PHY 712 Electrodynamics 10-10:50 AM in Olin 103

Discussion for Lecture 20:

Review of Chapters 1-7

1. Comment on what to expect with the take- home exam
2. Main topics covered
3. Some details of past HW problems

| $\mathbf{1 6}$ | Wed: 02/21/2024 | Chap. 6 | Electromagnetic energy and forces | $\# 15$ | $02 / 26 / 2024$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 7}$ | Fri: 02/23/2024 | Chap. $\mathbf{7}$ | Electromagnetic plane waves | $\# 16$ | $02 / 26 / 2024$ |
| $\mathbf{1 8}$ | Mon: 02/26/2024 | Chap. $\mathbf{7}$ | Electromagnetic plane waves | $\# 17$ | $03 / 01 / 2024$ |
| $\mathbf{1 9}$ | Wed: $02 / 28 / 2024$ | Chap. $\mathbf{7}$ | Optical effects of refractive indices | $\# 18$ | $03 / 01 / 2024$ |
| $\mathbf{2 0}$ | Fri: 03/01/2024 | Chap. 1-7 | Review | | |
| $\mathbf{2 1}$ | Mon: $03 / 04 / 2024$ | Chap. 8 | Short lectures on waveguides | Exam | |
| $\mathbf{2 2}$ | Wed: $03 / 06 / 2024$ | Chap. 8 | Short lectures on waveguides | Exam | |
| $\mathbf{2 3}$ | Fri: 03/08/2024 | Chap. 8 | Short lectures on waveguides | Exam | |
| | Mon: 03/11/2024 | No class | Spring Break | | |
| | Wed: $03 / 13 / 2024$ | No class | Spring Break | | |
| | Fri: 03/15/2024 | No class | Spring Break | | |
| $\mathbf{2 4}$ | Mon: 03/18/2024 | Chap. 9 | Radiation from localized oscillating sources | | |

For 3/04/2024-3/08/2024:

- Individual work on take home exam
- Shortened class lectures on Chapter 8 of Jackson

Motivation for giving/taking mid-term exam

1. Opportunity to review/solidify knowledge in the topic
2. Opportunity to practice problem solving techniques appropriate to the topic
3. Assessment of performance. Accordingly, the work you turn in must be your own (of course).

- You are encouraged to consult with your instructor (but no one else!) if any questions arise about the exam questions
- Extra credit awarded if you report errors/inconsistencies/ambiguities in the exam questions

Instructions on exam:

Note: This is a "take-home" exam which can be turned in any time before 4 PM Friday, March 8, 2024. In addition to each worked problem, please attach ALL Maple (or Mathematica, Matlab, Wolfram, etc.), work sheets as well as a full list of resources used to complete these problems. It is assumed that all work on the exam is performed under the guidelines of the honor code. In particular, if you have any questions about the material, you may consult with the instructor but no one else. For grading purposes, each question in multi-part problems are worth equal weight. Credit will be assigned on the basis of both the logical steps of the solution and on the correct answer.

- It is important that the instructor is able to read your work and understand your reasoning.
- Since you will be using Maple or Mathematica or ?? to evaluate some of your results, please include the software work (or snips of it) into your exam materials.
- Your exam paper does not need to be a work of art, but it does need to be readable. If you prefer to submit your exam paper electronically, that will be fine. (I may print it myself.)

More advice - accumulate trusted equations/mathematical relationships and know how to use them

Jackson
 pg. 783

Table 4. Conversion Table for Given Amounts of a Physical Quantity
The table is arranged so that a given amount of some physical quantity, expressed as so many SI or Gaussian units of that quantity, cian be expressed as an equivalent number of units in the other system. Thus the entries in each row stand for the same amount, expressed in different units. All factors of 3 (apart from exponents) should, for accurate work, be replaced by (2.99792458), arising from the numerical value of the velocity of light. For example, in the row for displacement (D), the entry ($12 \pi \times 10^{5}$) is actually ($2.99792458 \times 4 \pi \times 10^{5}$) and " 9 " is actually $10^{-16} c^{2}=8.98755 \ldots$. Where a name for a unit has been agreed on or is in common usage, that name is given. Otherwise, one merely reads so many Gaussian units, or SI units.

Physical Quantity	Symbol	SI		Gaussian
Length	l	1 meter (m)	10^{2}	centimeters (cm)
Mass	m	1 kilogram (kg)	10^{3}	grams (g)
Time	t	1 second (s)	1	second (s)
Frequency	ν	1 hertz (Hz)	1	hertz (Hz)
Force	F	1 newton (N)	10^{5}	dynes
Work	${ }_{W}^{W}$	1 joule (J)	10^{7}	ergs
Energy	$U\}$	1 joule (J)	10	ergs
Power	P	1 watt (W)	10^{7}	ergs s ${ }^{-1}$
Charge	q	1 coulomb (C)	3×10^{9}	statcoulombs
Charge density	ρ	$1 \mathrm{Cm}^{-3}$	3×10^{3}	statcoul cm^{-3}
Current	I	1 ampere (A)	3×10^{9}	statamperes
Current density	J	$1 \mathrm{Am}^{-2}$	3×10^{5}	statamp cm ${ }^{-2}$
Electric field	E	1 volt m ${ }^{-1}\left(\mathrm{Vm}^{-1}\right)$	$\frac{1}{3} \times 10^{-4}$	statvolt cm ${ }^{-1}$
Potential	Ф, V	1 volt (V)	$\frac{1}{30}$	statvolt
Polarization	P	$1 \mathrm{Cm}^{-2}$	3×10^{5}	dipole moment cm^{-3}
Displacement	D	$1 \mathrm{Cm}^{-2}$	$12 \pi \times 10^{5}$	$\begin{aligned} & \text { statvolt } \mathrm{cm}^{-1} \\ & \text { (statcoul } \mathrm{cm}^{-2} \text {) } \end{aligned}$
Conductivity	σ	$1 \mathrm{mho} \mathrm{m}^{-1}$	9×10^{9}	s^{-1}
Resistance	R	1 ohm (Ω)	$\frac{1}{9} \times 10^{-11}$	$\mathrm{s} \mathrm{cm}^{-1}$
Capacitance	C	1 farad (F)	9×10^{11}	cm
Magnetic flux	ϕ, F	1 weber (Wb)	10^{8}	gauss cm^{2} or maxwells
Magnetic induction	B	1 tesla (T)	10^{4}	gauss (G)
Magnetic field	H	$1 \mathrm{Am}^{-1}$	$4 \pi \times 10^{-3}$	oersted (Oe)
Magnetization	M	$1 \mathrm{Am}^{-1}$	10^{-3}	magnetic moment cm^{-3}
Inductance*	L	1 henry (H)	$\frac{1}{9} \times 10^{-11}$	

*There is some confusion about the unit of inductance in Gaussian units. This stems from the use by some authors of a modifled system of Gaussian units in which current is measured in electromagnetic units, so that the connection between charge and current is $I_{m=}=(1 / c)(d q / d t)$. Since inductance is defined through the induced voltage $V=L(d I / d t)$ or the energy $U=\frac{1}{2} L l^{2}$, the choice of current deffned in Section 2 means that our Gaussian unit of inductance is equal in magnitude and dimensions $\left(t^{2} l^{-1}\right)$ to the electrostatic unit of inductance. The electromagnetic current I_{m} is related to our Gaussian current I by the relation $I_{m}=(1 / c) I$. From the energy definition of inductance, we see that the electromagnetic inductance L_{m} is related to our Gaussian inductance L through $L_{m}=c^{2} L$. Thus L_{m} has the dimensions of length. The modified Gaussian system generally uses the electromagnetic unit of inductance, as well as current. Then the voltage relation reads $V=\left(L_{m} / c\right)\left(d I_{m} / d t\right)$. The numerical connection between units of inductance is

$$
1 \text { henry }=\frac{1}{9} \times 10^{-11} \text { Gaussian (es) unit }=10^{9} \mathrm{emu}
$$

Source for standard measurements -

https://physics.nist.gov/cuu/Constants/index.html

$$
\begin{aligned}
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}) & =\mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})=\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b}) \\
\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) & =(\mathbf{a} \cdot \mathbf{c} \mathbf{)} \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \\
(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d}) & =(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}) \\
\boldsymbol{\nabla} \times \boldsymbol{\nabla} \psi & =0 \\
\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \mathbf{a}) & =0 \\
\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{a}) & =\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{a})-\nabla^{2} \mathbf{a} \\
\boldsymbol{\nabla} \cdot(\psi \mathbf{a}) & =\mathbf{a} \cdot \boldsymbol{\nabla} \psi+\psi \boldsymbol{\nabla} \cdot \mathbf{a} \\
\boldsymbol{\nabla} \times(\psi \mathbf{a}) & =\boldsymbol{\nabla} \psi \times \mathbf{a}+\psi \boldsymbol{\nabla} \times \mathbf{a} \\
\boldsymbol{\nabla}(\mathbf{a} \cdot \mathbf{b}) & =(\mathbf{a} \cdot \boldsymbol{\nabla}) \mathbf{b}+(\mathbf{b} \cdot \boldsymbol{\nabla}) \mathbf{a}+\mathbf{a} \times(\boldsymbol{\nabla} \times \mathbf{b})+\mathbf{b} \times(\boldsymbol{\nabla} \times \mathbf{a}) \\
\boldsymbol{\nabla} \cdot(\mathbf{a} \times \mathbf{b}) & =\mathbf{b} \cdot(\boldsymbol{\nabla} \times \mathbf{a})-\mathbf{a} \cdot(\boldsymbol{\nabla} \times \mathbf{b}) \\
\boldsymbol{\nabla} \times(\mathbf{a} \times \mathbf{b}) & =\mathbf{a}(\boldsymbol{\nabla} \cdot \mathbf{b})-\mathbf{b}(\boldsymbol{\nabla} \cdot \mathbf{a})+(\mathbf{b} \cdot \boldsymbol{\nabla}) \mathbf{a}-(\mathbf{a} \cdot \boldsymbol{\nabla}) \mathbf{b}
\end{aligned}
$$

relations

If \mathbf{x} is the coordinate of a point with respect to some origin, with magnitude $r=|\mathbf{x}|, \mathbf{n}=\mathbf{x} / r$ is a unit radial vector, and $f(r)$ is a well-behaved function of r, then

$$
\begin{aligned}
& \boldsymbol{\nabla} \cdot \mathbf{x}=3 \quad \boldsymbol{\nabla} \times \mathbf{x}=0 \\
& \boldsymbol{\nabla} \cdot[\mathbf{n} f(r)]=\frac{2}{r} f+\frac{\partial f}{\partial r} \quad \nabla \times[\mathbf{n} f(r)]=0 \\
& (\mathbf{a} \cdot \boldsymbol{\nabla}) \mathbf{n} f(r)=\frac{f(r)}{r}[\mathbf{a}-\mathbf{n}(\mathbf{a} \cdot \mathbf{n})]+\mathbf{n}(\mathbf{a} \cdot \mathbf{n}) \frac{\partial f}{\partial r} \\
& \boldsymbol{\nabla}(\mathbf{x} \cdot \mathbf{a})=\mathbf{a}+\mathbf{x}(\boldsymbol{\nabla} \cdot \mathbf{a})+i(\mathbf{L} \times \mathbf{a}) \\
& \text { where } \mathbf{L}=\frac{1}{i}(\mathbf{x} \times \nabla) \text { is the angular-momentum operator. }
\end{aligned}
$$

In the following ϕ, ψ, and \mathbf{A} are well-behaved scalar or vector functions, V is a three-dimensional volume with volume element $d^{3} x, S$ is a closed twodimensional surface bounding V, with area element $d a$ and unit outward normal n at $d a$.

$$
\begin{array}{rlr}
\int_{V} \boldsymbol{\nabla} \cdot \mathbf{A} d^{3} x & =\int_{S} \mathbf{A} \cdot \mathbf{n} d a & \text { (Divergence theorem) } \\
\int_{V} \boldsymbol{\nabla} \psi d^{3} x & =\int_{S} \psi \mathbf{n} d a \\
\int_{V} \boldsymbol{\nabla} \times \mathbf{A} d^{3} x & =\int_{S} \mathbf{n} \times \mathbf{A} d a \\
\int_{V}\left(\phi \nabla^{2} \psi+\boldsymbol{\nabla} \phi \cdot \boldsymbol{\nabla} \psi\right) d^{3} x & =\int_{S} \phi \mathbf{n} \cdot \boldsymbol{\nabla} \psi d a & \text { (Green's first identity) } \\
\int_{V}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d^{3} x & =\int_{S}(\phi \boldsymbol{\nabla} \psi-\psi \boldsymbol{\nabla} \phi) \cdot \mathbf{n} d a & \text { (Green's theorem) }
\end{array}
$$

In the following S is an open surface and C is the contour bounding it, with line element $d \mathbf{l}$. The normal \mathbf{n} to S is defined by the right-hand-screw rule in relation to the sense of the line integral around C.

$$
\begin{align*}
\int_{S}(\boldsymbol{\nabla} \times \mathbf{A}) \cdot \mathbf{n} d a & =\oint_{C} \mathbf{A} \cdot d \mathbf{l} \tag{Stokes'stheorem}\\
\int_{S} \mathbf{n} \times \boldsymbol{\nabla} \psi d a & =\oint_{C} \psi d \mathbf{l}
\end{align*}
$$

Explicit Forms of Vector Operations

Let $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ be orthogonal unit vectors associated with the coordinate directions specified in the headings on the left, and A_{1}, A_{2}, A_{3} be the corresponding components of \mathbf{A}. Then

$$
\begin{aligned}
\boldsymbol{\nabla} \psi & =\mathbf{e}_{1} \frac{\partial \psi}{\partial x_{1}}+\mathbf{e}_{2} \frac{\partial \psi}{\partial x_{2}}+\mathbf{e}_{3} \frac{\partial \psi}{\partial x_{3}} \\
\boldsymbol{\nabla} \cdot \mathbf{A} & =\frac{\partial A_{1}}{\partial x_{1}}+\frac{\partial A_{2}}{\partial x_{2}}+\frac{\partial A_{3}}{\partial x_{3}} \\
\boldsymbol{\nabla} \times \mathbf{A} & =\mathbf{e}_{1}\left(\frac{\partial A_{3}}{\partial x_{2}}-\frac{\partial A_{2}}{\partial x_{3}}\right)+\mathbf{e}_{2}\left(\frac{\partial A_{1}}{\partial x_{3}}-\frac{\partial A_{3}}{\partial x_{1}}\right)+\mathbf{e}_{3}\left(\frac{\partial A_{2}}{\partial x_{1}}-\frac{\partial A_{1}}{\partial x_{2}}\right) \\
\nabla^{2} \psi & =\frac{\partial^{2} \psi}{\partial x_{1}^{2}}+\frac{\partial^{2} \psi}{\partial x_{2}^{2}}+\frac{\partial^{2} \psi}{\partial x_{3}^{2}}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\boldsymbol{\nabla} \psi & =\mathbf{e}_{1} \frac{\partial \psi}{\partial \rho}+\mathbf{e}_{2} \frac{1}{\rho} \frac{\partial \psi}{\partial \phi}+\mathbf{e}_{3} \frac{\partial \psi}{\partial z} \\
& \boldsymbol{\nabla} \cdot \mathbf{A} & =\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho A_{1}\right)+\frac{1}{\rho} \frac{\partial A_{2}}{\partial \phi}+\frac{\partial A_{3}}{\partial z} \\
\widehat{U} & \boldsymbol{\nabla} \times \mathbf{A} & =\mathbf{e}_{1}\left(\frac{1}{\rho} \frac{\partial A_{3}}{\partial \phi}-\frac{\partial A_{2}}{\partial z}\right)+\mathbf{e}_{2}\left(\frac{\partial A_{1}}{\partial z}-\frac{\partial A_{3}}{\partial \rho}\right)+\mathbf{e}_{3} \frac{1}{\rho}\left(\frac{\partial}{\partial \rho}\left(\rho A_{2}\right)-\frac{\partial A_{1}}{\partial \phi}\right) \\
\nabla^{2} \psi & =\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial \psi}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} \psi}{\partial \phi^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}
\end{array}
$$

$$
\begin{aligned}
& \boldsymbol{\nabla} \psi=\mathbf{e}_{1} \frac{\partial \psi}{\partial r}+\mathbf{e}_{2} \frac{1}{r} \frac{\partial \psi}{\partial \theta}+\mathbf{e}_{3} \frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \phi} \\
& \boldsymbol{\nabla} \cdot \mathbf{A}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} A_{1}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta A_{2}\right)+\frac{1}{r \sin \theta} \frac{\partial A_{3}}{\partial \phi} \\
& \underset{\text { poluayds }}{(\phi ‘ \theta ‘} \\
& \boldsymbol{\nabla} \times \mathbf{A}=\mathbf{e}_{1} \frac{1}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(\sin \theta A_{3}\right)-\frac{\partial A_{2}}{\partial \phi}\right] \\
& +\mathbf{e}_{2}\left[\frac{1}{r \sin \theta} \frac{\partial A_{1}}{\partial \phi}-\frac{1}{r} \frac{\partial}{\partial r}\left(r A_{3}\right)\right]+\mathbf{e}_{3} \frac{1}{r}\left[\frac{\partial}{\partial r}\left(r A_{2}\right)-\frac{\partial A_{1}}{\partial \theta}\right] \\
& \nabla^{2} \psi=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}} \\
& {\left[\text { Note that } \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right) \equiv \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}(r \psi) .\right]}
\end{aligned}
$$

Comment on cartesian unit vectors versus local (cylindrical or spherical) unit vectors
$\hat{\mathbf{r}}=\sin \theta \cos \phi \hat{\mathbf{x}}+\sin \theta \sin \phi \hat{\mathbf{y}}+\cos \theta \hat{\mathbf{z}}$
$\hat{\boldsymbol{\theta}}=\cos \theta \cos \phi \hat{\mathbf{x}}+\cos \theta \sin \phi \hat{\mathbf{y}}-\sin \theta \hat{\mathbf{z}}$
$\hat{\boldsymbol{\varphi}}=-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}}$

Note that $\nabla^{2} \mathbf{A}=\left(\nabla^{2} A_{x}\right) \hat{\mathbf{x}}+\left(\nabla^{2} A_{y}\right) \hat{\mathbf{y}}+\left(\nabla^{2} A_{z}\right) \hat{\mathbf{z}}$

Also note that $\nabla^{2} f(r)=\frac{\partial^{2} f(r)}{\partial r^{2}}+\frac{2}{r} \frac{\partial f(r)}{\partial r}$

Special functions -- many are described in Jackson Additional source -- https://dlmf.nist.gov/

NIST Digital Library of Mathematical Functions

```
Project News
    2022-03-15 DLMF Update; Version 1.1.5
    2022-01-15 DLMF Update; Version 1.1.4
    2021-09-15 DLMF Update; Version 1.1.3
    2021-07-19 Brian D. Sleeman, Associate Editor of the DLMF, dies at age 81
    More news
```


Foreword

Preface
Mathematical Introduction
1 Algebraic and Analytic Methods
2 Asymptotic Approximations
3 Numerical Methods
4 Elementary Functions
5 Gamma Function
6 Exponential, Logarithmic, Sine, and Cosine Integrals
7 Error Functions, Dawson's and Fresnel Integrals
8 Incomplete Gamma and Related Functions
9 Airy and Related Functions
10 Bessel Functions

[^0]
Basic equations of electrodynamics

	CGS (Gaussian)	SI	
$\mathbf{H}=\mathbf{B}-4 \pi \mathbf{M}=\frac{1}{\mu} \mathbf{B}$	$\nabla \cdot \mathbf{D}=4 \pi \rho$ $\nabla \cdot \mathbf{B}=0$	$\nabla \cdot \mathbf{D}=\rho$ $\nabla \cdot \mathbf{B}=0$	$\begin{aligned} & \mathbf{D}=\epsilon_{0} \mathbf{E}+\mathbf{P}=\epsilon \mathbf{E} \\ & \mathbf{H}=\frac{1}{\mu_{0}} \mathbf{B}-\mathbf{M}=\frac{1}{\mu} \mathbf{B} \end{aligned}$
	$\nabla \times \mathbf{E}=-\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$	$\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$	
	$\nabla \times \mathbf{H}=\frac{4 \pi}{c} \mathbf{J}+\frac{1}{c} \frac{\partial \mathbf{D}}{\partial t}$	$\nabla \times \mathbf{H}=\mathbf{J}+\frac{\partial \mathbf{D}}{\partial t}$	
	$\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c} \times \mathbf{B}\right)$	$\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})$	
	$u=\frac{1}{8 \pi}(\mathbf{E} \cdot \mathbf{D}+\mathbf{B} \cdot \mathbf{H})$	$u=\frac{1}{2}(\mathbf{E} \cdot \mathbf{D}+\mathbf{B} \cdot \mathbf{H})$	
	$\mathbf{S}=\frac{c}{4 \pi}(\mathbf{E} \times \mathbf{H})$	$\mathbf{S}=(\mathbf{E} \times \mathbf{H})$	
03/01/2024			16

More relationships

CGS (Gaussian)

$\mathbf{D}=\mathbf{E}+4 \pi \mathbf{P}=\epsilon \mathbf{E}$
$\mathbf{H}=\mathbf{B}-4 \pi \mathbf{M}=\frac{1}{\mu} \mathbf{B}$
$\mathbf{E}=-\nabla \Phi-\frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}$
$\mathbf{B}=\nabla \times \mathbf{A}$
ϵ
μ

MKS (SI)

$$
\begin{aligned}
& \mathbf{D}=\epsilon_{0} \mathbf{E}+\mathbf{P}=\epsilon \mathbf{E} \\
& \mathbf{H}=\frac{1}{\mu_{0}} \mathbf{B}-\mathbf{M}=\frac{1}{\mu} \mathbf{B} \\
& \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
& \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

$$
\epsilon / \epsilon_{0}
$$

$$
\mu / \mu_{0}
$$

More SI relationships:

$$
\begin{array}{ll}
\mathbf{D}=\varepsilon_{0} \mathbf{E}+\mathbf{P} & \mathbf{D}=\varepsilon \mathbf{E} \\
\left.\mathbf{H}=\frac{1}{\mu_{0}} \mathbf{B}-\mathbf{M}\right) & \mathbf{B}=\mu \mathbf{H}
\end{array} \mathbf{B}=F(\mathbf{H})
$$

for ferromagnet

More Gaussian relationships:

$$
\mathbf{D}=\mathbf{E}+4 \pi \mathbf{P} \quad \mathbf{D}=\varepsilon \mathbf{E}
$$

$$
\mathbf{H}=\mathbf{B}-4 \pi \mathbf{M}) \quad \mathbf{B}=\mu \mathbf{H}
$$

$$
\mathbf{B}=F(\mathbf{H})
$$

for ferromagnet
elementary charge: $\quad e=1.602176634 \times 10^{-19} \mathrm{C}$ (when using Gaussian units, charge is in "stat Coulombs")

Energy and power (SI units)
Electromagnetic energy density: $\quad u \equiv \frac{1}{2}(\mathbf{E} \cdot \mathbf{D}+\mathbf{H} \cdot \mathbf{B})$
Poynting vector: $\quad \mathbf{S} \equiv \mathbf{E} \times \mathbf{H}$

Equations for time harmonic fields :

$$
\begin{aligned}
& \mathbf{E}(\mathbf{r}, t)=\mathfrak{R}\left(\widetilde{\mathbf{E}}(\mathbf{r}, \omega) e^{-i \omega t}\right) \equiv \frac{1}{2}\left(\widetilde{\mathbf{E}}(\mathbf{r}, \omega) e^{-i \omega t}+\widetilde{\mathbf{E}}^{*}(\mathbf{r}, \omega) e^{i \omega t}\right) \\
& \langle u(\mathbf{r}, t)\rangle_{t \mathrm{avg}}=\frac{1}{4} \mathfrak{R}\left(\left(\tilde{\mathbf{E}}(\mathbf{r}, \omega) \cdot \tilde{\mathbf{D}}^{*}(\mathbf{r}, \omega)+\tilde{\mathbf{B}}(\mathbf{r}, \omega) \cdot \tilde{\mathbf{H}}^{*}(\mathbf{r}, \omega)\right)\right) \\
& \langle\mathbf{S}(\mathbf{r}, t)\rangle_{t \text { avg }}=\frac{1}{2} \mathfrak{R}\left(\left(\tilde{\mathbf{E}}(\mathbf{r}, \omega) \times \tilde{\mathbf{H}}^{*}(\mathbf{r}, \omega)\right)\right)
\end{aligned}
$$

Solution of Maxwell's equations:

$$
\begin{array}{ll}
\nabla \cdot \mathbf{E}=\rho / \varepsilon_{0} & \nabla \times \mathbf{B}-\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}=\mu_{0} \mathbf{J} \\
\nabla \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0 & \nabla \cdot \mathbf{B}=0
\end{array}
$$

Introduction of vector and scalar potentials:
$\nabla \cdot \mathbf{B}=0$

$$
\Rightarrow \mathbf{B}=\nabla \times \mathbf{A}
$$

$\nabla \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0$
$\Rightarrow \nabla \times\left(\mathbf{E}+\frac{\partial \mathbf{A}}{\partial t}\right)=0$
$\mathbf{E}+\frac{\partial \mathbf{A}}{\partial t}=-\nabla \Phi$
or $\quad \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}$

Scalar and vector potentials continued:

$$
\begin{aligned}
& \nabla \cdot \mathbf{E}=\rho / \varepsilon_{0}: \\
& \quad-\nabla^{2} \Phi-\frac{\partial(\nabla \cdot \mathbf{A})}{\partial t}=\rho / \varepsilon_{0} \\
& \nabla \times \mathbf{B}-\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}=\mu_{0} \mathbf{J}
\end{aligned}
$$

$$
\nabla \times(\nabla \times \mathbf{A})+\frac{1}{c^{2}}\left(\frac{\partial(\nabla \Phi)}{\partial t}+\frac{\partial^{2} \mathbf{A}}{\partial t^{2}}\right)=\mu_{0} \mathbf{J}
$$

Analysis of the scalar and vector potential equations:
$-\nabla^{2} \Phi-\frac{\partial(\nabla \cdot \mathbf{A})}{\partial t}=\rho / \varepsilon_{0}$
$\nabla \times(\nabla \times \mathbf{A})+\frac{1}{c^{2}}\left(\frac{\partial(\nabla \Phi)}{\partial t}+\frac{\partial^{2} \mathbf{A}}{\partial t^{2}}\right)=\mu_{0} \mathbf{J}$
Lorentz gauge form -- require $\nabla \cdot \mathbf{A}_{L}+\frac{1}{c^{2}} \frac{\partial \Phi_{L}}{\partial t}=0$
$-\nabla^{2} \Phi_{L}+\frac{1}{c^{2}} \frac{\partial^{2} \Phi_{L}}{\partial t^{2}}=\rho / \varepsilon_{0}$
$-\nabla^{2} \mathbf{A}_{L}+\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{A}_{L}}{\partial t^{2}}=\mu_{0} \mathbf{J}$

Solution methods for scalar and vector potentials

and their electrostatic and magnetostatic analogs:

$$
\begin{aligned}
& -\nabla^{2} \Phi_{L}+\frac{1}{c^{2}} \frac{\partial^{2} \Phi_{L}}{\partial t^{2}}=\rho / \varepsilon_{0} \\
& -\nabla^{2} \mathbf{A}_{L}+\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{A}_{L}}{\partial t^{2}}=\mu_{0} \mathbf{J}
\end{aligned}
$$

In your "bag" of tricks:
\square Direct (analytic or numerical) solution of differential equations
\square Solution by expanding in appropriate orthogonal functions
Green's function techniques
\square Solving Maxwell's equations

How to choose most effective solution method --
\square In general, Green's functions methods work well when source is contained in a finite region of space Consider the electrostatic problem:
$-\nabla^{2} \Phi=\rho / \varepsilon_{0}$
Define: $\nabla^{\prime 2} G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=-4 \pi \delta^{3}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)$

$$
\begin{aligned}
& \Phi(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \int_{V} d^{3} r^{\prime} \rho\left(\mathbf{r}^{\prime}\right) G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)+ \\
& \frac{1}{4 \pi} \int_{S} d^{2} r^{\prime}\left[G\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \nabla^{\prime} \Phi\left(\mathbf{r}^{\prime}\right)-\Phi\left(\mathbf{r}^{\prime}\right) \nabla^{\prime} G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right] \cdot \hat{\mathbf{r}}^{\prime} .
\end{aligned}
$$

Note that the Green's function is effectively the inverse of the differential operator and can be designed to effectly treat the boundary values as well.

How to construct and use Green's functions

- Starting with relevant physical equations (in this case, typically Maxwell's equations), reduce them so that you are working with a differential equation for single multivariable function.
- Construct a Green's function, ideally one which is both the inverse of the differential operator and also handles the boundary values. (Always check)
- Evaluate the integrals.
- Check that everything makes sense.

Methods for constructing Green's functions for second order differential equations

- Use two independent solutions of the homogeneous differential equation
- Orthogonal function expansion
- Combination of both

General procedure for constructing Green's function for onedimensional system using 2 independent solutions of the homogeneous equations

Consider two independent solutions to the homogeneous equation
$\nabla^{2} \phi_{i}(x)=0$
where $i=1$ or 2 . Let
$G\left(x, x^{\prime}\right)=\frac{4 \pi}{W} \phi_{1}\left(x_{<}\right) \phi_{2}\left(x_{>}\right)$.
This notation means that $x_{<}$should be taken as the smaller of x and x^{\prime} and x, should be taken as the larger.
"Wronskian": $W \equiv \frac{d \phi_{1}(x)}{d x} \phi_{2}(x)-\phi_{1}(x) \frac{d \phi_{2}(x)}{d x}$.
Beautiful method; but only works in one dimension.

Orthogonal function expansions and Green's functions

Suppose we have a "complete" set of orthogonal functions $\left\{u_{n}(x)\right\}$ defined in the interval $x_{1} \leq x \leq x_{2}$ such that

$$
\int_{x_{1}}^{x_{2}} u_{n}(x) u_{m}(x) d x=\delta_{n m} .
$$

We can show that the completeness of this functions implies that

$$
\sum_{n=1}^{\infty} u_{n}(x) u_{n}\left(x^{\prime}\right)=\delta\left(x-x^{\prime}\right) .
$$

This relation allows us to use these functions to represent a Green's function for our system. For the 1-dimensional Poisson equation, the Green's function satisfies

$$
\frac{\partial^{2}}{\partial x^{2}} G\left(x, x^{\prime}\right)=-4 \pi \delta\left(x-x^{\prime}\right) .
$$

Orthogonal function expansion -- continued

Suppose the orthogonal functions satisfy an eigenvalue equation:
$\frac{d^{2}}{d x^{2}} u_{n}(x)=-\alpha_{n} u_{n}(x)$
where the functions $u_{n}(x)$ also satisfy the appropriate boundary conditions, then we can construct the Green's function:

$$
G\left(x, x^{\prime}\right)=4 \pi \sum_{n} \frac{u_{n}(x) u_{n}\left(x^{\prime}\right)}{\alpha_{n}} .
$$

Check:

$$
\begin{aligned}
\frac{d^{2}}{d x^{2}} G\left(x, x^{\prime}\right)=4 \pi \sum_{n} \frac{\left(-\alpha_{n} u_{n}(x)\right) u_{n}\left(x^{\prime}\right)}{\alpha_{n}} & =-4 \pi \sum_{n} u_{n}(x) u_{n}\left(x^{\prime}\right) \\
& =-4 \pi \delta\left(x-x^{\prime}\right)
\end{aligned}
$$

Orthogonal function expansions in 2 and 3 dimensions for cartesian coordinates:

$$
\nabla^{2} \Phi(\mathbf{r}) \equiv \frac{\partial^{2} \Phi(\mathbf{r})}{\partial x^{2}}+\frac{\partial^{2} \Phi(\mathbf{r})}{\partial y^{2}}+\frac{\partial^{2} \Phi(\mathbf{r})}{\partial z^{2}}=-\rho(\mathbf{r}) / \epsilon_{0} .
$$

Let $\left\{u_{n}(x)\right\},\left\{v_{n}(y)\right\},\left\{w_{n}(z)\right\}$ denote complete orthogonal function sets in the x, y, and z dimensions, respectively. The Green's function construction becomes:

$$
G\left(x, x^{\prime}, y, y^{\prime}, z, z^{\prime}\right)=4 \pi \sum_{l m n} \frac{u_{l}(x) u_{l}\left(x^{\prime}\right) v_{m}(y) v_{m}\left(y^{\prime}\right) w_{n}(z) w_{n}\left(z^{\prime}\right)}{\alpha_{l}+\beta_{m}+\gamma_{n}},
$$

where

$$
\frac{d^{2}}{d x^{2}} u_{l}(x)=-\alpha_{l} u_{l}(x), \frac{d^{2}}{d y^{2}} v_{m}(y)=-\beta_{m} v_{m}(y), \text { and } \frac{d^{2}}{d z^{2}} w_{n}(z)=-\gamma_{n} w_{n}(z) .
$$

(See Eq. 3.167 in Jackson for example.)

Combined orthogonal function expansion and homogeneous solution construction of Green's function in 2 and 3 dimensions.

An alternative method of finding Green's functions for a second order ordinary differential equations (in 1 dimension) is based on a product of two independent solutions of the homogeneous equation, $\phi_{1}(x)$ and $\phi_{2}(x)$:
$G\left(x, x^{\prime}\right)=K \phi_{1}\left(x_{<}\right) \phi_{2}\left(x_{>}\right)$, where $K \equiv \frac{4 \pi}{\frac{d \phi_{1}}{d x} \phi_{2}-\phi_{1} \frac{d \phi_{2}}{d x}}$,
where $x_{<}$denotes the smaller of x and x^{\prime}.
For the two and three dimensional cases, we can use this technique in one of the dimensions in order to reduce the number of summation terms. These ideas are discussed in Section 3.11 of Jackson.

Green's function construction -- continued

For the two dimensional case, for example, we can assume that the
Green's function can be written in the form:
$G\left(x, x^{\prime}, y, y^{\prime}\right)=\sum_{n} u_{n}(x) u_{n}\left(x^{\prime}\right) g_{n}\left(y, y^{\prime}\right)$ where $\frac{d^{2}}{d x^{2}} u_{n}(x)=-\alpha_{n} u_{n}(x)$
The y dependence of this equation will have the required
behavior, if we choose: $\left[-\alpha_{n}+\frac{\partial^{2}}{\partial y^{2}}\right] g_{n}\left(y, y^{\prime}\right)=-4 \pi \delta\left(y-y^{\prime}\right)$,
which in turn can be expressed in terms of the two independent solutions $v_{n_{1}}(y)$ and $v_{n_{2}}(y)$ of the homogeneous equation:
$\left[\frac{d^{2}}{d y^{2}}-\alpha_{n}\right] v_{n_{1}}(y)=0, \quad\left[\frac{d^{2}}{d y^{2}}-\alpha_{n}\right] v_{n_{2}}(y)=0$
and the Wronskian constant: $K_{n} \equiv \frac{d v_{n_{1}}}{d y} v_{n_{2}}-v_{n_{1}} \frac{d v_{n_{2}}}{d y}$
$\left[-\alpha_{n}+\frac{\partial^{2}}{\partial y^{2}}\right] g_{n}\left(y, y^{\prime}\right)=-4 \pi \delta\left(y-y^{\prime}\right)$,
$g_{n}\left(y, y^{\prime}\right)=\frac{4 \pi}{K_{n}} v_{n_{1}}\left(y_{<}\right) v_{n_{2}}\left(y_{>}\right)$
where: $\quad\left[\frac{d^{2}}{d y^{2}}-\alpha_{n}\right] v_{n_{i}}(y)=0$,
and $K_{n} \equiv \frac{d v_{n_{1}}}{d y} v_{n_{2}}-v_{n_{1}} \frac{d v_{n_{2}}}{d y}$
For example, choose $v_{n_{1}}(y)=\sinh \left(\sqrt{\alpha_{n}} y\right)$ and $v_{n_{2}}(y)=\sinh \left(\sqrt{\alpha_{n}}(b-y)\right)$
where $K_{n}=\sqrt{\alpha_{n}} \sinh \left(\sqrt{\alpha_{n}} b\right)$
using the identity: $\cosh (r) \sinh (s)+\sinh (r) \cosh (s)=\sinh (r+s)$

General form for a 2-dimensional example
$G\left(x, x^{\prime}, y, y^{\prime}\right)=\sum_{n} u_{n}(x) u_{n}\left(x^{\prime}\right) \frac{4 \pi}{K_{n}} v_{n_{1}}\left(y_{<}\right) v_{n_{2}}\left(y_{>}\right)$.
where

$$
K_{n} \equiv \frac{d v_{n_{1}}}{d y} v_{n_{2}}-v_{n_{1}} \frac{d v_{n_{2}}}{d y}
$$

Note that the idea is very general, but the details are highly dependent on the form of the differential equation.

Example that is useful for spherical polar coordinates where the eigenfunction expansion is used for the angular variables and the homogeneous solution is used for the radial variable. This form is designed to produce solutions that vanish for $r \rightarrow \infty$.

For electrostatic problems where $\rho(\mathbf{r})$ is contained in a small
region of space and $S \rightarrow \infty, \quad G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}$

$$
\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\sum_{l m} \frac{4 \pi}{2 l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}} Y_{l m}(\theta, \varphi) Y_{l m}^{*}\left(\theta^{\prime}, \varphi^{\prime}\right)
$$

Maxwell's equations

For linear isotropic media and no sources: $\mathbf{D}=\varepsilon \mathbf{E} ; \quad \mathbf{B}=\mu \mathbf{H}$ Coulomb's law:

$$
\nabla \cdot \mathbf{E}=0
$$

Ampere-Maxwell's law: $\quad \nabla \times \mathbf{B}-\mu \varepsilon \frac{\partial \mathbf{E}}{\partial t}=0$
Faraday's law:

$$
\nabla \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0
$$

No magnetic monopoles: $\quad \nabla \cdot \mathbf{B}=0$

Summary of plane electromagnetic waves:

$$
\begin{array}{ll}
\begin{array}{ll}
\mathbf{E}(\mathbf{r}, t)=\mathfrak{R}\left(\mathbf{E}_{0} e^{i \mathbf{k} \cdot \mathbf{r}-i \omega t}\right) & \mathbf{B}(\mathbf{r}, t)=\mathfrak{R}\left(\frac{n \hat{\mathbf{k}} \times \mathbf{E}_{0}}{c} e^{i \mathbf{k} \cdot \mathbf{r}-i \omega t}\right) \\
\mathbf{D}(\mathbf{r}, t)=\varepsilon \mathbf{E}(\mathbf{r}, t) & \mathbf{H}(\mathbf{r}, t)=\frac{1}{\mu} \mathbf{B}(\mathbf{r}, t) \\
|\mathbf{k}|^{2}=\left(\frac{\omega}{v}\right)^{2}=\left(\frac{n \omega}{c}\right)^{2} & \text { where } n \equiv \sqrt{\frac{\mu \varepsilon}{\mu_{0} \varepsilon_{0}}} \text { and } \hat{\mathbf{k}} \cdot \mathbf{E}_{0}=0 \\
\mathbf{B}_{0}=\frac{n \hat{\mathbf{k}} \times \mathbf{E}_{0}}{c} \text { and } \quad \hat{\mathbf{k}} \cdot \mathbf{B}_{0}=0
\end{array}
\end{array}
$$

HW10

PHY 712 -- Assignment \#10

Assigned: 2/9/2024 Due: 2/12/2024
Finish reading Chapter 4 in Jackson .

1. Work problem 4.9(a) in Jackson. Hint: It may be convenient to use a coordinate system with the origin at the center of the dielectric sphere. Also, you may benefit from considering the case where $\varepsilon / \varepsilon_{0}=1$ to check that your expression makes sense.

Note that

$$
\frac{1}{|\mathbf{r}-\mathbf{d}|}=\sum_{\ell=0}^{\infty} \frac{r^{\ell}}{d^{\ell+1}} P_{\ell}(\hat{\mathbf{r}} \cdot \hat{\mathbf{d}})
$$

There are several ways of approaching this problem. One convenient way is to consider the effects of the dielectric sphere and point charge separately

\boldsymbol{E}_{0}

$$
\begin{aligned}
& \Phi(r, \theta)=\Phi_{\text {sphere }}(r, \theta)+\frac{q}{4 \pi \varepsilon_{0}|\mathbf{r}-\mathbf{d}|} \\
& \Phi_{\text {sphere }}(r, \theta)= \begin{cases}\sum_{\ell=0} A_{\ell} \ell^{\ell} P_{\ell}(\cos \theta) & \text { for } r \leq a \\
\sum_{\ell=0} \frac{B_{\ell}}{r^{\ell+1}} P_{\ell}(\cos \theta) & \text { for } r \geq a\end{cases}
\end{aligned}
$$

Boundary values at $r=0$:

$$
\begin{aligned}
& \left.\varepsilon \frac{\partial \Phi(r, \theta)}{\partial r}\right|_{r=a_{-}}=\left.\varepsilon_{0} \frac{\partial \Phi(r, \theta)}{\partial r}\right|_{r=a_{+}} \\
& \left.\frac{\partial \Phi(r, \theta)}{\partial \theta}\right|_{r=a_{-}}=\left.\frac{\partial \Phi(r, \theta)}{\partial \theta}\right|_{r=a_{+}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Also: }\left.\frac{q}{4 \pi \varepsilon_{0}|\mathbf{r}-\mathbf{d}|}\right|_{r=a}=\frac{q}{4 \pi \varepsilon_{0}} \sum_{\ell=0} \frac{a^{\ell}}{d^{\ell+1}} P_{\ell}(\cos \theta) \\
& \ell a^{\ell-1}\left(\varepsilon\left(A_{\ell}+\frac{q}{4 \pi \varepsilon_{0} d^{\ell+1}}\right)\right)=-(\ell+1) \varepsilon_{0} \frac{B_{\ell}}{a^{\ell+2}}+\ell a^{\ell-1} \frac{q}{4 \pi d^{\ell+1}} \\
& a^{\ell}\left(\left(A_{\ell}+\frac{q}{4 \pi \varepsilon_{0} d^{\ell+1}}\right)\right)=\frac{B_{\ell}}{a^{\ell+1}}+a^{\ell} \frac{q}{4 \pi \varepsilon_{0} d^{\ell+1}} \Rightarrow A_{\ell}=\frac{B_{\ell}}{a^{2 \ell+1}} \\
& \frac{\varepsilon}{\varepsilon_{0}}\left(A_{\ell}+\frac{q}{4 \pi \varepsilon_{0} d^{\ell+1}}\right)=-\frac{(\ell+1)}{\ell} \frac{B_{\ell}}{a^{2 \ell+1}}+\frac{q}{4 \pi \varepsilon_{0} d^{\ell+1}} \\
& A_{\ell}=\frac{q}{4 \pi \varepsilon_{0} d^{\ell+1}}\left(\frac{1-\frac{\varepsilon}{\varepsilon_{0}}}{\frac{\varepsilon}{\varepsilon_{0}}+\frac{(\ell+1)}{\ell}}\right)
\end{aligned}
$$

PHY 712 -- Assignment \#11

Start reading Chapter 5 (Sec. 5.1-5.5) in Jackson .

1. Consider an infinitely long cylindrical wire with radius a, oriented along the \mathbf{z} axis. There is a steady uniform current inside the wire. Specifically, in terms of r the radial parameter of the cylindrical coordinates of the system the current density is $\mathbf{J}(r)=\mathbf{J}_{0}$, where \mathbf{J}_{0} is a constant vector pointing along the z-axis, for $r \leq a$ and zero otherwise.
a. Find the vector potential (A) for all r.
b. Find the magnetic flux field (B) for all r.

Simple solution using Ampere's law
Know that magnetic field is uniform and pointing in the ϕ direction
For $r<a \quad 2 \pi r B=\mu_{0} \pi r^{2} J_{0} \quad \Rightarrow B=\frac{\mu_{0} r J_{0}}{2}$
For $r>a \quad 2 \pi r B=\mu_{0} \pi a^{2} J_{0} \quad \Rightarrow B=\frac{\mu_{0} a^{2} J_{0}}{2 r}$
$\mathbf{A}=A_{z}(r) \hat{\mathbf{z}}$
For $r<a \quad A_{z}(r)=-\frac{\mu_{0} r^{2} J_{0}}{4}$
Is this answer unique?
For $r>a \quad A_{z}(r)=-\frac{\mu_{0} a^{2} J_{0}}{4}\left(1+2 \ln \left(\frac{r}{a}\right)\right)$

[^0]: 20 Theta Functions
 21 Multidimensional Theta Functions
 22 Jacobian Elliptic Functions
 23 Weierstrass Elliptic and Modular Functions
 24 Bernoulli and Euler Polynomials
 25 Zeta and Related Functions
 26 Combinatorial Analysis
 27 Functions of Number Theory
 28 Mathieu Functions and Hill's Equation
 29 Lamé Functions
 30 Spheroidal Wave Functions
 31 Heun Functions
 32 Painlevé Transcendents
 33 Coulomb Functions
 34 3j, 6j, 9j Symbols

