PHY 712 Electrodynamics
10-10:50 AM MWF Olin 103

Notes on Lecture 24:
Digression on some Mathematical Methods and

Sources of radiation Chap. 9 (Sec. 9.1-9.3)

A. Digression on tools for solving ordinary
differential equations — Method of Frobenius

B. Electromagnetic waves due to specific
sources

C. Dipole radiation patterns
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Tentative schedule for the remaining semester --

| | | ~

Fri: 03/15/2024  |No class Spring Break
24 |Mon: 03/18/2024 Chap. 9 E}E’;ﬁ::g’gsz’l‘"mﬂg Q“Oitr':f;dss UL AR I
25 \Wed: 03/20/2024 Chap. 9 Radiation from localized oscillating sources
26 |Fri: 03/22/2024 Chap.9 & 10 Radiation and scattering
27 [Mon: 03/25/2024 Chap. 11 Special Theory of Relativity
28 \Wed: 03/27/2024 Chap. 11 Special Theory of Relativity
29 [Fri: 03/29/2024 Chap. 11 Special Theory of Relativity
30 [Mon: 04/01/2024 Chap. 14 Radiation from moving charges
31 \Wed: 04/03/2024 Chap. 14 Radiation from accelerating charged particles
32 |Fri: 04/05/2024 Chap. 14 Synchrotron radiation and Compton scattering
33 |Mon: 04/08/2024 Chap. 15 Radiation from collisions of charged particles
34 \Wed: 04/10/2024 Chap. 13 Cherenkov radiation
35 Fri: 04/12/2024 Special topic: E & M aspects of superconductivity
36 [Mon: 04/15/2024 Special topic: Quantum Effects in E & M
37 \Wed: 04/17/2024 Special topic: Quantum Effects in E & M
38 [Fri: 04/19/2024 Special topic: Quantum Effects in E & M
~ IMon: 04/22/2024 Presentations |
- \Wed: 04/24/2024 Presentations I
' |IFri: 04/26/2024 Presentations llI
39 [Mon: 04/29/2024 Review
40 \Wed: 05/01/2024 Review
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PHY 712 — Problem Set #19
Assigned: 03/18/2024  Due: 03/25/2024

This problem (thanks to F. B. Hildebrand) reviews the Frobenius method of solving
differential equations.

1. Use the Frobenius method to obtain two analytic solutions, valid near r = 0, to the
following differential equation.

, & d , 1 N
(TW-FTE-}_(T —Z))f(r)—[)
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Digression on tools for solving ordinary differential
equations — Method of Frobenius

https://mathshistory.st-andrews.ac.uk/Biographies/Frobenius/

Ferdinand Georg Frobenius

Born: 26 October 1849
Berlin-Charlottenburg, Prussia (now
Germany)

Died: 3 August 1917
Berlin, Germany

Summary: Georg Frobenius combined
results from the theory of algebraic
equations, geometry, and number theory,
which led him to the study of abstract
groups, the representation theory of groups
and the character theory of groups. He also
developed method for linear differential
equations.
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https://mathshistory.st-andrews.ac.uk/Biographies/Frobenius/

Why? Example seen recently -

2
Solutions of the differential equation: (d— + 1d_ —j f(r)=0

dr* rdr r

Frobenius method for finding solutions near » = 0:

Guess series solution form: f(r) = Z AP
n=0

Evaluate: Of (r) = Z A Or*™ =0 for each power of """ to find

relationships between coefficients 4

and the condition for non-trivial 4,.
Example (thanks to F. B. Hildebrand):

d2
O=2r—+(1- 2r)——1
dr?

ZAOr“” 0= ZA(S+n (2s+2n-1)7"" = (25 +2n+1)r""")

Condition for non-trivial 4,: s(2s—1)=0



Continued --
Example (thanks to F. B. Hildebrand):
d2
O=2r——+(- 2r)——1
dr’
ZA Or'" =0= ZA ((s+n)(2s+2n=1)r""" = (25 +2n+1)r""")

Condition for non-trivial 4, :  s(2s—-1)=0

First solution: s=0
Coefficientof " : 4 . (2m+1)(m+1)—A4 (2m+1)=0

f,(r)= A0[1+r—|—72—|—3—3+ } Aye

Second solution: s = 3

Coefficientof " : 4 (2m+3)(m+1)—A4 2 (m + 1) =0

2 2° 23
v Ar”z l+=r+—7p" + ro
S2(r)= [ 3 3-5 3-5.7 j




Maxwell’s equation

Microscopic or vacuum form (P —O, M —O):

Coulomb's law : V-E=p/g,
Ampere - Maxwell'slaw: VxB - 12 %E = 1,d
c- Ot
Faraday's law : VxE+ E;—B =0
[
No magnetic monopoles: V:-B=0

1

oy

03/18/2024 PHY 712 Spring 2024 -- Lecture 24

— ¢’ =



Presenter Notes
Presentation Notes
Since Maxwell’s equations were introduced and used in Chapters 6-8,  we have focused on the properties of the fields themselves.    Now we will begin to study how these fields are produced by particular sources.     The sources that we will consider are harmonic in time and their spatial form (considered to be localized in space) is represented by a multiplicative factor.   More generally, we are considering one component in the Fourier transform for the source function.   The results are quite different from the Liénard-Wiechert potentials discussed a few weeks ago.    In this slide, Maxwell’s equations are presented for the case that the sources are completely represented by the charge and current densities.


Formulation of Maxwell’'s equations in terms of vector and
scalar potentials

V:-B=0 — B=VxA
VxE+8—B—O :>V><(E+8—Aj 0
Ot Ot
E+a—A VO
ot
or E——V(I)—a—A

Ot


Presenter Notes
Presentation Notes
It is convenient to express the coupled vector fields in terms of the scalar and vector potentials as we have discussed previously.


Formulation of Maxwell’'s equations in terms of vector and
scalar potentials -- continued

V-E=plg,:
o(V-A)
—V°O® - =ple
Y P&
1 COE
VxB-— = u,J
¢’ Ot o
VX(VXA)+1 8(V(D)+52A = 11,J
c’ Ot ot* o

Complicated coupled mess!



“ Formulation of Maxwell’s equations in terms of vector and
scalar potentials -- continued

. 1 0D
Lorentz gauge form --require: V-A, +— 6&tL =0
C
1 0°D,
VO, + 7o L=plg, This choice decouples the
! equations for the scalar and
) 1 0°A, vector potentials.
—V7A, +— = 1,J
¢ ot
General equation form:
(v _Lﬁj\y .
2 A2 - ’
c” ot (D(r,1) p(r,t)/ (4re,)
J (r,t)/ (4
W= HED fep =t AT
’ A (r,0) Ho, (x,0) / (47)
A (r,1) |/ (x,t) ] (47r)



Presenter Notes
Presentation Notes
We will focus our attention on the Lorentz Gauge representations.    In this case, the scalar potential and each of the three Cartesian components of the vector potential each have to solve an inhomogeneous differential equation of the same form.


®
Solution of Maxwell’'s equations in the Lorentz gauge -- continued

G(r,t;r',t'): ‘ : ' /c))
r—r

St —r—v

Solution for field ¥(r, 7):
LP(r,t): Y ., (r,t)+

j 43 j dt ; _1 " 5(r'—(r —%‘r _r

Df(r',r')



Presenter Notes
Presentation Notes
For a spatially localized source, the physically meaningful solution can be written as an integral over the source time t’ and space r’ as discussed previously before.


Electromagnetic waves from time harmonic sources
Charge density: p(r,t) =R (,5(1', ) e‘l”t)

Current density: J(r,7)= ER(j(r, o) e—ia)t)

Note that the continuity condition applies:

EENIS
Generalsource: £ (r,¢)=R(7(r,0)e )
For f(ro)= 4;(90 plr, o)
or 7 (r.0)=22J (r.0)

4r


Presenter Notes
Presentation Notes
Now we specialize to the pure harmonic time dependence.     Mathematically, we will evaluate the sources with the complex function exp(-iwt), taking the real part at the end of the analysis.       Note that because we need to conserve charge, the continuity equation must satisfied which consequently means that the current and charge densities are functionally related.


Electromagnetic waves from time harmonic sources —
continued:

P(r,t)="VY,_,(r,1)+

jaﬂr'jdt' ‘rir' 5(1’—(t—é‘r—r'

Df(r',r')

CP(I‘, a))e—ia)t _ {Pf:() (l‘, a))e—ia)t n
J'Clﬁl”'j dt’' 1 é(t'_(t_l‘r_r'jjf(r',a))eia)ﬂ
‘r —r C
y | S| |
=¥, (r,w)e"™ + Id3r' flr', ™

‘r—r'


Presenter Notes
Presentation Notes
Putting the form of the source term in the integral, we can first perform the integral over the source time t’, resulting in the last equation of the slide.   Notice that the full solution of the differential equation also may have a solution to the inhomogeneous equation as represented by the last term.


Electromagnetic waves from time harmonic sources —

continued: For scalar potential (Lorentz gauge, k = Q)

C

ik|r—r'|

O (r,)=d,(r,0)+ : Id?’r'e

dre, r—r plrio)

'

2
where (Vz + %)@O (r,0)=0

For vector potential (Lorentz gauge, k = Q)
C

ik|r—r'| N

A(r,m)=A, (r,a))+f—;’z_‘-d3r"i — J(r'\m),

2
where [Vz - C;)—zj A,(r,®)=0


Presenter Notes
Presentation Notes
From the results on the previous slide, we can explicitly write out the solutions for the scalar and vector potentials in terms of the charge and current densities.


Electromagnetic waves from time harmonic sources —
continued:

Useful expansion :

ik|r—r'|

— =ik j (ke oy (ke )Y, (B)Y " ()

Im

Spherical Bessel function : j, (k)
Spherical Hankel function : &, (k) = j,(kr)+ in, (kr)

&)(r, a)) = (IN)O(r, a))+ Z%m (r, a))Y,m (f‘)

¢lm(r W Id3r'pr a))]l(kr )h (kr) (')


Presenter Notes
Presentation Notes
In order to evaluate the equations on the previous slide, we can make use an exact expansion in terms of spherical harmonic functions and spherical Bessel and Hankel functions.    The proof of this expansion is not trivial, but some details are available in Jackson (near Eq. 9.98) and from the NIST website https://dlmf.nist.gov/10.60.      It naturally follows that the scalar potential can be expressed as a sum of spherical harmonic functions time corresponding radial forms.


Electromagnetic waves from time harmonic sources —
continued:

Useful expansion :

=ik Y ji (ke o (ke )Y, (B)Y "1 ()

Im

ik|r—r'|

4ﬂh—r'
Spherical Bessel function : j, (k)
Spherical Hankel function : &, (k) = j,(kr)+ in, (kr)

m~~/

A(r,a)): Ko (raa))"' zalm (r,a) Im (f)
Im

a, (r,0)=iku, j d*r'I(e', o), (ke Y, (ke )Y i (£)


Presenter Notes
Presentation Notes
It naturally follows that the vector potential can be expressed as a sum of spherical harmonic functions time corresponding radial forms.


.

Forms of spherical Bessel and Hankel functions:

()= S ()=
X ix
i (x) _ smgx) B cos(x) i (x) _ _(1 N i j o
X X X)X
j2 (X) _ ( 33 B 1 jSiIl()C)— 3003(36) h2 (X) _ l(l N 3i B 32 j e
XX X X X)X
Asymptotic behavior:

()

vl =) 5

x>l =k (x)x ()" E


Presenter Notes
Presentation Notes
These relationships of spherical Bessel functions are given on page 426 of Jackson.


Digression on spherical Bessel functions --

Consider the homogeneous wave equation
2
0) ~
(Vz +C—2jq)o(r,a)) =0

Suppose D, (r,®) =y, ()Y, (F)
= i, (r) must satisfy the following for k = w/c:

(d_ergd I(+1) j%m(") 0

dr* v dr r

General spherical Bessel function equation:

(dz 2d I+

& 2d 10 +1jwl(x)=0 = 1 (1) = w, k)

dx®  x dx X


Presenter Notes
Presentation Notes
This material summarizes some of the results from Section 9.6 of Jackson


.

Electromagnetic waves from time harmonic sources —
continued:

B(r.0)= B (r.0)+ X (0¥, )

Girs0) === [ Bl o) o ()
K( ) K (r @ +Zalm v, @ Zm(f')

a, (r,0)=iku, j d*r'I(e', @), (ke Y, (ke )Y i (£')
For r >> (extent of source)

Girs0) = S k) @7 3l ) W e )

0

a, (r,0)~ikuh, (kr)j d’r' j(r' @), (k)Y 1 (F')


Presenter Notes
Presentation Notes
What is the rational/significance of the last two equations?


= Some detalils:

~

O (r,0)=0,(r,0) +Zg7)lm (r,o)Y,, (F)

@, (7, 0) Id3r p(r'o)j, (k)b (ke )Y, (F')

=%de’Y*zm(f")(hz(kr)jr'2dr'j,(kr')ﬁ(r'»w)ﬂ'z(kr)j'” ar (k) (" w)j

0

For r >> (extent of source)

s 0) = ) d*r B0 o) 6

0

a, (r,0)~ikuh, (kr)j d’r' j(r' @), (k)Y 1 (F')


Presenter Notes
Presentation Notes
Do you agree with these results?


.

Electromagnetic waves from time harmonic sources —
continued -- some detalls:

@, (7, 0) _[d r'p(r,) j, (k)b (k)Y (F')

lk

[h <kr>j redr p,, (r', w>J,<kr>+J,<kr>j rdr p,, (v, o) (kr >]
‘90

N

where p,, (r'o) = [dQ5(r" )Y, () t £
note that for » > R, where p(r,w) =0, >R

élm(r’a)) i —h (kr)jr'z dr'p,,(r',w)j,(kr')

€9

Similar relationships can be written .y

for a,, (r,®) and J(r', @). \
X


Presenter Notes
Presentation Notes
From this analysis, for a source confined within a sphere of radius R,   the radiation field  for the lm component of the field  has a radial form proportional to a spherical Hankel function.


.

Electromagnetic waves from time harmonic sources —
continued:

For » >> (extent of source)

~ k ~ AN

g, (r, o)~ ;—hl (kr)_[d%'p(r', o), (kr' )Y " (F')

0

a, (r,0)~ikuh, (kr)f d’r' j(r' @), (k)Y (F')

Note that these results are “exact” when ris outside
the extent of the charge and current density.


Presenter Notes
Presentation Notes
Some further relations can be derived due to the continuity equation for the current density and the charge density.


Note that p(r',w)and J(r', @) are connected via the
continuity condition: —iw p(r,w)+V - j(r ®)=0

%m(r,a)) ;ih kr Jd rpr a))]l(kr) ( )

) &3, 0)-5 (7, (k) ()

e,




® . : .
Electromagnetic waves from time harmonic sources —

continued -- now considering the dipole approximation

Various approximations:

ikr
[+1 €

k | hlkr)=(—i) —
r>> = hy (kr)~(—i) .

. P ()
kr'<<l = j(kr )~(21+1)!!
Lowest (non-trivial) contributions in / expansions:
s k N kr' « .
gglm(r,m)z;_hl(kr)j d3r'p(r',w)?’”ylm(r')

0

a,, (r,a)) =ik u,h, (kr)jd3r'j(r',a)) Y, (f")


Presenter Notes
Presentation Notes
The previous slides gave rigorous results far from the source.    In this slide we consider further approximations.    The kr’<<1  case is also referenced as the long wavelength approximation.


Some detalils -- continued:  (3ssuming confined source)

Recall continuity condition: —iw p(r,®)+V-J(r,0)=0

—ior p(r,w)+rV -j(r,a))

1 5
d’rr p =—|d’rrv-J
J. rrp(r,0) ia)j rrv-J(r,o)
1 ~
——— \d*»J —
ia)j r J(r,0)=p(»)

Here we have used the 1dentity:
V- (yV)=Vy -V+y(V-V)
We have also assumed that

lim (xJ(r,)) =0

ry—>0


Presenter Notes
Presentation Notes
Dipole approximation continued.


.

Electromagnetic waves from time harmonic sources — in
the dipole approximation continued:

Lowest order contribution; dipole radiation:

Define dipole moment at frequency w:

p(w) Ejd3r rp(r,m)= —% d’r J(r,0)

- ik X i e
d —_ 11
(r,a)) 47zgop(w) r( +krj a

Note: In this case we have assumed a restricted extent
of the source such that kr’<<7 for all r’ with significant
charge/current density.



Presenter Notes
Presentation Notes
Dipole approximation continued.


.

Electromagnetic waves from time harmonic sources — in
dipole approximation -- continued:

E (r,o)= VO (r,m)+ ia)A(r, )

_ | eikrEkz((fxp(w))xf)+£3f(f.p(wz))_p(w)](l—ikr)]

dre, r

~

B(r,0)=VxA(r,o)
ikr

- kz(f‘xp(w))(l—l%j

dre,c’ 1

Power radiated for kr >>1:

ar . rt (e = :
d—Q:rzr-<S>avg - 2 14, r-iR(E(r,w)xB (r,a)))



Presenter Notes
Presentation Notes
Dipole approximation continued.


Example of radiation source -- exact treatment

J(r,o)=2J """ plr,m)= ol

cos@e 'R

— iR

o0

n~~/

A(r,w)=12J, (iky, )j rdrte " hy(kr. )j, (kr.)

0

D(r,m)=— ok COS Hj rdrte” " (kr. )j (kr.)
£, WR g
Evaluation forr» >> R :

N X ikr 2R3
Ar,0)=2J 41, er (1 N szz)z

ikr . 3
D(r,w)= ok cos6 = (1+ l j 2K -
N r kr (1 4 szz)



Presenter Notes
Presentation Notes
Comparison of exact asymptotic results with dipole approximation.



Example of radiation source — exact treatment continued
Evaluation for » >> R :

N i ikr 2R3
A(r,a)): zJ 1, er (1+k2R2)2

ikr . 3
D(r,w)= J—kcosé? (1+Lj ( 2K
]

&M ¥ +k°R )
Relationship to dipole approximation (exact when kR=>0)
1 ~ 8TRJ
=|d’rrp(r,0)=——|d’r J(r,0)=— 07
j '0( ) ia)j ( ) 0,

Corresponding dipole fields: A (r,w)=- Ly p(w) ‘

. . ikr
B(r,0)=——* p(a))-f'(lJr l je
r

dre, kr



Presenter Notes
Presentation Notes
Comparison of exact asymptotic results with dipole approximation – continued.    



Summary of results
Exact -- Evaluationforr >> R :

N eikr 2R3
Alr,w)=12J 1
)=t S 2
ikr . 3
D(r,w)= ok cos6 = (1+ l j =L
& W ¥ kr (1—|—/€2Rz)2

Dipole approximation --

. 1 . 87R°J, .
p(w)=[dr rp(r,m):-zjfm(r,w):_ ”m) 0 7

. ikr ikr
A(r,0)=- Z’Z(;pr(a)) er = 2R’ 1y er

_ . i . ikr 2R3 . ikr
CI)(I‘,CO):_4Zk P(w)‘r(1+klrje = Jokcosé’(lJr l je
g, r NG,
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