi_{n l m_{l}}(\mathbf{r})$ can be written:

$$
\begin{equation*}
\mathbf{J}(\mathbf{r})=\frac{-e \hbar m_{l} \hat{\phi}}{m_{e} r \sin \theta}\left|\psi_{n l m_{l}}(\mathbf{r})\right|^{2} \tag{43}
\end{equation*}
$$

In the following, it will be convenient to represent the azimuthal unit vector $\hat{\phi}$ in terms of cartesian coordinates:

$$
\begin{equation*}
\hat{\phi}=-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}}=\frac{\hat{\mathbf{z}} \times \mathbf{r}}{r \sin \theta} . \tag{44}
\end{equation*}
$$

The vector potential for this current density can be written

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=-\frac{\mu_{0}}{4 \pi} \frac{e \hbar}{m_{e}} m_{l} \int d^{3} r^{\prime} \frac{\hat{\mathbf{z}} \times \mathbf{r}^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \frac{\left|\psi_{n l m_{l}}\left(\mathbf{r}^{\prime}\right)\right|^{2}}{r^{\prime 2} \sin ^{2} \theta^{\prime}} \tag{45}
\end{equation*}
$$

Contribution due to "orbital" magnetism in a spherical atom - continued
We want to evaluate the magnetic field $B=\nabla \times A$ in the vicinity of the nucleus $(\mathbf{r} \rightarrow 0)$. Taking the curl of the Eq. 45 , we obtain

$$
\begin{equation*}
\mathbf{B}_{\mathbf{o}}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \frac{e \hbar}{m_{e}} m_{l} \int d^{3} r^{\prime} \frac{\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \times\left(\hat{\mathbf{z}} \times \mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{\mathbf{3}}} \frac{\left|\psi_{n l m_{l}}\left(\mathbf{r}^{\prime}\right)\right|^{2}}{r^{\prime 2} \sin ^{2} \theta^{\prime}} \tag{46}
\end{equation*}
$$

Evaluating this expression with $(\mathbf{r} \rightarrow 0)$, we obtain

$$
\begin{equation*}
\mathbf{B}_{\mathbf{o}}(\mathbf{0})=-\frac{\mu_{0}}{4 \pi} \frac{e \hbar}{m_{e}} m_{l} \int d^{3} r^{\prime} \frac{\mathbf{r}^{\prime} \times\left(\hat{\mathbf{z}} \times \mathbf{r}^{\prime}\right)}{{r^{\prime}}^{3}} \frac{\left|\psi_{n l m_{l}}\left(\mathbf{r}^{\prime}\right)\right|^{2}}{r^{\prime 2} \sin ^{2} \theta^{\prime}} \tag{47}
\end{equation*}
$$

Contribution due to "orbital" magnetism in a spherical atom - continued

$$
\begin{equation*}
\mathbf{B}_{\mathbf{o}}(\mathbf{0})=-\frac{\mu_{0}}{4 \pi} \frac{e \hbar}{m_{e}} m_{l} \int d^{3} r^{\prime} \frac{\mathbf{r}^{\prime} \times\left(\hat{\mathbf{z}} \times \mathbf{r}^{\prime}\right)}{r^{\prime 3}} \frac{\left|\psi_{n l m_{l}}\left(\mathbf{r}^{\prime}\right)\right|^{2}}{r^{\prime 2} \sin ^{2} \theta^{\prime}} \tag{48}
\end{equation*}
$$

Expanding the cross product and expressing the result in spherical polar coordinates, we obtain in the numerator
$\left.\hat{\mathbf{r}}^{\prime} \times\left(\hat{\mathbf{z}} \times \hat{\mathbf{r}}^{\prime}\right)=\hat{\mathbf{z}}\left(\mathbf{1}-\cos ^{2} \theta^{\prime}\right)-\hat{\mathbf{x}} \cos \theta^{\prime} \sin \theta^{\prime} \cos \phi^{\prime}-\hat{\mathbf{y}} \cos \theta^{\prime} \sin \theta^{\prime} \sin \phi^{\prime}\right)$.
In evaluating the integration over the azimuthal variable ϕ^{\prime}, the $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ components vanish which reduces to

$$
\begin{equation*}
\mathbf{B}_{\mathbf{o}}(\mathbf{0})=-\frac{\mu_{0}}{4 \pi} \frac{e \hbar}{m_{e}} m_{l} \int d^{3} r^{\prime} \frac{\hat{\mathbf{z}} r^{\prime 2} \sin ^{2} \theta^{\prime}}{r^{\prime 3}} \frac{\left|\psi_{n l m_{l}}\left(\mathbf{r}^{\prime}\right)\right|^{2}}{r^{\prime 2} \sin ^{2} \theta^{\prime}} \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{B}_{\mathbf{o}}(\mathbf{0})=-\frac{\mu_{0} e \hbar m_{l} \hat{\mathbf{z}}}{4 \pi m_{e}} \int d^{3} r^{\prime}\left|\psi_{n l m_{l}}\right|^{2} \frac{1}{{r^{\prime}}^{3}} \equiv-\frac{\mu_{0} e}{4 \pi m_{e}} L_{z} \hat{\mathbf{z}}\left\langle\frac{1}{{r^{\prime}}^{3}}\right\rangle \tag{50}
\end{equation*}
$$

"Hyperfine" interaction

The so-called "hyperfine" interaction results from the magnetic dipole moment of a nucleus μ_{N} responding to the magnetic field formed by the magnetic dipole of the electron spin $\left(\mu_{\mathbf{e}}\right)$ as well as the electron orbital current contribution.

$$
\begin{equation*}
\mathcal{H}_{\mathrm{HF}}=-\mu_{\mathbf{N}} \cdot\left(\mathbf{B}_{\mu_{e}}+\mathbf{B}_{o}(0)\right) \tag{51}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{H}_{\mathrm{HF}}=-\frac{\mu_{0}}{4 \pi}\left(\frac{3\left(\mu_{\mathbf{N}} \cdot \hat{\mathbf{r}}\right)\left(\mu_{\mathbf{e}} \cdot \hat{\mathbf{r}}\right)-\mu_{\mathbf{N}} \cdot \mu_{\mathbf{e}}}{r^{3}}+\frac{8 \pi}{3} \mu_{\mathbf{N}} \cdot \mu_{\mathbf{e}} \delta^{3}(\mathbf{r})+\frac{e}{m_{e}}\left\langle\frac{\mathbf{L} \cdot \mu_{\mathbf{N}}}{r^{3}}\right\rangle\right) . \tag{52}
\end{equation*}
$$

