PHY 712 Electrodynamics
10-10:50 AM MWF Olin 103

Notes for Lecture 35:

Some quantum effects in electrodynamics

Mon: Review of quantum eigenstates of EM fields and
discussion of Glauber’s coherent states

Wed: More general quantum states of EM fields and related
correlations functions

Fri: More complicated quantum states of EM fields
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Digression on Math methods and Radiation from

24 |Mon: 03/18/2024 |Chap. 9 localized oscillating sources #19 |03/25/2024
25 Wed: 03/20/2024 |Chap. 9 Radiation from localized oscillating sources #20 |03/25/2024
26 |Fri: 03/22/2024 (Chap. 9 & 10 Radiation and scattering #21 03/25/2024
27 (Mon: 03/25/2024 Chap. 11 Special Theory of Relativity #22 04/01/2024
28 \Wed: 03/27/2024 |Chap. 11 Special Theory of Relativity #23 |04/01/2024
29 Fri: 03/29/2024  |Chap. 11 Special Theory of Relativity
30 (Mon: 04/01/2024 |Chap. 14 Radiation from moving charges #24 104/08/2024
31 (Wed: 04/03/2024 Chap. 14 Radiation from accelerating charged particles #25 |04/08/2024
32 |Fri: 04/05/2024  |Chap. 14 Synchrotron radiation and Compton scattering  [#26 |04/08/2024
Mon: 04/08/2024 |No class Eclipse related absences
33 (Wed: 04/10/2024 Chap. 13 & 15 Other radiation -- Cherenkov & bremsstrahlung [#27 [04/22/2024
34 (Fri: 04/12/2024 Special topic: E & M aspects of superconductivity
Mon: 04/15/2024 Presentations |
Wed: 04/17/2024 Presentations
Fri: 04/19/2024 Presentations Il
35 Mon: 04/22/2024 Special topic: Quantum Effects in E & M
36 Wed: 04/24/2024 Special topic: Quantum Effects inE & M
37 |Fri: 04/26/2024 Special topic: Quantum Effectsin E & M
38 Mon: 04/29/2024 Review
39 |Wed: 05/01/2024 Review

04/22/2024
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Presenter Notes
Presentation Notes
 


Quantization of the Electromagnetic fields
Reference — PHY 742 — Chapter 17
in Professor Carlson’s textbook

Review of the quantum harmonic oscillator

Hamiltonian for electromagnetic energy and its eigenstates
Properties of the quantized electromagnetic fields
Coherent states
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Review of one-dimensional quantum harmonic oscillator
in terms of momentum P and displacement X with spring
constant m

P’ mo’
Hy(x)=| —+——X" |y(x) = Ey(x)
2m 2
Define: 1/2 1/2 Note that:
ma
¢ (25) "(2mwﬁ> la. a1=1

1/2 I 1/2
2h 2moh

It can be shown that for functions --

v, —> |n> where n=0,1,2,3,....
n>=\/;|n—1> a’ n>=\/n+1|n+1>

CZTCI|I’Z>=I/Z|I’Z>

:H|n>:hw(%mm)@:hw(%m)@

a



Summary of results for the one dimensional quantum oscillator:
1 1
H‘n> = ha)(§+ aTaj‘n> = ha)(§+ nj‘n>

alm)= | -1)
aT‘n>=m‘n+l>


Presenter Notes
Presentation Notes
These results are derived in detail in Chapter V of Carlson’s text.    Make sure that they make sense to you.


Contributing to the discussion —
The creation and annihilation operators within the harmonic oscillator
formalism seem to have been introduced by mathematical logic and found to
have very interesting properties. In fact, as shown in Chapter 5, starting from
the creation and annihilation operators, one can deduce the Harmonic
Oscillator spectrum. These operators do not by themselves represent physical
qguantities and therefore do not “have” to be Hermitian. The matrix form of X
and P in the basis of | n> is just one of many ways to represent these operators.

Further comments --
The harmonic oscillator states clearly have an associated quantum number n.
It is convenient to call n a “phonon number” for the moment. We will
generalize this notion in the context of electromagnetic fields.



How does this beautiful formalism lead to the notion of creation and annihilation
operators?

The phonon number eigenvalues take the values n =0,1,2,.....
a | O> =0 a | 1> = |O> a | 2> =2 | 1> ... Interpretation of @ as annihilation operator
a' |O> = |1> a' |1> =2 | 2> a' |2> =3 |3> .. interpretation of @’ as creation operator

1 n
It follows that |n> — (aT) 0> = We can “create” any phonon state
(n !) from the ground state with this operator.



Presenter Notes
Presentation Notes
The relations on this slide have no new information, but lead to a different way of thinking of the eigenstates of our system.    In particular, the last equation shows that you build up a state with n phonons from state with 0 phonons.  Ultimately, this leads to mapping  the |0> phonon state with “vacuum” and implies that you can create an n phonon state out of vacuum.


Extension of these ideas to multiple independent harmonic oscillator modes

oD => {0)1 , @, 603} Here 1,2,..i,j... denotes an arbitrary index referencing
distinct modes.

a=> {al,az, a3....} Commutation relations: [ai,a]} =0

a = {axlT ,a.,al } Commutation relations: [af, a;] =0

Commutation relations: [ai : aﬂ =5,

This result means that for a multiphonon state ‘”1» Ryeoly o N>, the action of the

creation operator works as follows:

bt _
a,a; nl,nz....nl....nj...nN> = \/nl. +1\/nj +1

n,n,....(n, +1)...(nj +1)...nN>

Later, we will see how this formalism has the capability of keeping track of
symmetry/antisymmetry properties of multi particle systems.


Presenter Notes
Presentation Notes
Up to now we have considered an isolated harmonic oscillator.     The ideas can be extended to consideration of multiple independent and non-interacting modes at once.


Favorite equations from classical electrodynamics

Maxwell’s equations
Microscopic or vacuum form (P=0; M =0):
Coulomb's law: V-E=p/g,
1 OE
Ampere-Maxwell's law: V xB — _Z_t H,d
c
B
Faraday's law: VxE + 5@_ =0
{
No magnetic monopoles: V:-B=0
1
=’ =——
&gy

Back to Sl units
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Presenter Notes
Presentation Notes
Now – to the matter at hand – we need to consider electromagnetic waves and therefore need to review classical electromagnetic theory.


Recall the electromagnetic field energy --

Eﬁeld = %jaﬂr(‘E(r»t)‘z T Cz ‘B(rat)‘z)

It will be convenient to express Maxwell’s equations and the
electromagnetic field energy in terms of scalar and vector potentials:

V:-B=0 = B= VxA
VXE+8—B=O :>V><£E+8—Aj:0 :>E+6—A:—VCD = E=—VCD—6—A
ot ot ot ot
Far from sources, the remaining equations become:
V-E=0 = vio+ VA
ot
2
VXB—%G—EzO :>V><(V><A)+ 12 8V®+8 — =0
c” ot c ot ot


Presenter Notes
Presentation Notes
Ultimately, we will need the Hamiltonian for electromagnetic phenomena, and this will come for the electromagnetic field energy.     It is convenient to express this in terms of the vector potential.


Further manipulations of Maxwell’s equations in terms of scalar and vector potentials --

V-E=0 - v+ VA
Ot
2
VXB—%a—E—O = Vx(VxA)+— NP oA
c” Ot C ot at
SV(V-A) VA VR TA
C ot 8t
2
= V2A—i28f‘ v(v A+ia£j=o
c” ot C Gt'
Y
zero in Lorenz gauge
2 2
vch—iéq)zo va——aA 0

¢t o ¢ ot


Presenter Notes
Presentation Notes
Here we are interested in the electromagnetic waves far from their sources.


Equations within the Lorenz gauge --

2 2
A
vch—izaczpzo va—iza —=0
c” ot c” ot
It 1s further convenient to seek solutions with ®=0 =V-A=0
E = _8_A B=Vx A
ot

Note that this is one of many possible choices and it turns out to be convenient.

Electromagnetic field energy for this choice --

Eﬁeld —

o |

:d3r(|E(r,t)|2 +? |B(r,t)|2)

G, ‘aAa,r)
2 Ot

2
+7 |V A(r,t)|2j


Presenter Notes
Presentation Notes
The final equation here is expressed purely in terms of the vector potential.


Plane wave solutions to electromagnetic waves in terms of vector potentials

2
o
c” Ot

A pure plane wave takes the form
A, (r,t)=4, 8 "™ o, = [k|c

k-g_=0 £,

=0 V-A=0

For the pure plane wave, the following relations hold:

oA, (r.t)
ot
V x Ako_ (I’,t) — lk x Akaskaeik-r—i@kt

ik-r—iot

=—im A4 & e
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3 mutually
t perpendicular

g, vectors

1

These are unit
polarization vectors.

13


Presenter Notes
Presentation Notes
From the equations for the vector potential, we find that there are two plane wave solutions with two different polarizations as indicated by the index sigma.


General form of vector potential as a superposition of plane waves:

1 1 ik-r—i
:;%:Aka (r’t) :;%:Akaakoek w

Here V' denotes the volume of the analysis system;

different treatments put this factor in different ways.
Now we must evaluate the electromagnetic field energy --

e OA(r,1)[
Egaqg :?Ojaﬁr[

ot
Because of the orthogonality of the plane waves, the result can be

+c’ |V x A(r, t)|2j

expressed as a sum over distinct plane wave modes:

2 214 12 Note that we can use the identity
o7 2l (@ +* i)

(axb)-(exd)=(a-c)(b-d)—(a-d)(b-c)

ﬁeld


Presenter Notes
Presentation Notes
You should make sure that you are in agreement with the derivation of these equations.


Electromagnetic field energy --
Era =2 ' ([E0f +¢*Brof )

In terms of the vector potential, using the Lorenz gauge with ® =0
OA

E=—— B=Vx A
ot
2
whereVzA—%a?=0 and V-A=0
c” ot
€ OA(r, )| )
E.. ="|dr 2+ 7| VxA(r, ¢
field 2_[ ( at | ( )|j


Presenter Notes
Presentation Notes
The final equation here is expressed purely in terms of the vector potential.


.

Some details, with more care to use real functions --

A (r9 t) - % Z (Aka (l’, ZL) T A:G (l', t)) - %Z Ska (Akdeik‘r_iwkt + A:ae_(ik.r_iwkt) )

ko ko
Electromagnetic field energy --

E = E_Ojdsr[‘aA(r»f)

field = oy ot

2
+¢* |V A(r, t)|2)

Note that the plane waves are distributed throughout the analysis volume
such that the following orthogonality holds. % j d’r KT =6,
Also recall that o, = ‘k‘ ¢ and average out all high frequency contributions

to the field energy -- FEg , = j—;/Z(AkaAZG + A:aAkO' )(a)lf +c* ‘k‘z)
ko

€

Eﬁeld = ﬁ Z a)lf (Aka A:O' + Al;ka AkO' )
ko


Presenter Notes
Presentation Notes
Here are some details of the derivation.


In the next slide, we will “jump” to quantizing the electromagnetic field using the
analogy of the harmonic oscillator Hamiltonian. In fact, the analogy has nothing to
do with the physics of the harmonic oscillator other than their particle symmetry as
Bose partlcles

Historical importance of the formula for Blackbody radiation

A blackbody means an idealized opaque (non-reflective)
material which can absorb and emit electromagnetic
radiation. If the body has an equilibrium temperature T, the
energy associated with the blackbody is <U>. Using
statistical mechanics and the assumption of quantized
electromagnetic radiation, Planck showed that the black
body internal energy and its distribution is given by in terms
of frequency f:

Max Planck 1858-1947

_ 87Z'Vh j

<U 2 jdff P _ df = ﬂhf
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Figure from:

An Introduction to Thermal
Physics, by Daniel V. Schroeder
(Addison Wesley, 2000 and now
Oxford University Press)

Showing frequency distribution

of blackbody radiation from the
big bang.

04/22/2024

u(f) (10725 J/m3 /s 1)

[t sTh

Figure 7.20. Spectrum of the cosmic background radiation, as measured by the
Closmic Background Explorer satellite. Plotted vertically is the energy density per
unit frequency, in SI units. Note that a frequency of 3 x 10! g1 corresponds
to a wavelength of A = ¢/f = 1.0 mm. Each square represents a measured data
point. The point-by-point uncertainties are too small to show up on this scale; the
size of the squares instead represents a liberal estimate of the uncertainty due to
systematic effects. The solid curve is the theoretical Planck spectrum, with the
temperature adjusted to 2.735 K to give the best fit. From J. C. Mather et al.,
Astrophysical Journal Letters 354, L37 (1990); adapted courtesy of NASA /GSFC
and the COBE Science Working Group. Subsequent measurements from this ex-
periment and others now give a best-fit temperature of 2.728 £ 0.002 K. Copyright
(©2000, Addison-Wesley.
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Electromagnetic field energy expression:
6 * *
Eﬁeld =— Z a)lf (AkaAko + Aka AkO' )
2V e
Here 4, . represents the amplitude of the vector potential.

Blg Ieap -- Suppose that Aka - Ckaaka AEO' — Cliaalia

where Cka is a constant and q, _ is an annihilation operator

Eﬁeld 2V Z a) ‘Cka‘ (akaalia + aliaaka)
More leaping --  C,_ = Vi
€o Wy

1
E.y= 2Zha) (akga;id +akaak0) Zha) (akoakd + 2)

ko


Presenter Notes
Presentation Notes
Now consider how the EM field energy can be quantized, thinking in terms of the analogy of these equations to those of the Harmonic oscillator.    We introduce a normalization factor and the creation and annihilation operators.


T

Here a, and a' are "borrowed" from the Harmonic oscillator formalism.
ko ko

Commutation relations: [ak .al, ] =840, [akd,ak,o.]=0 [aﬂd,ai,o.]zo

Hgyq = Zha) (akaaza +akaak0) Zha) (akaaka T ;j

From the analogy of the Harmonic oscillator, the eigenstates of the

EM Field Hamiltonian are integers n, _ :

: h
ﬁeld|nk0'> Zha) ' k' Ay T 5 |nka> - O My |nk0'>
k'c'
fixed _ T _
Hﬁeld k0'> - Z (ha)k'ak'a'ak'a')|nk0'> T ha)knka|nka>
klo_l

Uncontrolled
energy shift
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Presenter Notes
Presentation Notes
Reviewing the commutation relations for the creation and annihilation operators.        At the end, we do arrive at an expression that is very much like that of the Harmonic oscillator.    However, in this case, the constant term causes trouble because it represents an uncontrolled energy.      No problem.   If it is unphysical it is strategically  removed.   Unfortunately, it will come back to bother us on occasion…


Some additional comments on the “fixed” solution --

EM Field Hamiltonian acting on eigenstate ‘”m) ;

)= oy ol 43 )= hearn )+ T2

k'oc'

ka> = Z(ha)k’ali'a'ak'a')‘nka> = ha)knka ‘nka> ‘_'_,

K'c' Troublesome term

ﬁeld

H fixed

field

Comment: For the phonon case which served as our model, the notion of zero point
motion makes physical sense. For the electromagnetic Hamiltonian the role of the
equivalent concept is not quite clear (at least to me). We need to be careful when we
see divergent energies to distinguish physical processes from mathematical issues.



Creation and annihilation operators:

akO' nkc7> — \/nkO' ‘nka _1>

alta nka> = \/nka +1‘nk0 +1>

Quantum mechanical form of vector potential in real space --

A o e
A(r,t) = €xo (akaelk.r_lwkt T aliae e ))
kzgl 2Ve 0,

Note: We are assuming that the polarization vector is real.


Presenter Notes
Presentation Notes
With these definitions of the vector potential amplitudes, we can now write an expression for the quantum mechanical form of the vector potential.


Quantum mechanical form of vector potential --

h ikKr—i —(ik-r—i
A(r.1)= kzal\/ZVeOa)k S (ak“ek Y tae " wkt))

Electric field:

E--2 SE(r)=iY (e —af e
ot

Magnetic field:

B=VxA = B = lz \/2V k x SkG (akaeik-r_iwkt . alae—(ik-r—iwkt))
€


Presenter Notes
Presentation Notes
From the vector potential, we can also write expressions for the electric and magnetic fields.


ikr—iot 1 ~(kr—iot)
( koe akae )

=i
ko

ik-r—ie,t t —(ikr—ioyt)
= ZZ —kxg, (akge —a,e )
2V€0

What is the expectation value of the E field for a pure eigenstate |n> of the
electromagnetic Hamiltonian?

1. A complex (non zero) number

2. Zero

3. Infinity
What is the expectation value of the B field for a pure eigenstate |n> of the
electromagnetic Hamiltonian?

1. A complex (non zero) number

2. Zero

3. Infinity

=» In fact, these are non-trivial questions


Presenter Notes
Presentation Notes
What do you think is going to happen?


At this point, we might wonder how the classical and quantum pictures of the EM field
can be reconciled --

An interesting picture comes from a particular linear combination of quantum states of
a single mode (ko) arising for example in a laser



How does a quantum mechanical E or B field exist? Consider a linear

combination of pure photon states --

VoLUME 10, NUMBER 3 PHYSICAL REVIEW LETTERS 1 FEBRUARY 1963

PHOTON CORRELATIONS*

Roy J. Glauber
Lyman Laboratory, Harvard University, Cambridge, Massachusetts
(Received 27 December 1962)

04/22/2024

In 1956 Hanbury Brown and Twiss' reported
that the photons of a light beam of narrow spec-
tral width have a tendency to arrive in correlated
pairs. We have developed general quantum me-
chanical methods for the investigation of such
correlation effects and shall present here re-
sults for the distribution of the number of pho-
tons counted in an incoherent beam. The fact
that photon correlations are enhanced by narrow-
ing the spectral bandwidth has led to a prediction?
of large-scale correlations to be observed in the
beam of an optical maser. We shall indicate
that this prediction is misleading and follows
from an inappropriate model of the maser beam.
In considering these problems we shall outline

R4

a method of describing the photon field which ap-
pears particularly well suited to the discussion

of experiments performed with light beams, wheth-
er coherent or incoherent.

The correlations observed in the photoioniza-
tion processes induced by a light beam were giv-
en a simple semiclassical explanation by Purcell,®
who made use of the methods of microwave noise
theory. More recently, a number of papers have
been written examining the correlations in con-
siderably greater detail. These papers®*™® re-
tain the assumption that the electric field in a
light beam can be described as a classical Gaus-
sian stochastic process. In actuality, the be-
havior of the photon field is considerably more
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Presenter Notes
Presentation Notes
In this paper, the notion of a “coherent” state was introduced.    As we will see, the expectation values of the electric and magnetic fields are non-zero for a system in a coherent state.


o0 n —|C¥|2/2

Gauber's coherent state: |Ca> = Z

2 M

Here a represents a complex amplitude

It 1s possible to prove the following 1denties for the coherent states:
1. <ca |ca> =1

2. <ca |a|ca> =a

3. <ca |aT |ca> =a

(. Cﬁ>

4. oAt




Summary of previous results for the electromagnetic Hamiltonian

i

In terms of the operators a,  and q,_ operators for wavevector k and polarization o.

With commutation relations: [aka, al:o,,] =040, [aka, ak,a.]=0 [aia, ai.a,] =0

The eigenstates of the EM Field Hamiltonian (omitting diverging term) are integers n, _ :

y fixed nk0> Z(ha) akaak0)|nk0> ha)knk0|nkg>

field
k'c'

It 1s convenient to define the photon number operator
N ! a... suchthat N, |n > ny, |nk0>

K'c' =d


Presenter Notes
Presentation Notes
The is a review of equations discussed in Lecture 22.


Properties of the creation and annihilation operators:

akO' nkc7> — \/nkO' ‘nka _1>

alta nka> = \/nka +1‘nk0 +1>

Quantum mechanical form of vector potential --

h ik-r—i —(ik-r—i
A(r,t) = kzc; Wew €. (akaek at 4 a1 oK cokt))

Note: We are assuming that the polarization vector is real.


Presenter Notes
Presentation Notes
Continuing review of previous results.


Quantum mechanical form of vector potential and corresponding fields --

h ik-r—i —(ik-r—i
A(r,t) = kzal\/ZVEOa)k €. (akae kel yal e (ik a"‘t))

Electric field:

E=-2 S E(r)=iY
k

(a oK _ al'iae—(ik-r—ia)kt))

Ot
Magnetic field:

B=VxA = B - lz \/ > kxg,_ ( a,. KT _ ala e—(ik-r—ia)kt))
SNO%


Presenter Notes
Presentation Notes
From the quantum expression of the vector potential, we can also write expressions for the electric and magnetic fields.


Embarassing/puzzling expectation values --

< n. ‘A > Z T < n.. ‘(akaeik-r—iwkt +alae—(ik-r—ia)kt))‘nk’6’> —0
0@
Electric field:
k= _88—? e <nk'o" ‘E(l’ 4 nk'0"> = ZZ ;—l;)k ko <nk'a' ‘(akaeik'r_iwkt - aliae_(ik'r_iwkt) )‘ nk'o-'> =0
ko
Magnetic field:

B=VxA = (n..|B(r,

> — ZZ T k X, <nk'a' ‘(ako_eik-r—ia)kt . alio-e—(ik-r—ia)kt))‘nklo_'> _0
0
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Presenter Notes
Presentation Notes
Consider evaluating the expectation values of  these fields for a pure photon eigenstate.    Embarrassingly, they are 0.


In order to compare the classical treatment to the quantum approach we need to
calculate expectation values of the observables. In addition to mean value of an
observable, its statistical properties are also of interest, particularly the variance and
the standard deviation (its square root) which is defined in terms of the average of
the squared value of the observable and the average value itself:

Standard deviation: AV = \/ <V2>— KVW

The next few slides review the relationship of this variance to observables in
guantum mechanics which have non trivial commutation relationships and thus
have built in variance values.



Digression -- Commutator formalism in quantum mechanics

Definition:
Given two Hermitian operators 4 and B, their commutator is
[A4,B]= AB — BA

Theorem:

Given Hermitian operators A, B, C such that
[4,B]=iC,

it follows that AAAB > %KC >‘


Presenter Notes
Presentation Notes
In order to understand how the previous results can be true, we need to review the notion of variance in quantum mechanics.    In particular, the variance often is controlled by non-trivial commutation relations.     In this slide and the following, the relationship between variance and commutators is reviewed.


Proof --

Note that:
[4,B] = (iC)'
(4B—BA) =B'A" - A'B' =—iC'

=BA— AB =—-iC
Calculation of the variance:
(84)" = (y|(4-(4))|w) Define [y, =|(4~(4))v)
=((4=(a))w|(4-(4))y) ) =|(B-(B))w)

Similar] . :
imilarly, Schwarz inequality:

0 <<(Z(IZB><)Z§3V>)(BW><B>)W> <'//A|‘//A><"”B|l//B>2KWA|WB>‘2



2222222222

Define [y, =|(4—~(A)w) and v, =|(B~(8))w)

Schwarz inequality:

<WAIWA><W va) 2wl v >\2

Walws)=(w|(4-(4)(B-(B))lw)
(4-(4))(B-(B))=
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Walws)=(w|(4-(4))(B-(B))

walvalf =l Flvf 5wl

Putting 1t all together:

DA A AN

>2l(c)f

Therefore: [A,B]=iC implies

= (Ad)"(AB)

Example: A4A=X, B=P

!
AMAB 2 |(C)

h

[X,P]=ih 1mplies AXAP> 5

04/22/2024
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Presenter Notes
Presentation Notes
Wrapping up the commutator discussion with  the example of the uncertainty principle applied to position and momentum.


.

What does this have to do with quantum EM fields?

In fact, Carlson's textbook shows that although

<nk,a,|E(r,t)|nk.a.> =0 and <nk.0. |B(r,t)|nk,a,> =0,
the variances of the ﬁelds are both infinite for a pure eigenstate --

(0]E2(r)|0) = [E(r)|0)] = 77 ZZ,/%% (84 & )€ (L, | LK, 0)
ko k'c’
he hc d’k g .
_ I = k. infinite 17.19
2 V;tr sV % o (277:)3 | « ( "
0|B* (1 B(1 h S (k K'xe' Lk o|LK.o
(ORI 5 Bt e
|k ><ng| h d’k
_ . (17.19b)
25 Vi Z @ RZ: ; J‘(z"r) infinite

A more careful treatment shows relations such as
0o(r—r')
0z
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[E(r,0), B,(r',0)] = ich


Presenter Notes
Presentation Notes
For the E and B fields themselves, the variance is not a result of non trivial commutation relations.    Here we calculate the variances for pure photon states.


It is also possible to show that components of the E and B field have nontrivial
commutation relations, indicating that in general it is not possible to
simultaneously determine E and B at the same point in space to arbitrary

accuracy.

Effects of the phase of each mode.
In deriving these equations, we neglected the phase of each mode. A more

careful treatment of photon number and phase show that these also have
nontrivial commutation relations.

How is this quantum treatment of the electromagnetic fields consistent with the

classical picture?
1. There is no need for consistency.?
2. There should be consistency in certain ranges of the parameters.?


Presenter Notes
Presentation Notes
Summary of what we have learned so far.         What do you think about how the quantum equations could be related to the classical picture?


Glauber's coherent state: |c > = i ¢

. ) . ho iKr—i ¥ —(ikr—iayt)
Electric field: (c, |E(r,7)|c,) =1 | 2Veko €. (akoe kol g e T )
. ] . h ik-r—i * —(ikr—iayt)
Magnetic field: (c, |B(r,t)|c,) =i /2Veoa)k kxe, (akae K gy e T )

Note that « 1s a complex number which can be written in terms of a real amplitude and phase: £, and y :

(c,|E(r,1)]c,)=-2 /;i)k &, Eysin(k-r—oit+y) .
€ 1Y
T Let a=FEye
(c,|B(r.t)]c,)=-2 e kxg E, sin(k-r—at+y) 0

|n> based on a single mode n — n,



Presenter Notes
Presentation Notes
Here we introduce the single mode coherent state as a particular linear combination of eigenstates of the electromagnetic Hamiltonian.


Single mode coherent state continued

It can also be shown that

(e |00 e ) =2 (45 sin® (ko= g +) +1)
0

Therefore

(o [E(r0f [e.)=[e, [B(r.o)le, )

2 ho,

2V,

This means that variance of the E field for the coherent state is independent of
the amplitude E,. Therefore, for large E,the variance is small in comparison.


Presenter Notes
Presentation Notes
For these coherent states, we can evaluate the variance of the quantum mechanical electric field.     You should verify these equations for your homework.


Visualization of coherent state
electric fields for various
amplitudes

The quantized radiation field 151

1
z

Source: Rodney Loudon, “The
Quantum Theory of Light”

40

/\\/ _ -t
B \/ \
FiG. 4.3. Pictorial representation of the electric-field variation in a cavity mode excited to state
). Three different values of the mean photon number |of” are shown, the vertical sczles being
different for the three cases. The uncertainties in field values are indicated by the vertical widths

2AE of the sine waves. These widths can also be regarded as combinations of the amplitude
uncertainty associated with An and the phase uncertainty associated with A cos ¢,

Electric field in units of (Rwi2¢, V)

=




Single mode coherent state continued

Now consider the expectation values of the number operator and its square:
Nka = aliaaka
(ca|Nio o) =lef (ca NNy [,)= o] +]ef
(o [Nugle )| =laf
Fractional uncertainty in the number of photons for the coherent state:
Yl [N N o) ~[lea N e )]

CALED ]

Square of the variance: <ca |Nk0NkG |ca > —



Presenter Notes
Presentation Notes
Again using the coherent states, we can evaluate the variance of the photon number.    What do you think is the significance of these results?


.

Interpretation of a single mode coherent state

0 n _0.’ /2

|c > Z |n> based on a single mode n — n,
n=0

The probab1l1ty of ﬁnding n photons in this state is given by:

(nle.)

2 el

2 o . L
= | ' This 1s the form of a Poisson distribution
n!

2
for a mean value of |a| .


Presenter Notes
Presentation Notes
Here we see that the coherent state is related to a Poisson  distribution, important in statistical analysis.


More reading --

REVIEWS OF
MODERN PHYSICS

Vorume 37, NUMBER 2 ArriL 1965

04/22/2024

Coherence Properties of Optical Fields

L. MANDEL, E. WOLF

Department of Piysics and Astronomy, University of Rochester, Rochester, New York

This article presents a review of coherence properties of eleciromagnetic fields and their measurements, with special
emphasis on the optical region of the spectrum. Analyses based on both the classical and quantum theories are described.
After a brief historical introduction, the elementary concepts which are frequently employed in the discussion of inter-
ference phenomena are summarized. The measure of second-order coherence is then introduced in connection with the
analysis of a simple interference experiment and some of the more important second-order coherence effects are studied.
Their uses in stellar interferometry and interference spectroscopy are described. Analysis of partial polarization from
the standpoint of correlation theory is also outlined, The general statistical description of the field is discussed in some
detail. The recently discovered universal “diagonal” representation of the density operator for free fields is also con-
sidered and it is shown how, with the help of the associated generalized phase-space distribution function, the quantum-
mechanical correlation functions may be expressed in the same form as the classical ones. The sections which follow
dealwith the statistical properties of thermal and nonthermal light, and with the temporal and spatial coherence of black-
body radiation. Later sections, dealing with fourth- and higher-order coherence effects include a discussion of the
photoelectric detection process. Among the fourth-order effects described in detail are bunching phenomena, the Hanbury
Brown-Twiss effect and its application to astronomy. The article concludes with a discussion of various transient super-
position effects, such as light beats and interference fringes produced by independent light beams.
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Presenter Notes
Presentation Notes
There are many more interesting aspects of the statistical properties of quantum electromagnetic fields.     Here is an example of an interesting review article.
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