PHY 712 Electrodynamics
10-10:50 AM MWF in Olin 103

Notes for Lecture 16:

Finish reading Chapter 6 (Sec. 6.6-6.10 in JDJ)
(some sections covered in less detail)

1. Some details of Liénard-Wiechert results

2. Energy density and flux associated with
electromagnetic fields

3. Time harmonic fields
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Many events this
week —

TODAY =>

02/21/2024

Physics
Career Event

Dr. Andrea Belanger

Associate Director
Precision Medicine External Innovation

Free Pizza | Olin 102 | 12pm Wednesday, February 21st
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Many events this THURSDAY

week —

PHysics CoLLoQuium

FEBRUARY 22TH, 2024

TOMORROW 9 Light-induced Structural Responses in Matter

Understanding light-matter interactions and controlling matter

with light are of fundamental interest in physics and

engineering. This knowledge is crucial for advancing solar
The ADVANCED Photon Source energy materials and developing high-performance

at Argonne National Laboratory next-generation data storage and computing systems.

In this talk, | will fist introduce an emerging experimental
approach: ultrafast X-ray diffraction, which enables the
probing of dynamic behavior of matter induced by light
excitation. | will then present recent investigations that push
the boundaries of ultrafast X-ray diffraction technigues.

The first advancement involves the use of diffuse X-ray
scattering, allowing for resolving light-induced local lattice

deformations in matter associated with polaron formation and
evolution. | will showcase the results from experiments Burak GUZEIturk’
conducted on a lead halide perovskite system, revealing Ph D

evolving local strain fields over tens of picoseconds as

photogenerated carriers localize. Advanced Photon Source

Argonne National Laboratory
Second, | will introduce the X-ray diffraction microscopy
approach to resolve light-induced changes in matter across
nano- and meso-scale heterogeneity. Specifically, | will present
results on  multiferroic  bismuth ferrite, exhibiting

APS iS one Of Several stripe-ordered ferroelectric domains. | will illustrate how light 4 Olin 101

. can induce sub-nanosecond timescale manipulation of these p-m - uun ) )
SynCh rotron I|ght source domains through creation and annihilation of domain walls, ~ Refreshments will be served in the Olin
facilities throughout the
world.
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Many events this
week —

FRIDAY =

02/21/2024

PH.D. DEFENSE

SYNERGISTIC SOLAR ENERGY HARVESTING SOLUTIONS

Nonrenewable energy resources, such as coal and fossil fuels. wreak
havoc on the environment and public bealth. Further, their price volatility,
associated geopolitical tensions, and finite supply restrict these sources from
being a long-term solution. Renewable sources, including selar, gecthermal,
and wind power, present a sustainable approach to meet the world's energy
demands. Solar energy 1s the most abundant among these resources and 15
the fastest growing remewable enersy worldwide. The solar research
community focuses on the challenges of enhancing efficiency, reducing
costs, mmproving accessibility, and developing inmovative technologies to
maximize solar radiation harvesting.

In this work, we design two projects to address these challenges. The
first project is a photovoltaic/thermal (PV/T) system Materials are
specifically chosen to be low cost and widely produced in order to promote
accessibility. Our PV/T system combines thermal and infrared collection
with visible light PVs. We show our 3D system can collect more daylight
over a 12-hour period than a traditional planar PV A prototype PV/T umit,
with ethylene glycol as the thermal fluid generated 1074 I of heat energy
over a 30-minute pericd. This heat energy resulted from the synergistic
relationship of the thermal collector pulling the heat away from the PV,
keeping it cool and able to maintain performance.

Through a process of spectral splitting, the demonstrator above 1s
expanded to include UV capture more effectively. From this an overall
system efficiency of 73.1% was achieved Importantly, this performance
mprovement was realized using a set of orgamic dyes which are widely
available and inexpensive.

The second solar energy harvesting project incorpeorates thermoelectrics
as a thermal capture mechanism Using existing thin film thermoelectric
platforms, this work focused on optimizing robust appliques of
cost-effective thermoelectrics. This was done by developing new doping
routes for the thermoelectric thin films. Ultimately the thermoelectric can be
adhered to PVs to provide a path for heat to escape the PV, while generating
additional electrical energy in the process.

PHY 712 Spring 2024 -- Lecture 16

FriDAY

Fepruary 23rp, 2024

Lindsey Gray
WFU Graduate Student
Physics Department
Wake Forest University

11 am - ZSR 404
Reception to follow a successful defense
- Olin Lobby



14

Fri- 02/16/2024

ﬁ _
w

02/19/2024

Chap. 5 Magnetic dipoles and dipolar fields #13

15 Mon: 02/19/2024 |Chap. 6 Maxwell's Equations #14 02/26/2024
16 Wed: 02/21/2024 |Chap. 6 Electromagnetic energy and forces #15 |02/26/2024
17 [Fri: 02/23/2024  |Chap. 7 Electromagnetic plane waves
18 Mon: 02/26/2024 |Chap. 7 Electromagnetic plane waves
19 Wed: 02/28/2024 |Chap. 7 Optical effects of refractive indices
20 |Fri: 03/01/2024  \Chap. 1-7 Review
21 Mon: 03/04/2024 |Chap. 8 Short lectures on waveguides Exam
22 \Wed: 03/06/2024 Chap. 8 Short lectures on waveguides Exam
23 |Fri: 03/08/2024 |Chap. 8 Short lectures on waveguides Exam

Mon: 03/11/2024 No class Spring Break

Wed: 03/13/2024 |No class Spring Break

Fri: 03/15/2024  |No class Spring Break
24 Mon: 03/18/2024 |Chap. 9 Radiation from localized oscillating sources

02/21/2024

PHY 712 Spring 2024 -- Lecture 16




PHY 712 — Problem Set #15

Assigned: 02/21/2024  Due: 02/26/2024

This problem is related to ideas presented in Chapter 6 of Jackson.

02/21/2024

1. In deriving the Liénard Wiechert potentials, the retarded time

B r — Ry(tr)|

C

t, =t

was Introduced. Note that this expression for the retarded time ¢, may be difficult to
evaluate m practice since the right hand side of the equation also depends on ¢,.. Here
r.t represent the position and time at which the field is measured, and R, (1)
represents the trajectory of the charged particle as a function of its time denoted by
t'. The velocity of the particle is given by

dR, (1)
=v(t)=—217
v =v(t) o
Demonstrate the following 1dentities:
(a) |
ot, 1
ot 1 _ ¥t (x—Re(t:))
clr—Rq(tr)|
(b)
]
. r—Ry(tr
—cVt, = V() (—Ry(t,)
clr—Ry(t,)]
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Your questions:

From Gabby: If possible, for review on Wednesday, could we
go over Green's functions and the process of how to derive a
function we would need for a particular problem? | know we
mainly covered it in electrostatics, but we didn't get to practice it
too much in the HWs so | am still a bit confused.

Comment: This is a very good suggestion. For today, perhaps
we can discuss the properties of the Green’s function and how it
works. The general construction of Green’s functions for a
particular differential operator is a course in itself that we have
discussed in PHY 711 and 712. We should definitely include
some of those points in the mid term review.
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Slide from Lecture 15

Solution of Maxwell’'s equations in the Lorentz gauge

Let 'Y represent &, A4 .4 ,4  Letf represent p,J ,J ,J,
1 O°¥(r,¢)
¢ ot
Green's function:

V¥ (r,t)- =—Azx f(r,t)

¢’ ot
Formal solution for field ¥ (r,?):

W (r,t) =, (r.0)+ [dr[dG(rere) £ (xe)

2
[vz _ia_jc;(r,t;rgf) = 478 (r—r")5(t1")

: : : . 1 o°
Operationally, G(r,#;r',¢') is the inverse of the differential (Vz ——2§7j
c



Checking:
‘P(r,t)=‘szo(r,t)+jd%'jdt'G(r,t;r',t')f(r',t')
2 1 82 2 1 82 3 2 1 a N 14
[V —??jw(r,t)z(v _?67)% jd jdr [V c_267jG( r,r'e") f(re)
_ 0+ [dr[dr(~4* (r-r)(-0)) £ (x0)
= —4r f(r,t)

For the case of 1sotropic boundary values at infinity:

G(r,5r',t')= |r1r|5(t'—(t—%|r—r'|j)

"Proof" involved several steps which we can review at a later time.




Solution of Maxwell’'s equations in the Lorentz gauge — Review

from previous lecture --
Liénard-Wiechert potentials and fields --

Determination of the scalar and vector potentials for a moving
point particle (also see Landau and Lifshitz The Classical
Theory of Fields, Chapter 8.)

Consider the fields produced by the following source: a point
charge q moving on a trajectory R(%).

Charge density: p(r,1)=¢é" (r—R (1))
dR (?)

Current density: J(r,7) =gR ()0 ‘r=R ,(1), where Rq (1) = ”

R (1)
0 )




Solution of Maxwell’'s equations in the Lorentz gauge -- continued

D(r.0)= rdt 'p(r 5(t'=(t=r=r'|/c))
r—r' |
A(r,t) = _ ”d3r'dt"](r ’t')5(t'—(t—|r—r'|/c)).

47reoc lr—r'

We performing the integrations over first d°r’ and then dt’
making use of the fact that for any function of t’,

& f(z)
dt' f(t"Yo(t'-(t—|r—R (t")]/c))= : A ,
L. ( (11) _R,@) (=R, (1)
clr—R_(z,)]
where the "‘retarded time" is defined to be

r- R (7,)]

C

[ =1 —




Comment about delta functions -- See Pg. 26 in Jackson

J e WO0S(/ ()= X s
: » dx |,
S H‘Q/s
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Some details --

r—R (7
5(1'_(t—|r—Rq([')|/C))za(tr_tr) trEl‘—| q(,,)|
C
dR (1

(1R, (1)) T
atr q Cl’tr 5tr
— =1+
Ot C|r—Rq(tr)| ot

Using notation: R = r— Rq (¢.) v= Rq (tr)a
ot R

-> p oY
[ (R—V j

C




Solution of Maxwell’'s equations in the Lorentz gauge -- continued

Resulting scalar and vector potentials:

q 1
D(r,t) = ,
(r,1) ire, o VR
C
q \%
A(r,t) = :
(x:1) 47zeoczR_V°R
C
Notation: R = r— Rq(tr) / Et_|l‘— Rq(fr)|

C

v=R, (),



Solution of Maxwell’'s equations in the Lorentz gauge -- continued

In order to find the electric and magnetic fields, we need to

luat
evaluate E(r.f) = —V(r.1) 8A€(;,t)

B(r,t) =V xA(r,1?)

The trick of evaluating these derivatives is that the retarded
time t. depends on position r and on itself. We can show the
following results using the shorthand notation:

r

Vi =— = .
C(R_V-Rj and ot (R— CRj

C

R ot R
V.




Solution of Maxwell’'s equations in the Lorentz gauge -- continued

2
—VO(r,1) = L Ir1-Y —Z(R—V RJ+R
4re, (R V.Rj C c C
c
_O0A(r,1) g 1 VR vz_V-R_\'f-R _ VR
ot 4re, (R V- Rj3 c Rc ¢’ ¢’
c
2
E(r,r)=—1 L (R—ﬂ 1-= |+ Rx(
dre, (R V.Rj c c
c
B(r.1) = q —Rxv [ v-R)  Rxv/c
" drec ( V- R)3 ¢’ ( V- Rjz
R— R—
c c

V-R}
2 9
C

~ RxE(r,?)
cR



Back to general case --
Maxwell’s equations

Coulomb's law : V-D=p..

oD
Ampere- Maxwell'slaw: VxH - & =J e
Faraday's law : VxE+ 88_13 =0

No magnetic monopoles: V-B=0

Energy analysis of electromagnetic fields and sources
Rate of work done on source J(r,?) by electromagnetic field:

AW e = IE e =|d’r E-J free
dt dt

Expressing source current in terms of fields it produces:

dt ot
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Energy analysis of electromagnetic fields and sources - continued

D
AW e _Id% E-J,, = jd%f E- (VXH g j
dt ot
D B
=—jd3r (V-(ExH)+E- D . u. 8—)
Ot Ot
Let S=ExH "Poynting vector"
1 .
U = E(E -D+H- B) energy density
Ou Assuming that D=¢cE

5 +V-S=-E- Jfree and that B=uH



Energy analysis of electromagnetic fields and sources - continued

Poss _ [ 4y E-3

dt

free
. . 1
Electromagnetic energy density: u=—(E-D+H-B)

2
L ja = Id3r u(r,t)
Poynting vector: S=ExH

From the previous energy analysis: Z—j +V-S=-E-J
dE
— ey | Lt =—[d’r V-S(r.t)=—pd’r #-S(r.r)
dt dt



Momentum analysis of electromagnetic fields and sources

dl::’“;"h = Id3r (pE+J><B)

Follows by analogy with Lorentz force:
F=g(E+vxB)

" =gojd3r (ExB)

P,

Expression for vacuum fields:

(deech 4+ feldj jd?)
di |

Maxwell stress tensor:

T, = (EE +c* BB, djl(E-EJrczB-B)j
2



Summary -- By considering a complete system involving self-
contained sources and fields, we examined the energy and
force relationships and introduce energy and force equivalents
of the electromagnetic fields

. . |
Electromagnetic energy density: u = E(E -D+H-B)

Poynting vector: S=ExH

ou

Differential relationship: ’» +V-S=-E-J .
!

Maxwell stress tensor (for vacuum case):

T, = (EE +*BB,~ 5, — (E-E+c2B-B)j
2



Integral relationships:

Locer _[ 47 E-3

dt free
Eﬁeldsjd3r u(r,t)

— dE mech + dEﬁeld

dt dt

=—jd3r V- S Cj)dzrr S( )

AP erd :
) e



Comment on treatment of time-harmonic fields
Fourier transformation in time domain :

| -
ETrt) =— ja’wE(r,co)e‘m
2 *

Er o = ja’t E(r,t) e
Note that E(r,#)1sreal = E(r, W) = E*(r, —w)

These relations and the notion of the superposition principle,

lead to the common treatment:

E(r,t) =R ( E(r, a))e‘i"”) E%(E(r,a))e_i”t +E*(r,a))ei"”)



Comment on treatment of time-harmonic fields -- continued

Equations for time harmonic fields:

Emt) =R (E(r, w)e “‘”)E E(E(r, we " +E (r, a))e"‘”)
Equations in time domain in frequency domain
Coulomb's law : V-D=p,., V-D=p free
Ampere-Maxwell'slaw: VxH - aﬁ_lt) =Jd e VX H+ioD=1J free

OB ~ L=
Faraday's law : VxE+E:O VxE—-iowB =0
No magnetic monopoles: V-B=0 V-B=0

Note -- in all of these, the real part is taken at the end of the
calculation.



Comment on treatment of time-harmonic fields -- continued

Equations for time harmonic fields:

Er1)=NR (E(r, w)e™ )E %(ﬁ(r, we " +E(r, a))ei“’t)

Poynting vector : S(r,t) =E(,t)<xH(r,?)
S(r,¢)= i(ﬁ e ™ +E'(r,0)e™ (A, 0)e ™ + H'(r,w)e™ )

— i(ﬁ(r, w)xH'(r, )+ E'(r,w)x H(r, 50))

+ %(ﬁ(r, W) X ﬁ(r, we " + ENZ*(r, W) X ﬁ*(r, w)e”“”)

<S(r,t)>tavg = ER(% (ENl(r, w)xH'(r, a)))j



Summary and review

Maxwell’s equations
Coulomb's law : V-D=p,..
oD
Ampere-Maxwell'slaw: VxH — ’n =J
Faraday's law : VxE+ aﬁ—]: 0

No magnetic monopoles: V-B=0

02/21/2024 PHY 712 Spring 2024 -- Lecture 16
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Ma;

@J
>><
(CD

well’s equatio

For linear 1sotropic media-- D=¢E; B = u1H

and no sources:

Coulomb's law : V-E=0
OE
Ampere- Maxwell'slaw: VxB— ue P =0
Faraday's law : VxE+ %—B 0
[

No magnetic monopoles: V-B=0
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Analysis of Maxwell’'s equations without sources -- continued:
Coulomb's law : V-E=0

Ampere-Maxwell'slaw: VxB-— ygé;—? 0
Faraday's law : V><E+88—]t3 0
No magnetic monopoles: V:-B=0
E E
VX(VXB ,uga—j —VzB—,ug@(VX )
Ot Ot
0°B
=-—V’B+ us =0
Mo
VX(VXE+8B)——V2E+6(VXB)
ot ot
2
==V E+,u<9a = =0

ot’



Analysis of Maxwell’s equations without sources -- continued:
Both E and B fields are solutions to a wave equation:

2
B
V’B 12 0 —=0
V™ Ot
2
E
V’E 12 0 —=0
V™ Ot
where Vv’ =c¢’ Hoo _ ¢
ue n’

Plane wave solutions to wave equation :
B(r,t)= ER(BOeik"'_i“”) E(r,t)= %(Eoeik'r_i“’t)



Analysis of Maxwell’s equations without sources -- continued:
Plane wave solutions to wave equation :

B(r,t)= %(Boeik'r_i“’t) E(r,t)= %(Eoeik'r_i”t)

2 2
‘2 0, nw UE

=|—| =| — where n =
v c Ho&o

Note: ¢, 1, n, k can all be complex; for the moment we will

assume that they are all real (no dissipation).

Note that E, and B, are not independent;

OB

from Faraday's law : VxE+5 0
:BoszEoznkXEo
@ C

also note : ﬁ-EO:O and R-Bon



Analysis of Maxwell’s equations without sources -- continued:
Summary of plane electromagnetic waves:

B(l‘, t) _ m[ nk x EO eik-ria)tj E(l', t) _ ER(EOeik-r—ia)t )

C

2 2

‘k‘z :(gj :(@j wheren= |2 andﬁ-EO =0
v ¢ Ho&

Poynting vector for plane electromagnetic waves::

( A )
<S>avg = %ER E e™ ™ x 1 [nkXEO eik'ri”tj
\ HA© y
2 Note that:
n‘EO‘ ﬁ:l E‘EO k on(ﬁxEo)zﬁ(EO-EO)—EO(IA(-EO
He 2\H e,




Analysis of Maxwell’s equations without sources -- continued:

Transverse Electric and Magnetic (TEM) waves
Summary of plane electromagnetic waves :

B(r,t)= TR( nkxE, eik'ri“’t] E(r,t)= ER(EOeik'r_i“” )

C

2 2
‘k‘z = (Qj = (@j wheren=_ |2 andk -E, =0
4 ¢ Ho&

Energy density for plane electromagnetic waves :

<u>avg _ im(gEoeik-r—ia)t . (Eoeik-r—ia)t )* )-I‘

*

lm 1 I”ll; X EO eik.r_ia)t . nl} X E() eik-r—ia)l‘
4 u c C
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