PHY 712 Electrodynamics
10-10:50 AM in Olin 103

Discussion for Lecture 20:

Review of Chapters 1-7

1. Comment on what to expect with the
take- home exam

2. Main topics covered

3. Some details of past HW problems
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Wed: 02/21/2024

02/26/2024

Chap. 6 Electromagnetic energy and forces #15

17 Fri: 02/23/2024  |Chap. 7 Electromagnetic plane waves #16 |02/26/2024
18 Mon: 02/26/2024 |Chap. 7 Electromagnetic plane waves #17 |03/01/2024
19 Wed: 02/28/2024 |Chap. 7 Optical effects of refractive indices #18 |03/01/2024
20 [Fri: 03/01/2024  Chap. 1-7 Review
21 |Mon: 03/04/2024 |Chap. 8 Short lectures on waveguides Exam
22 |Wed: 03/06/2024 |Chap. 8 Short lectures on waveguides Exam
23 |Fri: 03/08/2024 |Chap. 8 Short lectures on waveguides Exam

Mon: 03/11/2024 |No class Spring Break

Wed: 03/13/2024 |No class Spring Break

Fri: 03/15/2024 |No class Spring Break
24 |Mon: 03/18/2024 |Chap. 9 Radiation from localized oscillating sources

For 3/04/2024-3/08/2024
* |Individual work on take home exam
« Shortened class lectures on Chapter 8 of Jackson

03/01/2024
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Motivation for giving/taking mid-term exam

1.
2.

3.

Opportunity to review/solidify knowledge in the topic
Opportunity to practice problem solving techniques
appropriate to the topic

Assessment of performance. Accordingly, the work you

turn in must be your own (of course).

* You are encouraged to consult with your instructor
(but no one else!) if any questions arise about the
exam questions

« Extra credit awarded if you report
errors/inconsistencies/ambiguities in the exam
guestions



Instructions on exam:

Note: This is a take-home" exam which can be turned in
any time before 4 PM Friday, March 8, 2024. In addition to
each worked problem, please attach ALL Maple (or
Mathematica, Matlab, Wolfram, etc.), work sheets as well as
a full list of resources used to complete these problems. It is
assumed that all work on the exam is performed under the
guidelines of the honor code. In particular, if you have any
questions about the material, you may consult with the
iInstructor but no one else. For grading purposes, each
qguestion in multi-part problems are worth equal weight.
Credit will be assigned on the basis of both the logical steps
of the solution and on the correct answer.



More advice about exam —

 Itis important that the instructor is able to read your
work and understand your reasoning.

« Since you will be using Maple or Mathematica or ?? to
evaluate some of your results, please include the
software work (or snips of it) into your exam materials.

* Your exam paper does not need to be a work of art,
but it does need to be readable. If you prefer to
submit your exam paper electronically, that will be fine.
(I may print it myself.)



More advice — accumulate trusted equations/mathematical
relationships and know how to use them

Jackson
pg. 783

Table 4 Conversion Table for Given Amounts of a Physical Quantity -

The table is arranged so that a given amount of some physical quantity, expressed as so
many SI or Gaussian units of that quantity, can be expressed as an equivalent number
of units in the other system. Thus the entries in each row stand for the same amount,
expressed in different units. Al factors of 3 (apart from exponents) should, for accurate
work, be replaced by (2.997 924 58), arising from the numerical value of the velocity of
light. For example, in the row for displacement (D), the entry {127 X 10°) is actually
(2.997 924 58 % 47 % 10%) and * 9"‘isan'.'1:|.|aﬂl;-,rIIII"“"':1 = §.987 55.... Where a name
for a unit has been agreed on or is in common usage, that name is Ewerl Otherwise,
one merely reads so many Gaussian units, or ST units.
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Jackson

03/01/2024

Pg.

783

Physical Quantity ~ Symbaol ‘SI ' Gaussian

Length ! 1 meter (m) 10° centimeters (cm)

Mass m 1 kilogram (kg) 1P grams (g)

Time . lsecond (s) 1 second (s)

Frequency v 1 hertz (Hz) 1 hertz (Hz)

Force F 1 newton (N) 10° ~ dynes

gﬂ;; ﬁ} Liowe@ 107 ergs

Power P 1watt (W) S0 ergs s~

Charge q 1 coulomb (C) ~ 3IxX 1P statcoulombs

Charge density p 1Cm™ 3% 1P  statcoul'cm™®

Current I 1 ampere (A) - 3Ix10° statamperes

Current density J 1Am? 3x10°  statamp cm”*

Electric field E - lvoltm™ (Vm™") §x107* staivolt em™!

Potential &,V 1volt (V) = statvolt

Polarization P 1Cm™ 3x10°  dipole moment em™?

Displacement D 1Cm™? 127 % 107 statvolt cm™
(statcoul cm™?)

Conductivity o 1 mho m™! 9x10° s

Resistance R 1 ohm (1) FRX 107" gem™!

Capacitance C 1 farad (F) 9x10" cm

Magnetic flux &, F 1 weber (Wh) 10* gauss cm?® or maxwells

Magnetic induction B 1 tesla (T) 10 gauss (G)

Magnetic ficld H 1Am™! 47 % 107 oersted (Oe)

Magnetization M 1Am™ 103 magnetic moment cm™>

Inductance* L  1henry (H) §x 101

*There s some confusion about the unit of inductance in Gowssinn units. This stems from the use
by some authors of o modified system of Gauvssian units in which current is measured in
electromagnetic units, so that the connection between charge and current &s I, = (1ic)(dig/dr).
Since inductance is defined through the induced voltege V = L({dl/dr) or the energy U = 4LP, the
choice of current defined in Section 2 means that our Gaussian vnit of inductance is equal in
magnitude and dimensions (©1™") to the electrostatic unit of inductance, The electromagnetic
eurrent [, is related to our Gaussian current [ by the relation [, = (Le)l. From the energy
definition of inductance, we see that the electromagnetic inductance L. is related to our Gauasian
inductance L through L., = ¢’L. Thus L., has the dimensions of length. The modified Gaussian
sysiem generally uses the electromagnetic unit of inductance, as well as current. Then the voltage
relation reads V = (L, /eWdl./dr). The numerical connection between units of inductance is

1 henry = § x 107" Gaussian (es) unit = 10° emu
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Source for standard measurements —
https://physics.nist.gov/cuu/Constants/index.html

The NIST Reference on Information at the foundation of modern science and

Constants, Units, and Uncertainty Leg_lr_'loiogy from the Physical Measurement Laboratory of

CODATA Internationally recommended 2018 values of the
Fundamental Physical Constants

Constants Version history and disclaimer
Topics:
Values
- Search by name | | [ search
Equivalents

Searchabl - a1 -
il Display ® alphabetical list, © table (image), or © table (pdf)

(e.g., electron mass, most misspellings okay)

Background

by clicking a category below

Universal

Defined constants
Frequently used
constants
Electromagnetic
Conversion factors for
Atomic and nuclear energy equivalents

Physico-chemical

Extensive listings

All values (ascii)

Find the correlation coefficient between any pair of constants

See also
Detailed articles on the 2018 adjustment of the values of the constants
Wall Chart and Wallet Card of the 2018 constants
Background information related to the constants
Links to selected scientific data
Previous Values (2014) (2010) (2006) (2002) (1998) (1986) (1973) (1969)
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https://physics.nist.gov/cuu/Constants/index.html

a-(bxc)=b-(cxa)=c-(axbh)

Vector ax(bxc)=(a-c)b— (a-b)e
relations (@axb)-(cxd) =(a-c)b-d) — (a-d)b-c)
VX V=0
V.(Vxa)=0

VX (Vxa)=V(V-a)— Va

V.(ga) =a-Vy + ¢V -a

VX (gpa)=Vyxa+ ¢V xa

Va-b)=(a-V)b+(b-V)a+ax(Vxbhb)+bx(VXxa)
V-(axbh)=b-(Vxa)—a-(Vxbh)
Vx(axb)=aV-b)—b(V-a)+(b-V)a—(a-V)b

If x is the coordinate of a point with respect to some origin, with magnitude
r = |x|, m = x/r is a unit radial vector, and f(r) is a well-behaved function of r,

then
V-x=3 Vxx=0
of
Vel =2 f+ % v x [nf)] - 0
(- Vufe) = 1 fa — na-m) + 0w L

V(x-a) =a+ x(V-a) +iL X a)

1 .
where L = - (x X V) is the angular-momentum operator.
i
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In the following ¢, i, and A are well-behaved scalar or vector functions, V is a
three-dimensional volume with volume element d’x, S is a closed two-
dimensional surface bounding V, with area element da and unit outward normal

n at da.

J-v V:-Adx = J- A -nda (Divergence theorem)

s

j Vi d’x = f yn da
v 5
f?xAd3x=J-nxAda

v s

J (pV: + Vo - Vi) d'x = L ¢n - Vi da (Green’s first identity)
v

L (VY — YY) d'x = J’S (VY — YVod) - nda (Green’s theorem)

In the following S is an open surface and C is the contour bounding it, with line
element dl. The normal n to S is defined by the right-hand-screw rule in relation
to the sense of the line integral around C.

L (VX A)-nda= i A -dl (Stokes’s theorem)

J-nx‘?uirda:fﬁ g dl
s c

03/01/2024 PHY 712 Spring 2024 -- Lecture 20
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Explicit Forms of
Vector Operations

Let e, e,, e; be orthogonal unit vectors associated with the coordinate directions
specified in the headings on the left, and A,, A,, A5 be the corresponding com-
ponents of A. Then

Wy I

— V = g — 4 e

N 4 1 0x4 ? X5 : X4

= .

. dA dA dA
§ = V-A=—+ "4+
2 | 0Xy 0X- X4
B 0A, A dA, A dA, A
S ?xA_EL( 2 2)_,_22( SAEN 2 O0A,;
= X X X X X, X
= iy Py P

b, Y, P

Ve =

2
0X ﬂx% &x%

03/01/2024 PHY 712 Spring 2024 -- Lecture 20 11



Cvlindrical
(p, b. 2)

03/01/2024

Vip=e, —+e-——+e,—
v Er?p ezpﬂ(ﬁ Ec'r'z
14 |
voacl? 194, | iA;
p ap pdp oz
1 A
vA(_ﬂ)+(£ﬂ
p dp a7 07 ap

pﬂ_w)+1f?2¢+w

pz &q.)z 372
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v{f;=e1&—¢+ _1_6_1}1+E L 9

€2 3T
dar r df rsin 6 dg
1 4 d . 1 dA
VoA S5O (PA) L (sin A+
redr rsin 6 76 rsinf de
1 |4 A, |
o -~ VXA-=e—|—(sinfd;) — —
L% rsmé | do dd |
Y T -
= 1 dA, 194 1|4 dA
= + e ———(rA + e;— | — -~ =1
- 2[r sinfl dp  r or (r 3)_ . r [ﬁr (rA2) 6"8]

1d(,0d 1 a(. 4 1 &
Vi = - rz_—l'b + -— = smﬁ-—w + 55— !i;
re oar ar r= sin 6 76 a8 resm- 6 dg
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Comment on cartesian unit vectors versus local (cylindrical
or spherical) unit vectors

r =sind cosg X+sinf sing y +cosf z
0 =cosf cos¢ Xx+cosl sing y—sinf z
@= —sing X+cos¢gy

Note that V°A = (VzAx)iJr (Vsz)y - (VzAZ)i

Also note that V£ (r) = 828f(r) 2 5];(’”)



Special functions -- many are described in Jackson
Additional source -- https://dimf.nist.gov/

mey of

athematical
URCHOnS
Index

MNotations

Search
Help?
Citing
Customize

L
About the Project

03/01/2024

NIST Digital Library of Mathematical Functions

Praoject News

2022-03-15 DLMF Update; Version 1.1.5
2022-01-15 DLMF Update; Version 1.1.4
2021-09-15 DLMF Update; Version 1.1.3
2021-07-19 Brian D. Sieeman, Associate Editor of the DLMF, dies at age §1

More news
Fareword 20 Theta Functions
Preface 21 Multidimensional Theta Functions
Mathematical Introduction 22 Jacobian Elliptic Functions

1 Algebraic and Analytic Methods 23 Weierstrass Elliptic and Modular Functions

2 Asymptotic Approximations 24 Bernoulli and Euler Polynomials

3 Numerical Methods 25 Zeta and Related Functions

4 Elementary Functions 26 Combinatorial Analysis

5 Gamma Function 27 Functions of Number Theory

6 Exponential, Logarithmic, Sine, and Cosine 28 Mathieu Functions and Hill’s Equation
Integrals 29 Lamé Functions

7 Error Functions, Dawson’s and Fresnel 30 Spheroidal Wave Functions
Integrals 31 Heun Functions

8 Incomplete Gamma and Related Functions 32 Painlevé Transcendents

9 Airy and Related Functions 33 Coulomb Functions

10 Bessel Functions 34 3j, 6j, 9j Symbols

PHY 712 Spring 2024 -- Lecture 20
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https://dlmf.nist.gov/

Basic equations of electrodynamics

CGS (Gaussian) ]|
D=E+47P =¢E V- -D=dnp V-D=p D=€0E+P=€E
H=B-47M =B H-'B-M-18B
H vV-B=0 v.B =0 n 7
1 0B JB
VXE=———m VYE=——
c Ot ot
vxH=5,10 | g m=342
xH=— S x H = -
c c Ot ot
F=g(E+ Y xB) F =g(E+vxB)
C
1 1
u=—(E-D+B.H) | u= ~(E-D+B-H)
8 2
S = —(E x H) S = (E x H)
4
03/01/2024 16




More relationships

CGS (Gaussian) MKS (SI)
D=E+47P =¢cE D=¢E+P=¢cE
H:B—47zM:lB H:LB—M:iB
H Hy H
E--vo-1A E--vo-2
c Ot ot

B=VxA B=VxA

€ < €/ €

H g M,

03/01/2024 PHY 712 Spring 2024 -- Lecture 20 17



More SI relationships: More Gaussian relationships:
D=¢E+P D=¢E D=E+4~P D=¢E
1 f— —_ = =
H-LB-M) B-uH B=F(H) H=B-4zM) B=uyH B=F(H)
Ky for ferromagnet
for ferromagnet

elementary charge: €=1.602176634 x 10-1°C
(when using Gaussian units, charge is in “stat Coulombs”)



Energy and power (Sl units)

: . |
Electromagnetic energy density: u = > (E-D+H-B)

Poynting vector: S=ExH

Equations for time harmonic fields :

Er) =R (E(r, w)e )E %(E(l‘, we ™™ +E(r, w)em)

<u(r,t)>t e =iﬂ%((ﬁ(r,a})oI~)*(r,a))+]§(r,a))-ltl*(r,a))))

<S(r,t)>t e = %iﬁ((ﬁ(r, w)<H (r, a))))



Solution of Maxwell's equations:

1 OE
V-E=p/¢g, VxB——zﬁ—:,uOJ
c” Ot
VxE+a—B:O V-B=0
Ot

Introduction of vector and scalar potentials:

V-B=( — B= VxA
VxE+a—B:O :>V><(E+5—Aj:0
ot ot
E+8—A:—VCD or E:—VCD—a—A

ot Ot



Scalar and vector potentials continued:

V-E=plg,:
o(V-A
~-V*® - (8t )=p/50
1 OE
VxB-— = u,J
: ¢’ ot .
2
VX(VXA)—I— 12[8(VCD)+8?
C ot ot



Analysisof the scalar and vector potential equations :

o(V-A)
VD - =ple
Py P&
1 (6(VD) &°A
Vx(VXxA)+ + = u,d
( ) cz[ ot Gtzj Ho
. 1 00
Lorentz gauge form --require V- A, +—; 8@; =(
C
1 0°0®
2
-V CI)L+C2 atzL:p/go
1 0°A
~V’A, + g L=ud

¢t ot



Solution methods for scalar and vector potentials

and their electrostatic and magnetostatic analogs:

1 o’

~-V’0, + . 8t2L =pleg,
1 0°A

~V’A, + = 812L = u,J

In your “bag” of tricks:
U Direct (analytic or numerical) solution of
differential equations
4 Solution by expanding in appropriate
orthogonal functions
d Green’s function techniques
U Solving Maxwell’s equations



How to choose most effective solution method --
d In general, Green’s functions methods work well when

source is contained in a finite region of space
Consider the electrostatic problem:

VO =p/¢g,
Define: V°G(r,r") =475 (r —r")

1 o ,
d’r p(r )G(r,r )+
F | dr pr)G(r,r)

s [G(r, r)Vo()-o(r )V G(r,r )] T .
47 7S

Note that the Green's function 1s effectively the inverse

DO(r) =

of the differential operator and can be designed to effectly

treat the boundary values as well.



How to construct and use Green’s functions

« Starting with relevant physical equations (in this
case, typically Maxwell’'s equations), reduce
them so that you are working with a differential
equation for single multivariable function.

» Construct a Green'’s function, ideally one which
Is both the inverse of the differential operator
and also handles the boundary values. (Always
check)

« Evaluate the integrals.

* Check that everything makes sense.



Methods for constructing Green’s functions for
second order differential equations
« Use two independent solutions of the
homogeneous differential equation
* Orthogonal function expansion
« Combination of both



General procedure for constructing Green’s function for one-
dimensional system using 2 independent solutions of the
homogeneous equations

Consider two independent solutions to the homogeneous equation
V2§(x) = 0

wherei=1or 2. Let

G(x,x') = %ﬁl (), (x).

This notation means that x_ should be taken as the

smaller of x and x' and x_ should be taken as the larger.

= S (5) - 0 22

"Wronskian":

Beautiful method; but only works in one dimension.



Orthogonal function expansions and Green’s functions

Suppose we have a “complete” set of orthogonal functions {u,(z)} defined in the

interval r; < x < x5 such that

L (@)t (2) d = O

1
We can show that the completeness of this functions implies that

>

Z Uy (2) Uy (2) = 6(x — 2).

n=1

This relation allows us to use these functions to represent a Green’s function for our

system. For the 1-dimensional Poisson equation, the Green’s function satisfies

82 ! !
ﬁG(m.}m ) = —4nd(x — x').
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Orthogonal function expansion -- continued

Suppose the orthogonal functions satisfy an eigenvalue equation:
2

@, (6) =0,

dx’

where the functions u (x) also satisfy the appropriate boundary

conditions, then we can construct the Green's function:

G(x,x") = 47ZZM (x)u (x)
Check:
d_xzzG(x,x') _ 472_2 (—Olnun (0):))“” (X') _ _472'274” ()C)I/ln ()C v)

=—4xo(x—Xx")



Orthogonal function expansions in 2 and 3 dimensions —
for cartesian coordinates:

FD(r)  TOr)  Fd(r)

V:O(r) =
()= Ox” oy oz

=—p(r)/ €.

Let {u,(x)}, {v,(»)}, {w,(2)} denote complete orthogonal

function sets in the x, y, and z dimensions, respectively. The

Green's function construction becomes:

G(xax'a ya y '9 Z,Z ') = 47[2 ul (x)ul (‘x ')Vm (y)vm (y ')Wn (Z)Wn (Z ')
Imn al + IBm + ?/n

b

where

j_uz(x)_ alul(x) d_v (y)_ ,Bmvm(y) and d_w (Z)——]/an(Z)
X y dz’

(See Eq. 3.167 in Jackson for example.)



Combined orthogonal function expansion and
homogeneous solution construction of Green’s function
in 2 and 3 dimensions.
An alternative method of finding Green's functions for a second order
ordinary differential equations (in 1 dimension) 1s based on a product of
two independent solutions of the homogeneous equation, ¢ (x) and ¢, (x):

4r
aé 4 _
’» ¢, — ¢

where x_ denotes the smaller of x and x'.

G(x,x") = K¢ (x )9, (x.), where K = %9

dx

For the two and three dimensional cases, we can use this
technique in one of the dimensions in order to reduce the
number of summation terms. These ideas are discussed in
Section 3.11 of Jackson.



Green’s function construction -- continued
For the two dimensional case, for example, we can assume that the

Green's function can be written in the form:

d2
Gxx', 1,y = T, (D, ()2, (1,3 Where 1, (x) = ~t,u, (+)

The y dependence of this equation will have the required

2

behavior, if we choose: {—an + ?} g (y,y)=—4n5(y—y),
V

which 1n turn can be expressed in terms of the two independent

solutions v, (v) and v, (y) of the homogeneous equation:

d2
4 _a —0, | L —a |v (»)=0
dv dv

m 1,

and the Wronskian constant: K =

n,

dy " ody



0° : :
{—an +y}gn (y,y)=—4mo(y—y),

A

g,(ry)= U v, ()

n

2

d
where: ——a. |V =0,

dv, dv,
and K, =—v, —v 2

dy n, o m dy
For example, choose v, (y) = sinh(\/aT y) and v, (y)= sinh(\/aT (b—y))

where K = \/07,1 sinh(\/OTn D)

using the identity: cosh(7)sinh(s)+ sinh(7)cosh(s) = sinh(7 +s)
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General form for a 2-dimensional example

G(x,x',y,y") = Zu (X)u, (X)—an(y<)vnz(y>)

dv, dvn
where K =—v —v —2
dy 7 T dy

Note that the idea is very general, but the details
are highly dependent on the form of the differential
equation.



Example that is useful for spherical polar coordinates where
the eigenfunction expansion is used for the angular
variables and the homogeneous solution is used for the
radial variable. This form is designed to produce solutions

that vanish for r = 00.

For electrostatic problems where p(r) is contained in a small
1

region of space and § — o0, G(r,r )=

[

Doy i Yo, 0'0)

20+1r,




Maxwell’s equatio

For linear 1sotropic media and no sources: D=¢E; B=uH

Coulomb's law: V.-E=0
OE
Ampere-Maxwell's law: VxB - ue e =0
[
Faraday's law: VXE+ 6@—B 0
[

No magnetic monopoles: V-B=0
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Summary of plane electromagnetic waves:

E(l‘,t) _ ER(EOeik-r—ia)t) B(l‘,t) _ m[ﬂk X EO eik-ria)tj

%
D(r,t) = £E(r.1) H(r./) = B(r./)
17

2 2 o

‘k‘z = Qj = (@j where n= |-~ and k- E, =0
v ¢ Ho&
BO:nkXEO and k-B, =0
C A




HW10

PHY 712 -- Assignment #10

Assigned: 2/9/2024 Due: 2/12/2024
Finish reading Chapter 4 in Jackson .

1. Work problem 4.9(a) in Jackson. Hint: It may be convenient to use a coordinate system with the origin at the center of
the dielectric sphere. Also, you may benefit from considering the case where €/eg=1 to check that your expression

makes sense.

r Note that

1 2 pt -
3 d _ P(t-d
) ’; ‘l‘—d‘ ;drjﬂ ((r )
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There are several ways of approaching this problem.
One convenient way is to consider the effects of the
dielectric sphere and point charge separately

r
d
\/ 2
£ q
€0
q Boundary values at 7 =0
O@,0)=D_,..(7.0)+ ) )
| dre, |l‘ — d| - cD(r,0) - oD(r,0)
: -~ - “0 -~
Y Ar'F(cost) forr<a or lr=a or =,
sphele (? 9) = - B 6(1)(;‘}9) = 6(1)(;*" 9)
Z - o6 | _, e | _,
= A+ . 4




{
Also: 1 | =1 afﬂ F,(cos )
4z, |r —d| 4re, = d'

r=a

_ \ | B 4 q
ta el A +—L  |l=—(r+1)e — + (g""
( ( 4 47&90(}?(-’_1}} ( )Oaf+2 4ﬂdf+]
a'll 4

g )\ B .. q B
( £+4ﬂ6‘0d{+1JJ:a£il+a 477‘90@'?“1 :Af:az(il

& g (+1) B
T A£+ (+1 =_( ) 2££+1 T 1 (+1
&, dre,d [ a dre,d
1%
A — q 80
dre,d"™! £, (C+1)
E (
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PHY 712 -- Assignment #11

Assigned: 2/12/2024 Due: 2/19/2024
Start reading Chapter 5 (Sec. 5.1-5.5) in Jackson .

1. Consider an infinitely long cylindrical wire with radius a, oriented along the z axis. There is a steady uniform current
inside the wire. Specifically, in terms of r the radial parameter of the cylindrical coordinates of the system the current
density is J(r)=Jg , where Jg is a constant vector pointing along the z-axis, for r < a and zero otherwise.

a. Find the vector potential (A) for all r.
b. Find the magnetic flux field (B) for all r.

Simple solution using Ampere’s law

Know that magnetic field is uniform and pointing in the ¢ direction

Forr<a 2xrB= ﬂU}TFJEJD — B — :‘u[];JD
Forr >a 2arB = ﬂnﬁﬂzuﬁ] — B = ﬂ[]';h“f[]
N
A=A4(r)z
< Is this answer
Forr<a A__(;*):_M .
4 unique?
EJ .
Forr>a A(r)=- % [1 +2111[’_D
a
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