PHY 712 Electrodynamics
10-10:50 AM MWF Olin 103

Notes for Lecture 29:

Finish Chap. 11 and
begin Chap. 14 (Sec. 14.1-14.3)

A. Electromagnetic field transformations &
corresponding analysis of Liénard-Wiechert
potentials for constant velocity sources

B. Radiation by moving charged particles
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Presenter Notes
Presentation Notes
In this lecture we will continue to discuss the electromagnetic fields produced by a moving charged particle using the Lienard-Wiechert potentials.   First we need to make sure that we obtain consistent results with Lecture 28.   Then we will start to discuss the results from more general trajectories.


24 |Mon: 03/18/2024 Chap. 9 E}E’;ﬁ;:fgs%’:"ﬁﬂg ;“oitﬂ:‘;dss and Radiation ffom 19 43/25/2004
25 Wed: 03/20/2024 Chap. 9 Radiation from localized oscillating sources #20 103/25/2024
26 |Fri: 03/22/2024 Chap.9& 10 Radiation and scattering #21 |03/25/2024
27 Mon: 03/25/2024 Chap. 11 Special Theory of Relativity #22 04/01/2024
28 |Wed: 03/27/2024 Chap. 11 Special Theory of Relativity #23 104/01/2024
29 |Fri: 03/29/2024 Chap. 11 Special Theory o Relativity
30 Mon: 04/01/2024 Chap. 14 Radiation from moving charges
31 Wed: 04/03/2024 Chap. 14 Radiation from accelerating charged particles
32 [Fri: 04/05/2024 Chap. 14 Synchrotron radiation and Compton scattering
33 Mon: 04/08/2024 Chap. 15 Radiation from collisions of charged particles
34 \Wed: 04/10/2024 Chap. 13 Cherenkov radiation
35 Fri: 04/12/2024 Special topic: E & M aspects of superconductivity
~ |Mon: 04/15/2024 Presentations | When would you
: Wed: 04/17/2024 Presentations || H b t signJ.Lp for
L Fri: 04/19/2024 Presentations Il timelt ic?
36 |Mon: 04/22/2024 Special topic: Quantum Effects in E & M
37 Wed: 04/24/2024 Special topic: Quantum Effects in E & M
38 |Fri: 04/26/2024 Special topic: Quantum Effects in E & M
39 |Mon: 04/29/2024 Review
40 |Wed: 05/01/2024 Review
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PHY 712 Presentation Schedule

Monday 4/15/2024

Presenter Name Topic
10:00-10:24
10:25-10:50

Wednesday 4/17/2024

Presenter Name Topic
10:00-10:24
10:25-10:50

Friday 4/19/2024

Presenter Name Topic

10:00-10:24
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Some Ideas for Computational Project

The purpose of the "Computational Project" is to provide an opportunity for you to study a topic of your choice in
greater depth. The general guideline for your choice of project is that it should have something to do with
electrodynamics, and there should be some degree of computation or analysis with the project. The completed
project will include a short write-up and a ~15 min presentation to the class. You may design your own project or
use one of the following list (which will be updated throughout the term).

o Evaluate the Ewald sum of various ionic crystals using Maple or a programing language. (Template available
in Fortran code.)

o Work out the details of the finite difference or finite element methods.

» Work out the details of the hyperfine Hamiltonian as discussed in Chapter 5 of Jackson.

» Work out the details of Jackson problem 7.2 and related problems.

» Work out the details of reflection and refraction from birefringent materials.

» Analyze the Kramers-Kronig transform of some optical data or calculations.

» Determine the classical electrodynamics associated with an infrared or optical laser.

» Analyze the radiation intensity and spectrum from an interesting source such as an atomic or molecular
transition, a free electron laser, efc.

» Work out the details of Jackson problem 14.15.
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Comment. Some of you have been looking at textbooks
(such as Zangwill) and sources available on the internet and
finding different equations from those presented in these
lecture notes and in Jackson. That is a good thing in
general, however please be aware that there are different
units (Sl for example) and different conventions for 4-
vectors (some using different ordering of space and time,
some using imaginary (i) for the time-like portion). Since
we are using Jackson for now, it will be good to make sure
that you are OK with Jackson’s equations and those in the
lecture notes as well.



Solution of Maxwell’s equations in the Lorentz gauge — review

using Sl units for now --
Liénard-Wiechert potentials and fields --

Determination of the scalar and vector potentials for a moving
point particle (also see Landau and Lifshitz The Classical
Theory of Fields, Chapter 8.)

Consider the fields produced by the following source: a point
charge g moving on a trajectory R(f).

Charge density: p(r,1)=¢6" (r—R_ (1))
dR (?)

Current density: J(r,?) =g Rq (HS°(r-R (1), where Rq (1) = ”

R (1)
o )




Solution of Maxwell’'s equations in the Lorenz gauge -- continued

D(r.0)= rdt 'p(r 5(t'=(t=r=r'|/c))
r—r' |
A(r,t) = 2 ”d3r'dt"](r ’t')5(t'—(t—|r—r'|/c)).

47[600 lr—r'|

We performing the integrations over first d°r’ and then dt’
making use of the fact that for any function of ¢/,

o f(t)
dt' f@"o(t'-@—|r—R (t"]|/c))= : A :
I ( : ) CR,(4)-(r—R,(1,))
clr=R_(z,)]
where the " ‘retarded time" is defined to be

r- R (7,)]

C

[ =1 —




Solution of Maxwell’'s equations in the Lorenz gauge -- continued

Resulting scalar and vector potentials:

q |
D(r,t) = ’
(r ) 472'60 R_V. R
C
q Vv
A(r,t) = ’
(r,?) 47ZEOCZR_V'R
C
Notation: R =  — R (2.) r— R (2,)]

[ =1

r

V=R, (), :




Solution of Maxwell’'s equations in the Lorenz gauge -- continued

In order to find the electric and magnetic fields, we need to

luat
evaluate E(r.0) = —VO(r.1) - (9A(g:,t)

B(r,t1) =V xA(r,t)

The trick of evaluating these derivatives is that the retarded
time t. depends on position r and on itself. \We can show the
following results using the shorthand notation:

R ot R
V.

Vi =- - = :
C(R_VoRj and ot (R— CRj

C



Solution of Maxwell’'s equations in the Lorenz gauge -- continued

2 .
—VO(r,t) = 1 : | R l—v—2 —Z(R—V Rj+RV2R ;
4re, (R v-R c c c c

C

_O0A(r,1) g 1 {VR[vz_V-R_V-RJ_VR(R_V-RH
ot _47r€0 v-RY| ¢\ Rc ¢’ ¢’ c
L
c
e T e
47[60(R_V.Rj c c c ) c
c

B(r,?) =

v v-R Rxv/c R xE(r,t)
2 il t o 2 |~
dre,c (R— V- Rj C c ( V- Rj cR




Convert to cgs Gaussian units:

E(r,1) = 3RjKRij£12j+(RX{(Rij:m

R —

C

_ 2 v-R R x©
B(r,t)zg Rxv 3[1_\/2+V2 B XVv/c :
C : C C :
(R_V Rj (R_V Rj
E
B(r,t)szR(r’t).

Note that this analysis is carried out in a single frame of
reference. Now we resume our discussion about
transforming values between two different inertial frames of
reference.



. Convenient notation :
Lorentz transformations

.
p="
c
- 1
' 1- ﬂvz
v A Y Stationary frame Moving frame
3 ct = ylet+pr)
— 7/(x'+ﬂ6t')
= v = |
X Y -7
I .....m....__’___-‘l . '
i “ -
i
X’
J S
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Presenter Notes
Presentation Notes
We will continue to use the stationary and moving reference frames introduced in the previous lecture.     In this case, the relative motion is along the x-axis.   Of course, there is nothing special about this choice, but we will use it throughout this lecture.


Lorentz transformations -- continued

For the moving frame with v =vX :

(7 B,
£ - B, Y,
0 0
. 0 0
X X'
=L| "
y y
\z) \Z
Notice:

2,2 2 2
ct —x —Yy

0

0
1
0

2 202 2 2 2
-z =ct"—x"—y" " -2

S = O O



Presenter Notes
Presentation Notes
This slide reviews the transformations of the time and position 4-vector.


“ Field strength tensor

F? =(64" —8" 4%)

(0 -E, -E, —-E) 0 -E'. -E', -E
Fa,B _ Ex 0 _Bz By Fvaﬂ — E:x O' -B 'Z B'J:
E, B, 0 -B E' B 0 -B'"
E. -B, B, 0 E'. -B', B 0
Transformation of field stren/gth tensor
( 7/\1 7/\//8\/ O O
FaﬁZBayF,y5£5ﬁ B _ 7/vﬂv 7/\/ O 0
’ ’ ’ 0 0O 1 O
0 0 0 1
0 _E'x _7/V(E'y+IBvB'Z) _7\/( 'Z_’BVB')/)
o E 0 —7(B+BE,) (B -BE.)
7V(E'y+IBVB'Z) yv(B'z—I_ﬁvE'y) O _B'x
v (E.-B.B,) -7.(B -BE") B 0

X



Presenter Notes
Presentation Notes
Lecture 28 introduced the field strength tensor.


.

Inverse transformation of field strength tensor

v, =B, 0

FreB — p-lay o p 198 Pl -7, Yy 0
’ ’ ’ 0 0 1

0 0 0
0 _E.

v E 0 ~7,(B.-B.E,)
7.(E,~B.B.) 7.(B.-BE,) 0
7.(E.+B.B,) ~7.(B,+BE.) B,
Summary of results:

E' =E, B' =B
E' =y(E,~BB.) B',=7,(B,+B.E.)
E'.=y,(E.+BB,) B'.=y,(B.-BE,)



Presenter Notes
Presentation Notes
Review of the Lorentz transformation for the field strength tensor --


S
Example:

Fields in moving frame:

. . —vt'X + by
E'=%(x'x+y'y): q( V2X+ Y/)z
r (—vey +5)

B'=0

> X > X’

7z «/ Z°  Fieldsin stationary frame:

Ex — E'x Bx = B'x
E = 7/V(E'y+,3v3'z) B, = Q/V(B'y—ﬁvE'z)
E.=y(E.-BB) B.=y,B.+B,E 'y)

03/29/2024
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Presenter Notes
Presentation Notes
This is the example that we have been studying from Lecture 28.


.

Example: Fields in moving frame:
' q 13 13 Q(—Vt'ﬁ-i—by)
S E=—'(xx+yy):
y | Y r ((—vt')2 +b2)3/2
— ) B'=0
"4
b —
q J
- > X > X
, Fields in stationary frame:
y Z
g dvr)
x T x /2
(—veY +52)
. q(7.b)
E =y \L' )= -
y ( y) ((_ vt')2 LB )3/2

B =rlpe ) A

(— vt') +b
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Presenter Notes
Presentation Notes
Using the fields from the moving frame, we can write the expressions for the fields in the stationary frame.


.

Example: Fields in moving frame::
' q 13 13 Q(—Vt'ﬁ-i—by)
S E'= —'(x X+ y y):
y | Y r ((—vt')2 +b2)3/2
— —) B'=0
4
b —
q J
- > X > X
. Fields in stationary frame:
Z
Eop - 4Cv) _
(cvpey +07)
Expression in terms of r (E' ): q(y.b)
consistent coordinates y T ((_ vy ) + b2)3/2

B~y (g - dBE)

/2
2
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Presenter Notes
Presentation Notes
Here the fields measured in the stationary frame are expressed in terms of the time t measured in the stationary frame.


e and) q(7,b) _
' ((—vyvt)z +b2) ((yf —1)02t2 +b2)

Plot with g=1; b=1 y, as given
5
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Presenter Notes
Presentation Notes
This is a plot shown in Lecture 28 of Ey as a function of time.


.

Examination of this system from the viewpoint of the
the Liénard-Wiechert potentials —(Gaussian units)

E(r.) - ‘quj KR‘%XI_Q{RX{(L ijf}ﬂ

R
C



Presenter Notes
Presentation Notes
Now we consider how we may arrive at the same result without changing reference frames by analyzing the EM fields produced by a moving charge using the Lienard-Wiechert analysis.


Question — Why would you want to use the Liénard-
Wiechert potentials?

1. They are extremely complicated. It is best to avoid
them at all costs?

2. The Lorentz transformations were bad enough??

3. There are some circumstances for which the
Lorentz transformations become very complicated
(such as when acceleration is involved)



B o .
Analysis using a single reference frame --

Variables (notation) :
Radiation from a moving charged particle
. dR (t)
R, (1)= "0 =
A Z dtr

X
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Presenter Notes
Presentation Notes
Here we consider a charged particle (charge q) moving along the red trajectory.   The vector r indicates the point at which we will evaluate the fields.   The retarded time tr is defined here.


Examination of this system from the viewpoint of the
the Liénard-Wiechert potentials —(Gaussian units)

Note that for our example there

E(r,t) = q )3 HR_E] [l_éﬂ are no acceleration terms.

R-— v-R ¢ ¢ For our example:

_ ¢ — Rq (tr) = Vtri r= by
B , R=by—vt X R:\/vztr2+b2
B(r.)= 1| Y [l‘v—zj
C (R_VRJ C V:Vi tr:t__
) c
This should be equivalent to the result given in Jackson (11.152):
—VvyIX + by
E(x,y,z,t)=E(0,b0,0,t)=¢q 5 4 }/2 )3,/2
(6” +(vyt))
bz
B(X,y,Z,t):B(OabaOaf):q 5 }/ﬁ 2 \3/2
(6> +(vyt)?)
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Presenter Notes
Presentation Notes
In our case, the trajectory of the moving particle is  described as constant velocity  along the x-axis while the fields are measured at the fixed point b along the y axis.


Example geometry

A

y | Y

z /7

N

Trajectory within stationary frame — R _(¢,)=vt,X  r=by

This choice allows us to analyze the Liénard-Wiechert
approach (within the “stationary” reference frame) of the
same phenomenon solved previously using the Lorentz
transformation. Because of the geometry E, is zero here.
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Why take this example?

1. Complete waste of time since we already know
the answer.

2. If we get the same answer as we did using the
Lorentz transformation, we will feel more
confident in applying this approach to study
electromagnetic fields resulting from more
complicated trajectories.

Note that it might be advisable to derive the details of
the analysis for yourselves.



Some details

E(r.f) = zR) KR‘%@_Z_]}

R —

; For our example:

) | Rq(tr):Vtri r=>by
—Rxv v R=bHy -1t X R=.Vt>+b°
B(l’,l‘)zg 3[1__2] y Vr \/V r
C v-R &
(R— j V:vf( [ =1——

t. must be a solution to a quadratic equation:

R
(=2 — tf—27/2ttr+7/2t2—7/2b2/(32:0
C

2 2.2 g0
with the physical solution: Note that (¢, —1)° = R2 - j_b
c c
2 2
t, 7/[7/t—\/(v7t) b ] vl
C [=—===



Now we can express R as:

R = 7/(—,Bv7/t + \/(v;/t)2 +b’ )

and the related quantities:
R —VR/c=—-vix+ by

Some details continued:

2 2
R—V-R/c:\/(vﬂ) +h
/4

E(r,t) = c {(R—ﬂ)[l—él}q —2v7/t§(+7/2b};’/2

R_ij ¢ ¢ (6> +(vy1)?)

c
B(r’t)zg R 3(1_2] =4 il 32
I Ny
L C —



Presenter Notes
Presentation Notes
When the dust clears, we do verify the E and B fields obtained using the Lorentz transformation.  Hurray!


%M fields from a moving charged particle

Variables (notation) :

X
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Presenter Notes
Presentation Notes
With this success, we are motivated to apply this approach to more general particle trajectories.


Lienard-Wiechert fields (cgs Gaussian units):

o= g (-8 () e ((n) )]

(19)
— 2 - .
B(r,f) = 2 RXV3(1—2+V2R)— Rxvie | (o
¢ L(R-1) ¢ c (R— xR)
In this case, the electric and magnetic fields are related according to
B(I'jt) — R ]E?(r’t)- (21)
Notation:
: dR (1 7R (¢
Rq(tr)z dq(r)EV R(tr)zr_Rq(tr)ER V= dqz(r)
[, 3
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Presenter Notes
Presentation Notes
Here we review the equations from the Lienard-Wiechert analysis.    We particularly notice that for the fields very far from the particle positions, the dominant terms are those which involve the acceleration of the particle.


Electric field far from source — keeping only dominant terms

B(r.1)- g qu{RKRRJ}}

c
B(r,t)= xi(r,t)
" R \% \%
Let EE ﬁE; P=—
= 9 R x [[R - )x
BT R (R p)<s]


Presenter Notes
Presentation Notes
These acceleration terms are given here.    These are the terms that we will focus on.  Here we define a unit vector Rhat.  Jackson calls this vector n.    In principle, this unit vector varies in time, but at large enough distances from the source, it is an approximately constant unit vector.


Poynting vector:

S(r,t)z i(ExB)

l)= q R [(R=B IxE
E(r,?) CR(I—ﬁ°ﬁ)3 {R [(R B) ﬁ]}
B(r,t) =R x E(r,t)

2

_c , g’ ﬁ‘f{x[(f{—ﬁ)x[}]

S(r,t)— IA{‘E(r,t)( = PPy (1—|3 ﬁ)6

4
Note: We have used the fact that
R E(r,)=0


Presenter Notes
Presentation Notes
In addition to calculating the fields themselves, we will be interested in calculating the Poynting vector due to the fields in the radiation zone.


Power radiated

2 l?{x_ ﬁ—ﬁ x[}}
S(r,)=——R|E(r,1)] =—L—R (R-)
4 dcR q—ﬁ-li)
\
A /A ) 2
A » IRx|(R=B x[}}
%ZS'RRzzf _h.R)
e _R.
1-B-R)
In the non-relativistic lmit: S <<1
dP q2 A\ a - 712 qZ 12 . 9
dQ  4rc X[ XB] 4rc’ M s ©



Presenter Notes
Presentation Notes
After some algebra, we arrive at the expression for the power radiated per unit solid angle.    We will examine this result more in detail next time, but for now, we will consider the result in the non-relativistic limit when beta is nearly 0.


%adiation from a moving charged particle

Variables (notation) :

X
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Presenter Notes
Presentation Notes
This slide attempts to show the geometry of the trajectory and fields.


Radiation power in non-relativistic case -- continued

Blue arrow indicates the
particle acceleration direction
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Presenter Notes
Presentation Notes
Here we illustrate the non-relativistic power distribution, showing that the radiation intensity is concentrated in the directions perpendicular to the particle acceleration.     Next time we will see how relativistic effects change this radiation pattern.


What do you think will happen when the particle velocities
become larger with respect to the speed of light in vacuum?

1. The radiation pattern will be essentially the same.
2. The radiation pattern will be quite different.
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