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PHY 712 Electrodynamics
10-10:50 AM  in Olin 103

Discussion for Lecture 20:

Review of Chapters 1-7
1. Comment on what to expect with the 

take- home exam

2. Main topics covered

3. Some details of past HW problems
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For 3/04/2024-3/08/2024:
• Individual work on take home exam
• Shortened class lectures on Chapter 8 of Jackson
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Motivation for giving/taking mid-term exam
1. Opportunity to review/solidify knowledge in the topic
2. Opportunity to practice problem solving techniques 

appropriate to the topic
3. Assessment of performance.    Accordingly, the work you 

turn in must be your own (of course).  
• You are encouraged to consult with your instructor 

(but no one else!) if any questions arise about the 
exam questions

• Extra credit awarded if you report 
errors/inconsistencies/ambiguities in the exam 
questions 
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Instructions on exam:

Note:  This is a ``take-home'' exam  which can be turned in 
any time before 4 PM Friday, March 8, 2024.  In addition to 
each worked problem, please attach ALL Maple (or 
Mathematica,  Matlab, Wolfram, etc.), work sheets as well as 
a full list of resources used to complete these problems. It is 
assumed that all work on the exam is performed under the 
guidelines of the honor code.   In particular, if you have any 
questions about the material, you may consult with the 
instructor but no one else. For grading purposes, each 
question in multi-part problems are worth equal weight.  
Credit will be assigned on the basis of both the logical steps 
of the solution and on the correct answer. 
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More advice about exam –

• It is important that the instructor is able to read your 
work and understand your reasoning.

• Since you will be using Maple or Mathematica or ?? to 
evaluate some of your results,   please include the 
software work (or snips of it) into your exam materials.    

• Your exam paper does not need to be a work of art, 
but it does need to be readable.    If you prefer to 
submit your exam paper electronically, that will be fine. 
(I may print it myself.)
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More advice – accumulate trusted equations/mathematical 
relationships and know how to use them 

Jackson
   pg.    783
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Jackson    pg.    783
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Source for standard measurements –
https://physics.nist.gov/cuu/Constants/index.html 

https://physics.nist.gov/cuu/Constants/index.html
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Vector 
relations
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Comment on cartesian unit vectors versus local (cylindrical 
or spherical) unit vectors 
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Special functions  -- many are described in Jackson
Additional source -- https://dlmf.nist.gov/

https://dlmf.nist.gov/
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More relationships
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More SI relationships:
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More Gaussian relationships:
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elementary charge:     e=1.602176634 x 10-19 C
     (when using Gaussian units, charge is in “stat Coulombs”)
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Energy and power  (SI units)

( )1Electromagnetic energy density:      
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0 02

Solution of  Maxwell's equations:
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Scalar and vector potentials continued: 
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Solution methods for scalar and vector potentials
        and their electrostatic and magnetostatic analogs:
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In your “bag” of tricks:
 Direct (analytic or numerical) solution of 

differential equations
 Solution by expanding in appropriate 

orthogonal functions
 Green’s function techniques
 Solving Maxwell’s equations
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How to choose most effective solution method --
 In general, Green’s functions methods work well when 

source is contained in a finite region of space

2

2 3

3

0

0

2

C

v

onsider t

 

he electro

 

static prob

( , ) 4 ( )
1( ) ( ) ( , )

4
1 ˆ     ( , ) ( ) ( ) ( , ) .

4
Note that the Gre

/

en's function i

lem:

Define:  '

f

'

s e fecti

V

S

G

d r G

d r G G

πδ

ρ

π

ε

ρ
πε

′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′

′∇ = −

Φ = +



−∇ Φ =

∇Φ −Φ ⋅

−

∇ 

∫

∫

r r

r r r r

r r r r r r

r r

r

ely the inverse 
of the differential operator and can be designed to effectly 
treat the boundary values as well.
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How to construct and use Green’s functions

• Starting with relevant physical equations (in this 
case, typically Maxwell’s equations), reduce 
them so that you are working with a differential 
equation for single multivariable function.

• Construct a Green’s function, ideally one which 
is both the inverse of the differential operator 
and also handles the boundary values. (Always 
check)

• Evaluate the integrals.
• Check that everything makes sense.
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Methods for constructing Green’s functions for 
second order differential equations

• Use two independent solutions of the 
homogeneous differential equation

• Orthogonal function expansion
• Combination of both
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General procedure for constructing Green’s function for one-
dimensional system using 2 independent solutions of the 
homogeneous equations
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Orthogonal function expansion -- continued
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Orthogonal function expansions in 2 and 3 dimensions – 
for cartesian coordinates:
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(See Eq. 3.167 in Jackson for example.)
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Combined orthogonal function expansion and 
homogeneous solution construction of Green’s function

in 2 and 3 dimensions.

1

An alternative method of finding Green's functions for a second order
ordinary differential equations (in 1 dimension) is based on a product of 
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For the two and three dimensional cases, we can use this 
technique in one of the dimensions in order to reduce the 
number of summation terms.  These ideas are discussed in 
Section 3.11 of Jackson.
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Green’s function construction -- continued
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General form for a 2-dimensional example

Note that the idea is very general, but the details 
are highly dependent on the form of the differential 
equation.
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Example that is useful for spherical polar coordinates where 
the eigenfunction expansion is used for the angular 
variables and the homogeneous solution is used for the 
radial variable.   This form is designed to produce solutions 
that vanish for r  ∞.
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For linear isotropic media and no sources:   ;    
Coulomb's law:                   0

Ampere-Maxwell's law:    0

Faraday's law:                     0

No magnetic monopoles: 
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HW10
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There are several ways of approaching this problem.  
One convenient way is to consider the effects of the 
dielectric sphere and point charge separately
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Is this answer 
unique?
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