PHY 712 Electrodynamics 10-10:50 AM MWF Olin 103

Notes for Lecture 35:

Some quantum effects in electrodynamics
Mon: Review of quantum eigenstates of EM fields and discussion of Glauber's coherent states

Wed: More general quantum states of EM fields and related correlations functions

Fri: More complicated quantum states of EM fields

$\mathbf{2 4}$	Mon: 03/18/2024	Chap. 9	Digression on Math methods and Radiation from localized oscillating sources	$\# 19$	$03 / 25 / 2024$
$\mathbf{2 5}$	Wed: 03/20/2024	Chap. 9	Radiation from localized oscillating sources	$\# 20$	$03 / 25 / 2024$
$\mathbf{2 6}$	Fri: 03/22/2024	Chap. 9 \& 10	Radiation and scattering	$\# 21$	$03 / 25 / 2024$
$\mathbf{2 7}$	Mon: 03/25/2024	Chap. 11	Special Theory of Relativity	$\# 22$	$04 / 01 / 2024$
$\mathbf{2 8}$	Wed: 03/27/2024	Chap. 11	Special Theory of Relativity	$\# 23$	$04 / 01 / 2024$
$\mathbf{2 9}$	Fri: 03/29/2024	Chap. 11	Special Theory of Relativity		
$\mathbf{3 0}$	Mon: 04/01/2024	Chap. 14	Radiation from moving charges	$\# 24$	$04 / 08 / 2024$
$\mathbf{3 1}$	Wed: 04/03/2024	Chap. 14	Radiation from accelerating charged particles	$\# 25$	$04 / 08 / 2024$
$\mathbf{3 2}$	Fri: 04/05/2024	Chap. 14	Synchrotron radiation and Compton scattering	$\# 26$	$04 / 08 / 2024$
	Mon: 04/08/2024	No class	Eclipse related absences		
$\mathbf{3 3}$	Wed: 04/10/2024	Chap. 13 \& 15	Other radiation -- Cherenkov \& bremsstrahlung	$\# 27$	$04 / 22 / 2024$
$\mathbf{3 4}$	Fri: 04/12/2024		Special topic: E \& M aspects of superconductivity		
	Mon: 04/15/2024		Presentations I		
	Wed: 04/17/2024		Presentations II		
	Fri: 04/19/2024		Presentations III		
$\mathbf{3 5}$	Mon: 04/22/2024		Special topic: Quantum Effects in E \& M		
$\mathbf{3 6}$	Wed: 04/24/2024		Special topic: Quantum Effects in E \& M		
$\mathbf{3 7}$	Fri: 04/26/2024		Special topic: Quantum Effects in E \& M		
$\mathbf{3 8}$	Mon: 04/29/2024		Review		
$\mathbf{3 9}$	Wed: 05/01/2024		Review		

Quantization of the Electromagnetic fields Reference - PHY 742 - Chapter 17 in Professor Carlson's textbook

- Review of the quantum harmonic oscillator
- Hamiltonian for electromagnetic energy and its eigenstates
- Properties of the quantized electromagnetic fields
- Coherent states

Review of one-dimensional quantum harmonic oscillator in terms of momentum P and displacement X with spring constant $m \omega^{2}$

$$
H \psi(x)=\left(\frac{P^{2}}{2 m}+\frac{m \omega^{2}}{2} X^{2}\right) \psi(x)=E \psi(x)
$$

Define:

$$
\begin{aligned}
& a=\left(\frac{m \omega}{2 \hbar}\right)^{1 / 2} X+i\left(\frac{1}{2 m \omega \hbar}\right)^{1 / 2} P \\
& a^{\dagger}=\left(\frac{m \omega}{2 \hbar}\right)^{1 / 2} X-i\left(\frac{1}{2 m \omega \hbar}\right)^{1 / 2} P
\end{aligned}
$$

Note that:
$\left[a, a^{\dagger}\right]=1$

It can be shown that for functions --
$\psi_{n} \rightarrow|n\rangle$ where $n=0,1,2,3, \ldots$
$a|n\rangle=\sqrt{n}|n-1\rangle \quad a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$
$a^{\dagger} a|n\rangle=n|n\rangle$
$\Rightarrow H|n\rangle=\hbar \omega\left(\frac{1}{2}+a^{\dagger} a\right)|n\rangle=\hbar \omega\left(\frac{1}{2}+n\right)|n\rangle$

Summary of results for the one dimensional quantum oscillator:

$$
\begin{aligned}
& H|n\rangle=\hbar \omega\left(\frac{1}{2}+a^{\dagger} a\right)|n\rangle=\hbar \omega\left(\frac{1}{2}+n\right)|n\rangle \\
& a|n\rangle=\sqrt{n}|n-1\rangle \\
& a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle
\end{aligned}
$$

Contributing to the discussion -
The creation and annihilation operators within the harmonic oscillator formalism seem to have been introduced by mathematical logic and found to have very interesting properties. In fact, as shown in Chapter 5, starting from the creation and annihilation operators, one can deduce the Harmonic Oscillator spectrum. These operators do not by themselves represent physical quantities and therefore do not "have" to be Hermitian. The matrix form of X and P in the basis of $\mid n>$ is just one of many ways to represent these operators.

Further comments --
The harmonic oscillator states clearly have an associated quantum number n. It is convenient to call n a "phonon number" for the moment. We will generalize this notion in the context of electromagnetic fields.

How does this beautiful formalism lead to the notion of creation and annihilation operators?

The phonon number eigenvalues take the values $n=0,1,2, \ldots \ldots$
$a|0\rangle=0 \quad a|1\rangle=|0\rangle a|2\rangle=\sqrt{2}|1\rangle \quad \ldots$ interpretation of a as annihilation operator $a^{\dagger}|0\rangle=|1\rangle a^{\dagger}|1\rangle=\sqrt{2}|2\rangle a^{\dagger}|2\rangle=\sqrt{3}|3\rangle \quad \ldots$ interpretation of a^{\dagger} as creation operator

It follows that $|n\rangle=\frac{1}{\sqrt{(n!)}}\left(a^{\dagger}\right)^{n}|0\rangle$ \rightarrow We can "create" any phonon state
from the ground state with this operator.

Extension of these ideas to multiple independent harmonic oscillator modes
$\omega \Rightarrow\left\{\omega_{1}, \omega_{2}, \omega_{3} \ldots\right\}$
$a \Rightarrow\left\{a_{1}, a_{2}, a_{3} \ldots\right\}$
$a^{\dagger} \Rightarrow\left\{a_{1}^{\dagger}, a_{2}^{\dagger}, a_{3}^{\dagger} \ldots\right\}$

Here 1,2,..i,j... denotes an arbitrary index referencing distinct modes.

Commutation relations: $\left[a_{i}, a_{j}\right]=0$
Commutation relations: $\left[a_{i}^{\dagger}, a_{j}^{\dagger}\right]=0$
Commutation relations: $\left[a_{i}, a_{j}^{\dagger}\right]=\delta_{i j}$

This result means that for a multiphonon state $\left|n_{1}, n_{2} \ldots n_{i} \ldots n_{j} \ldots n_{N}\right\rangle$, the action of the creation operator works as follows:
$a_{i}^{\dagger} a_{j}^{\dagger}\left|n_{1}, n_{2} \ldots n_{i} \ldots n_{j} \ldots n_{N}\right\rangle=\sqrt{n_{i}+1} \sqrt{n_{j}+1}\left|n_{1}, n_{2} \ldots\left(n_{i}+1\right) \ldots\left(n_{j}+1\right) \ldots n_{N}\right\rangle$
Later, we will see how this formalism has the capability of keeping track of symmetry/antisymmetry properties of multi particle systems.

Favorite equations from classical electrodynamics

Maxwell's equations

Microscopic or vacuum form ($\mathbf{P}=0 ; \mathbf{M}=0$):
Coulomb's law:

$$
\nabla \cdot \mathbf{E}=\rho / \varepsilon_{0}
$$

Ampere-Maxwell's law: $\quad \nabla \times \mathbf{B}-\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}=\mu_{0} \mathbf{J}$
Faraday's law:

$$
\nabla \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0
$$

No magnetic monopoles: $\quad \nabla \cdot \mathbf{B}=0$

$$
\Rightarrow c^{2}=\frac{1}{\varepsilon_{0} \mu_{0}}
$$

Back to SI units

Recall the electromagnetic field energy --

$$
E_{\text {field }}=\frac{\epsilon_{0}}{2} \int d^{3} r\left(|\mathbf{E}(\mathbf{r}, t)|^{2}+c^{2}|\mathbf{B}(\mathbf{r}, t)|^{2}\right)
$$

It will be convenient to express Maxwell's equations and the electromagnetic field energy in terms of scalar and vector potentials:

$$
\begin{array}{ll}
\nabla \cdot \mathbf{B}=0 & \Rightarrow \mathbf{B}=\nabla \times \mathbf{A} \\
\nabla \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0 & \Rightarrow \nabla \times\left(\mathbf{E}+\frac{\partial \mathbf{A}}{\partial t}\right)=0 \quad \Rightarrow \mathbf{E}+\frac{\partial \mathbf{A}}{\partial t}=-\nabla \Phi \quad \Rightarrow \quad \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}
\end{array}
$$

Far from sources, the remaining equations become:

$$
\nabla \cdot \mathbf{E}=0 \quad \Rightarrow \nabla^{2} \Phi+\frac{\partial \nabla \cdot \mathbf{A}}{\partial t}=0
$$

$\nabla \times \mathbf{B}-\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}=0 \Rightarrow \nabla \times(\nabla \times \mathbf{A})+\frac{1}{c^{2}}\left(\frac{\partial \nabla \Phi}{\partial t}+\frac{\partial^{2} \mathbf{A}}{\partial t^{2}}\right)=0$

Further manipulations of Maxwell's equations in terms of scalar and vector potentials --

$$
\begin{aligned}
\nabla \cdot \mathbf{E}=0 & \Rightarrow \nabla^{2} \Phi+\frac{\partial \nabla \cdot \mathbf{A}}{\partial t}=0 \\
\nabla \times \mathbf{B}-\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}=0 & \Rightarrow \nabla \times(\nabla \times \mathbf{A})+\frac{1}{c^{2}}\left(\frac{\partial \nabla \Phi}{\partial t}+\frac{\partial^{2} \mathbf{A}}{\partial t^{2}}\right)=0 \\
& \Rightarrow \nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}+\frac{1}{c^{2}}\left(\frac{\partial \nabla \Phi}{\partial t}+\frac{\partial^{2} \mathbf{A}}{\partial t^{2}}\right)=0 \\
& \Rightarrow\left(\nabla^{2} \mathbf{A}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}\right)-\nabla(\underbrace{c^{2}}_{\text {rero in Lorenz gauge }} \frac{\left.\mathbf{A}+\frac{1}{\partial t}\right)=0}{\nabla^{2} \Phi-\frac{1}{c^{2}} \frac{\partial^{2} \Phi}{\partial t^{2}}=} \begin{array}{rl}
\text { z } \quad \nabla^{2} \mathbf{A}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=0
\end{array}
\end{aligned}
$$

Equations within the Lorenz gauge --

$$
\nabla^{2} \Phi-\frac{1}{c^{2}} \frac{\partial^{2} \Phi}{\partial t^{2}}=0 \quad \nabla^{2} \mathbf{A}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=0
$$

It is further convenient to seek solutions with $\Phi \equiv 0 \quad \Rightarrow \nabla \cdot \mathbf{A}=0$

$$
\mathbf{E}=-\frac{\partial \mathbf{A}}{\partial t} \quad \mathbf{B}=\nabla \times \mathbf{A}
$$

Note that this is one of many possible choices and it turns out to be convenient.

Electromagnetic field energy for this choice --

$$
\begin{aligned}
E_{\text {field }} & =\frac{\epsilon_{0}}{2} \int d^{3} r\left(|\mathbf{E}(\mathbf{r}, t)|^{2}+c^{2}|\mathbf{B}(\mathbf{r}, t)|^{2}\right) \\
& =\frac{\epsilon_{0}}{2} \int d^{3} r\left(\left|\frac{\partial \mathbf{A}(\mathbf{r}, t)}{\partial t}\right|^{2}+c^{2}|\nabla \times \mathbf{A}(\mathbf{r}, t)|^{2}\right)
\end{aligned}
$$

Plane wave solutions to electromagnetic waves in terms of vector potentials
$\nabla^{2} \mathbf{A}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=0 \quad \nabla \cdot \mathbf{A}=0$
A pure plane wave takes the form
$\mathbf{A}_{\mathbf{k} \sigma}(\mathbf{r}, t)=A_{\mathbf{k} \sigma} \boldsymbol{\varepsilon}_{\mathbf{k} \sigma} e^{i \mathbf{k} \cdot \mathbf{r}-\omega_{\mathbf{k}} t} \quad \omega_{\mathbf{k}}=|\mathbf{k}| c$
$\mathbf{k} \cdot \boldsymbol{\varepsilon}_{\mathbf{k} \sigma}=0$
$\boldsymbol{\varepsilon}_{\mathbf{k} \sigma} \cdot \boldsymbol{\varepsilon}_{\mathbf{k} \sigma^{\prime}}=\delta_{\sigma \sigma^{\prime}}$

These are unit polarization vectors.
$\frac{\partial \mathbf{A}_{\mathbf{k} \sigma}(\mathbf{r}, t)}{\partial t}=-i \omega_{\mathbf{k}} A_{\mathbf{k} \sigma} \boldsymbol{\varepsilon}_{\mathbf{k} \sigma} e^{i \mathbf{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t}$
$\nabla \times \mathbf{A}_{\mathbf{k} \sigma}(\mathbf{r}, t)=i \mathbf{k} \times A_{\mathbf{k} \sigma} \boldsymbol{\varepsilon}_{\mathbf{k} \sigma} e^{i \mathbf{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t}$

General form of vector potential as a superposition of plane waves:

$$
\mathbf{A}(\mathbf{r}, t)=\frac{1}{V} \sum_{\mathbf{k} \sigma} \mathbf{A}_{\mathbf{k} \sigma}(\mathbf{r}, t)=\frac{1}{V} \sum_{\mathbf{k} \sigma} A_{\mathbf{k} \sigma} \boldsymbol{\varepsilon}_{\mathbf{k} \sigma} e^{i \mathbf{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t}
$$

Here V denotes the volume of the analysis system; different treatments put this factor in different ways.
Now we must evaluate the electromagnetic field energy --

$$
E_{\text {field }}=\frac{\epsilon_{0}}{2} \int d^{3} r\left(\left|\frac{\partial \mathbf{A}(\mathbf{r}, t)}{\partial t}\right|^{2}+c^{2}|\nabla \times \mathbf{A}(\mathbf{r}, t)|^{2}\right)
$$

Because of the orthogonality of the plane waves, the result can be expressed as a sum over distinct plane wave modes:
$E_{\text {field }}=\frac{\epsilon_{0}}{2 V} \sum_{\mathbf{k} \sigma}\left|A_{\mathbf{k} \sigma}\right|^{2}\left(\omega_{\mathbf{k}}^{2}+c^{2}|\mathbf{k}|^{2}\right)$

Note that we can use the identity $(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})$

Electromagnetic field energy --

$$
E_{\text {field }}=\frac{\epsilon_{0}}{2} \int d^{3} r\left(|\mathbf{E}(\mathbf{r}, t)|^{2}+c^{2}|\mathbf{B}(\mathbf{r}, t)|^{2}\right)
$$

In terms of the vector potential, using the Lorenz gauge with $\Phi=0$:
$\mathbf{E}=-\frac{\partial \mathbf{A}}{\partial t} \quad \mathbf{B}=\nabla \times \mathbf{A}$
where $\nabla^{2} \mathbf{A}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=0$ and $\nabla \cdot \mathbf{A}=0$

$$
E_{\text {field }}=\frac{\epsilon_{0}}{2} \int d^{3} r\left(\left|\frac{\partial \mathbf{A}(\mathbf{r}, t)}{\partial t}\right|^{2}+c^{2}|\nabla \times \mathbf{A}(\mathbf{r}, t)|^{2}\right)
$$

Some details, with more care to use real functions --

$$
\mathbf{A}(\mathbf{r}, t)=\frac{1}{2 V} \sum_{\mathbf{k} \sigma}\left(\mathbf{A}_{\mathbf{k} \sigma}(\mathbf{r}, t)+\mathbf{A}_{\mathbf{k} \sigma}^{*}(\mathbf{r}, t)\right)=\frac{1}{2 V} \sum_{\mathbf{k} \sigma} \varepsilon_{\mathbf{k} \sigma}\left(A_{\mathbf{k} \sigma} e^{i \mathbf{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t}+A_{\mathbf{k} \sigma}^{*} e^{-\left(i \mathbf{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t\right)}\right)
$$

Electromagnetic field energy --
$E_{\text {field }}=\frac{\epsilon_{0}}{2 V} \int d^{3} r\left(\left|\frac{\partial \mathbf{A}(\mathbf{r}, t)}{\partial t}\right|^{2}+c^{2}|\nabla \times \mathbf{A}(\mathbf{r}, t)|^{2}\right)$
Note that the plane waves are distributed throughout the analysis volume such that the following orthogonality holds. $\quad \frac{1}{V} \int d^{3} r e^{i \mathbf{k} \cdot \mathbf{r}-\mathbf{k} \cdot \mathbf{r}}=\delta_{\mathbf{k k}^{\prime}}$ Also recall that $\quad \omega_{\mathbf{k}}=|\mathbf{k}| c \quad$ and average out all high frequency contributions to the field energy -- $\quad E_{\text {field }}=\frac{\epsilon_{0}}{4 V} \sum_{\mathbf{k} \sigma}\left(A_{\mathbf{k} \sigma} A_{\mathbf{k} \sigma}^{*}+A_{\mathbf{k} \sigma}^{*} A_{\mathbf{k} \sigma}\right)\left(\omega_{\mathbf{k}}^{2}+c^{2}|\mathbf{k}|^{2}\right)$

$$
E_{\text {field }}=\frac{\epsilon_{0}}{2 V} \sum_{\mathbf{k} \sigma} \omega_{\mathbf{k}}^{2}\left(A_{\mathbf{k} \sigma} A_{\mathbf{k} \sigma}^{*}+A_{\mathbf{k} \sigma}^{*} A_{\mathbf{k} \sigma}\right)
$$

In the next slide, we will "jump" to quantizing the electromagnetic field using the analogy of the harmonic oscillator Hamiltonian. In fact, the analogy has nothing to do with the physics of the harmonic oscillator other than their particle symmetry as Bose particles.

Max Planck 1858-1947

Historical importance of the formula for Blackbody radiation
A blackbody means an idealized opaque (non-reflective) material which can absorb and emit electromagnetic radiation. If the body has an equilibrium temperature T, the energy associated with the blackbody is <U>. Using statistical mechanics and the assumption of quantized electromagnetic radiation, Planck showed that the black body internal energy and its distribution is given by in terms of frequency f :

$$
\langle U\rangle=\frac{V h^{4}}{\pi^{2} \hbar^{3} c^{3}} \int d f f^{3} \frac{1}{e^{\beta h f}-1}=\frac{8 \pi V h}{c^{3}} \int_{0}^{\infty} d f \frac{f^{3}}{e^{\beta h f}-1}
$$

Figure from:

An Introduction to Thermal Physics, by Daniel V. Schroeder (Addison Wesley, 2000 and now Oxford University Press)

Showing frequency distribution of blackbody radiation from the big bang.

Figure 7.20. Spectrum of the cosmic background radiation, as measured by the Cosmic Background Explorer satellite. Plotted vertically is the energy density per unit frequency, in SI units. Note that a frequency of $3 \times 10^{11} \mathrm{~s}^{-1}$ corresponds to a wavelength of $\lambda=c / f=1.0 \mathrm{~mm}$. Each square represents a measured data point. The point-by-point uncertainties are too small to show up on this scale; the size of the squares instead represents a liberal estimate of the uncertainty due to systematic effects. The solid curve is the theoretical Planck spectrum, with the temperature adjusted to 2.735 K to give the best fit. From J. C. Mather et al., Astrophysical Journal Letters 354, L37 (1990); adapted courtesy of NASA/GSFC and the COBE Science Working Group. Subsequent measurements from this experiment and others now give a best-fit temperature of $2.728 \pm 0.002 \mathrm{~K}$. Copyright (c)2000, Addison-Wesley.

Electromagnetic field energy expression:

$$
E_{\text {field }}=\frac{\epsilon_{0}}{2 V} \sum_{\mathbf{k} \sigma} \omega_{\mathbf{k}}^{2}\left(A_{\mathbf{k} \sigma} A_{\mathbf{k} \sigma}^{*}+A_{\mathbf{k} \sigma}^{*} A_{\mathbf{k} \sigma}\right)
$$

Here $A_{\mathbf{k} \sigma}$ represents the amplitude of the vector potential.

Big leap --
Suppose that $\quad A_{\mathrm{k} \sigma} \rightarrow C_{\mathrm{k} \sigma} a_{\mathrm{k} \sigma} \quad A_{\mathrm{k} \sigma}^{*} \rightarrow C_{\mathrm{k} \sigma}^{*} a_{\mathrm{k} \sigma}^{\dagger}$
where $C_{\mathbf{k} \sigma}$ is a constant and $a_{\mathbf{k} \sigma}$ is an annihilation operator

$$
E_{\text {field }}=\frac{\epsilon_{0}}{2 V} \sum_{\mathbf{k} \sigma} \omega_{\mathbf{k}}^{2}\left|C_{\mathbf{k} \sigma}\right|^{2}\left(a_{\mathbf{k} \sigma} a_{\mathbf{k} \sigma}^{\dagger}+a_{\mathbf{k} \sigma}^{\dagger} a_{\mathbf{k} \sigma}\right)
$$

More leaping -- $\quad C_{\mathbf{k} \sigma}=\sqrt{\frac{V \hbar}{\epsilon_{0} \omega_{\mathbf{k}}}}$

$$
E_{\text {field }}=\frac{1}{2} \sum_{\mathbf{k} \sigma} \hbar \omega_{\mathbf{k}}\left(a_{\mathbf{k} \sigma} a_{\mathbf{k} \sigma}^{\dagger}+a_{\mathbf{k} \sigma}^{\dagger} a_{\mathbf{k} \sigma}\right)=\sum_{\mathbf{k} \sigma} \hbar \omega_{\mathbf{k}}\left(a_{\mathbf{k} \sigma}^{\dagger} a_{\mathbf{k} \sigma}+\frac{1}{2}\right)
$$

Here $a_{\mathbf{k} \sigma}$ and $a_{\mathbf{k} \sigma}^{\dagger}$ are "borrowed" from the Harmonic oscillator formalism.
Commutation relations: $\left[a_{\mathbf{k} \sigma}, a_{\mathbf{k}^{\prime} \sigma^{\prime}}^{\dagger}\right]=\delta_{\mathbf{k k}} \delta_{\sigma \sigma^{\prime}} \quad\left[a_{\mathbf{k} \sigma}, a_{\mathbf{k}^{\prime} \sigma^{\prime}}\right]=0 \quad\left[a_{\mathbf{k} \sigma}^{\dagger}, a_{\mathbf{k}^{\prime} \sigma^{\prime}}^{\dagger}\right]=0$
$H_{\text {field }}=\frac{1}{2} \sum_{\mathbf{k} \sigma} \hbar \omega_{\mathbf{k}}\left(a_{\mathbf{k} \sigma} a_{\mathbf{k} \sigma}^{\dagger}+a_{\mathbf{k} \sigma}^{\dagger} a_{\mathbf{k} \sigma}\right)=\sum_{\mathbf{k} \sigma} \hbar \omega_{\mathbf{k}}\left(a_{\mathbf{k} \sigma}^{\dagger} a_{\mathbf{k} \sigma}+\frac{1}{2}\right)$
From the analogy of the Harmonic oscillator, the eigenstates of the EM Field Hamiltonian are integers $n_{k \sigma}$:

$$
\begin{aligned}
& H_{\text {field }}\left|n_{\mathbf{k} \sigma}\right\rangle=\sum_{\mathbf{k}^{\prime} \sigma^{\prime}} \hbar \omega_{\mathbf{k}^{\prime}}\left(a_{\mathbf{k}^{\prime} \sigma^{\prime}}^{\dagger} a_{\mathbf{k}^{\prime} \sigma^{\prime}}+\frac{1}{2}\right)\left|n_{\mathbf{k} \sigma}\right\rangle=\left(\hbar \omega_{\mathbf{k}} n_{\mathbf{k} \sigma}+\left(\sum_{\mathbf{k}^{\prime} \sigma^{\prime}} \frac{\hbar \omega_{\mathbf{k}}}{2}\right)\right)\left|n_{\mathbf{k} \sigma}\right\rangle \\
& H_{\text {field }}^{\text {fixed }}\left|n_{\mathbf{k} \sigma}\right\rangle=\sum_{\mathbf{k}^{\prime} \sigma^{\prime}}\left(\hbar \omega_{\mathbf{k}}, a_{\mathbf{k}^{\prime} \sigma^{\prime}}^{\dagger} a_{\mathbf{k}^{\prime} \sigma^{\prime}}\right)\left|n_{\mathbf{k} \sigma}\right\rangle=\hbar \omega_{\mathbf{k}} n_{\mathbf{k} \sigma}\left|n_{\mathbf{k} \sigma}\right\rangle \\
& \begin{array}{l}
\text { Uncontrolled } \\
\text { energy shift }
\end{array}
\end{aligned}
$$

Some additional comments on the "fixed" solution --
EM Field Hamiltonian acting on eigenstate $\left|n_{\mathbf{k} \sigma}\right\rangle$:
$H_{\text {field }}\left|n_{\mathbf{k} \sigma}\right\rangle=\sum_{\mathbf{k}^{\prime} \sigma^{\prime}} \hbar \omega_{\mathbf{k}^{\prime}}\left(a_{\mathbf{k}^{\prime} \sigma^{\prime}}^{\dagger} a_{\mathbf{k}^{\prime} \sigma^{\prime}}+\frac{1}{2}\right)\left|n_{\mathbf{k} \sigma}\right\rangle=\hbar \omega_{\mathbf{k}} n_{\mathbf{k} \sigma}\left|n_{\mathbf{k} \sigma}\right\rangle+\sum_{\mathbf{k}^{\prime} \sigma^{\prime}} \frac{\hbar \omega_{\mathbf{k}^{\prime}}}{2}\left|n_{\mathbf{k} \sigma}\right\rangle$
$H_{\text {fiedd }}^{\text {fixed }}\left|n_{\mathbf{k} \sigma}\right\rangle=\sum_{\mathbf{k}^{\prime} \sigma^{\prime}}\left(\hbar \omega_{\mathbf{k}^{\prime}} a_{\mathbf{k}^{\prime} \sigma^{\prime}}^{\dagger} a_{\mathbf{k}^{\prime} \sigma^{\prime}}\right)\left|n_{\mathbf{k} \sigma}\right\rangle=\hbar \omega_{\mathbf{k}} n_{\mathbf{k} \sigma}\left|n_{\mathbf{k} \sigma}\right\rangle$ Troublesome term

Comment: For the phonon case which served as our model, the notion of zero point motion makes physical sense. For the electromagnetic Hamiltonian the role of the equivalent concept is not quite clear (at least to me). We need to be careful when we see divergent energies to distinguish physical processes from mathematical issues.

Creation and annihilation operators:

$$
\begin{aligned}
& a_{\mathbf{k} \sigma}\left|n_{\mathbf{k} \sigma}\right\rangle=\sqrt{n_{\mathbf{k} \sigma}}\left|n_{\mathbf{k} \sigma}-1\right\rangle \\
& a_{\mathbf{k} \sigma}^{\dagger}\left|n_{\mathbf{k} \sigma}\right\rangle=\sqrt{n_{\mathbf{k} \sigma}+1}\left|n_{\mathbf{k} \sigma}+1\right\rangle
\end{aligned}
$$

Quantum mechanical form of vector potential in real space --
$\mathbf{A}(\mathbf{r}, t)=\sum_{\mathbf{k} \sigma} \sqrt{\frac{\hbar}{2 V \epsilon_{0} \omega_{\mathbf{k}}}} \boldsymbol{\varepsilon}_{\mathbf{k} \sigma}\left(a_{\mathbf{k} \sigma} e^{i \mathbf{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t}+a_{\mathbf{k} \sigma}^{\dagger} e^{-\left(\boldsymbol{i} \mathbf{k} \cdot \boldsymbol{r}-i \omega_{\mathbf{k}} t\right)}\right)$

Note: We are assuming that the polarization vector is real.

Quantum mechanical form of vector potential --

$$
\mathbf{A}(\mathbf{r}, t)=\sum_{\mathbf{k} \sigma} \sqrt{\frac{\hbar}{2 V \epsilon_{0} \omega_{\mathbf{k}}}} \varepsilon_{\mathbf{k} \sigma}\left(a_{\mathbf{k} \sigma} e^{i \mathbf{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t}+a_{\mathbf{k} \sigma}^{\dagger} e^{-\left(\mathbf{i} \mathbf{k} \cdot \mathbf{r}-\omega_{\mathbf{k}} t\right)}\right)
$$

Electric field:
$\mathbf{E}=-\frac{\partial \mathbf{A}}{\partial t} \Rightarrow \mathbf{E}(\mathbf{r}, t)=i \sum_{\mathbf{k} \sigma} \sqrt{\frac{\hbar \omega_{\mathbf{k}}}{2 V \epsilon_{0}}} \boldsymbol{\varepsilon}_{\mathbf{k} \sigma}\left(a_{\mathbf{k} \sigma} \sigma^{i \mathbf{k} \cdot \mathbf{r}-\boldsymbol{i}_{\mathbf{k}} t}-a_{\mathbf{k} \sigma}^{\dagger} e^{-\left(i \mathbf{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t\right)}\right)$
Magnetic field:
$\mathbf{B}=\nabla \times \mathbf{A} \Rightarrow \mathbf{B}(\mathbf{r}, t)=i \sum_{\mathbf{k} \sigma} \sqrt{\frac{\hbar}{2 V \epsilon_{0} \omega_{\mathbf{k}}}} \mathbf{k} \times \boldsymbol{\varepsilon}_{\mathbf{k} \sigma}\left(a_{\mathbf{k} \sigma} e^{i \mathbf{k} \cdot \boldsymbol{r}-i \omega_{\mathbf{k}} t}-a_{\mathbf{k} \sigma}^{\dagger} e^{-\left(i \mathbf{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t\right)}\right)$
$\mathbf{E}(\mathbf{r}, t)=i \sum_{\mathbf{k} \sigma} \sqrt{\frac{\hbar \omega_{\mathbf{k}}}{2 V \epsilon_{0}}} \boldsymbol{\varepsilon}_{\mathbf{k} \sigma}\left(a_{\mathbf{k} \sigma} e^{i \mathbf{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t}-a_{\mathbf{k} \sigma}^{\dagger} e^{-\left(i \mathbf{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t\right)}\right)$
$\mathbf{B}(\mathbf{r}, t)=i \sum_{\mathbf{k} \sigma} \sqrt{\frac{\hbar}{2 V \epsilon_{0} \omega_{\mathbf{k}}}} \mathbf{k} \times \boldsymbol{\varepsilon}_{\mathbf{k} \sigma}\left(a_{\mathbf{k} \sigma} e^{i \mathbf{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t}-a_{\mathbf{k} \sigma}^{\dagger} e^{-\left(i \mathbf{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t\right)}\right)$
What is the expectation value of the E field for a pure eigenstate |n> of the electromagnetic Hamiltonian?

1. A complex (non zero) number
2. Zero
3. Infinity

What is the expectation value of the B field for a pure eigenstate |n> of the electromagnetic Hamiltonian?

1. A complex (non zero) number
2. Zero
3. Infinity
\Rightarrow In fact, these are non-trivial questions

At this point, we might wonder how the classical and quantum pictures of the EM field can be reconciled

An interesting picture comes from a particular linear combination of quantum states of a single mode ($\mathrm{k} \sigma$) arising for example in a laser

How does a quantum mechanical E or B field exist? Consider a linear combination of pure photon states --

\author{

Abstract

In 1956 Hanbury Brown and Twiss ${ }^{1}$ reported that the photons of a light beam of narrow spectral width have a tendency to arrive in correlated pairs. We have developed general quantum mechanical methods for the investigation of such correlation effects and shall present here results for the distribution of the number of photons counted in an incoherent beam. The fact that photon correlations are enhanced by narrowing the spectral bandwidth has led to a prediction ${ }^{2}$ of large-scale correlations to be observed in the beam of an optical maser. We shall indicate that this prediction is misleading and follows from an inappropriate model of the maser beam. In considering these problems we shall outline
 a method of describing the photon field which appears particularly well suited to the discussion of experiments performed with light beams, whether coherent or incoherent.
 The correlations observed in the photoionization processes induced by a light beam were given a simple semiclassical explanation by Purcell, ${ }^{3}$ who made use of the methods of microwave noise theory. More recently, a number of papers have been written examining the correlations in considerably greater detail. These papers ${ }^{2,4-6}$ retain the assumption that the electric field in a light beam can be described as a classical Gaussian stochastic process. In actuality, the behavior of the photon field is considerably more

}

Gauber's coherent state: $\left|c_{\alpha}\right\rangle \equiv \sum_{n=0}^{\infty} \frac{\alpha^{n} e^{-|\alpha|^{2} / 2}}{\sqrt{n!}}|n\rangle$
Here α represents a complex amplitude
It is possible to prove the following identies for the coherent states:

1. $\left\langle c_{\alpha} \mid c_{\alpha}\right\rangle=1$
2. $\left\langle c_{\alpha}\right| a\left|c_{\alpha}\right\rangle=\alpha$
3. $\left\langle c_{\alpha}\right| a^{\dagger}\left|c_{\alpha}\right\rangle=\alpha^{*}$
4. $\left|\left\langle c_{\alpha} \mid c_{\beta}\right\rangle\right|^{2}=e^{-|\alpha-\beta|^{2}}$

Summary of previous results for the electromagnetic Hamiltonian

In terms of the operators $a_{\mathbf{k} \sigma}$ and $a_{\mathbf{k} \sigma}^{\dagger}$ operators for wavevector \mathbf{k} and polarization σ. With commutation relations: $\quad\left[a_{\mathbf{k} \sigma}, a_{\mathbf{k}^{\prime} \sigma^{\prime}}^{\dagger}\right]=\delta_{\mathbf{k k}}{ }^{\prime} \delta_{\sigma \sigma^{\prime}} \quad\left[a_{\mathbf{k} \sigma}, a_{\mathbf{k}^{\prime} \sigma^{\prime}}\right]=0 \quad\left[a_{\mathbf{k} \sigma}^{\dagger}, a_{\mathbf{k}^{\prime} \sigma^{\prime}}^{\dagger}\right]=0$

The eigenstates of the EM Field Hamiltonian (omitting diverging term) are integers $n_{\mathbf{k} \sigma}$: $H_{\text {field }}^{\text {fixed }}\left|n_{\mathbf{k} \sigma}\right\rangle=\sum_{\mathbf{k}^{\prime} \sigma^{\prime}}\left(\hbar \omega_{\mathbf{k}^{\prime}} a_{\mathbf{k}^{\prime} \sigma^{\prime}}^{\dagger} a_{\mathbf{k}^{\prime} \sigma^{\prime}}\right)\left|n_{\mathbf{k} \sigma}\right\rangle=\hbar \omega_{\mathbf{k}} n_{\mathbf{k} \sigma}\left|n_{\mathbf{k} \sigma}\right\rangle$
It is convenient to define the photon number operator
$\mathbf{N}_{\mathbf{k}^{\prime} \sigma^{\prime}} \equiv a_{\mathbf{k}^{\prime} \sigma^{\prime}}^{\dagger} a_{\mathbf{k}^{\prime} \sigma^{\prime}} \quad$ such that $\mathbf{N}_{\mathbf{k} \sigma}\left|n_{\mathbf{k} \sigma}\right\rangle=n_{\mathbf{k} \sigma}\left|n_{\mathbf{k} \sigma}\right\rangle$

Properties of the creation and annihilation operators:

$$
\begin{aligned}
& a_{\mathbf{k} \sigma}\left|n_{\mathbf{k} \sigma}\right\rangle=\sqrt{n_{\mathbf{k} \sigma}}\left|n_{\mathbf{k} \sigma}-1\right\rangle \\
& a_{\mathbf{k} \sigma}^{\dagger}\left|n_{\mathbf{k} \sigma}\right\rangle=\sqrt{n_{\mathbf{k} \sigma}+1}\left|n_{\mathbf{k} \sigma}+1\right\rangle
\end{aligned}
$$

Quantum mechanical form of vector potential --

$$
\mathbf{A}(\mathbf{r}, t)=\sum_{\mathbf{k} \sigma} \sqrt{\frac{\hbar}{2 V \epsilon_{0} \omega_{\mathbf{k}}}} \boldsymbol{\varepsilon}_{\mathbf{k} \sigma}\left(a_{\mathbf{k} \sigma} e^{i \mathbf{k} \cdot \mathbf{r}-i_{\mathbf{k}} t}+a_{\mathbf{k} \sigma}^{\dagger} e^{-\left(\mathbf{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t\right)}\right)
$$

Note: We are assuming that the polarization vector is real.

Quantum mechanical form of vector potential and corresponding fields --
$\mathbf{A}(\mathbf{r}, t)=\sum_{\mathbf{k} \sigma} \sqrt{\frac{\hbar}{2 V \epsilon_{0} \omega_{\mathbf{k}}}} \boldsymbol{\varepsilon}_{\mathbf{k} \sigma}\left(a_{\mathbf{k} \sigma} e^{i \mathbf{k} \cdot-i a_{\mathrm{k}} t}+a_{\mathbf{k} \sigma}^{\dagger} e^{-\left(i \mathbf{k} \cdot \mathbf{r}-\omega_{\mathbf{k}} t\right)}\right)$
Electric field:
$\mathbf{E}=-\frac{\partial \mathbf{A}}{\partial t} \Rightarrow \mathbf{E}(\mathbf{r}, t)=i \sum_{\mathbf{k} \sigma} \sqrt{\frac{\hbar \omega_{\mathbf{k}}}{2 V \epsilon_{0}}} \boldsymbol{\varepsilon}_{\mathbf{k} \sigma}\left(a_{\mathbf{k} \sigma} e^{i \mathbf{k} \cdot \mathbf{r}-i_{\mathbf{k}} t}-a_{\mathbf{k} \sigma}^{\dagger} e^{-\left(i \mathbf{k} \cdot \boldsymbol{r}-\omega_{\mathrm{k}^{\prime} t}\right)}\right)$
Magnetic field:
$\mathbf{B}=\nabla \times \mathbf{A} \Rightarrow \mathbf{B}(\mathbf{r}, t)=i \sum_{\mathbf{k} \sigma} \sqrt{\frac{\hbar}{2 V \epsilon_{0} \omega_{\mathbf{k}}}} \mathbf{k} \times \boldsymbol{\varepsilon}_{\mathbf{k} \sigma}\left(a_{\mathbf{k} \sigma} \sigma^{i \cdot \mathbf{k} \cdot \boldsymbol{r}-\omega_{\mathbf{k}} t}-a_{\mathbf{k} \sigma}^{\dagger} e^{-\left(i \mathbf{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t\right)}\right)$

Embarassing/puzzling expectation values --
$\left\langle n_{\mathbf{k}^{\prime} \sigma^{\prime}}\right| \mathbf{A}(\mathbf{r}, t)\left|n_{\mathbf{k}^{\prime} \sigma^{\prime}}\right\rangle=\sum_{\mathbf{k} \sigma} \sqrt{\frac{\hbar}{2 V \epsilon_{0} \omega_{\mathbf{k}}}} \varepsilon_{\mathbf{k} \sigma}\left\langle n_{\mathbf{k}^{\prime} \sigma^{\prime}}\right|\left(a_{\mathbf{k} \sigma} e^{i \mathbf{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t}+a_{\mathbf{k} \sigma}^{\dagger} e^{-\left(i \mathbf{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t\right)}\right)\left|n_{\mathbf{k}^{\prime} \sigma^{\prime}}\right\rangle=0$
Electric field:

$$
\mathbf{E}=-\frac{\partial \mathbf{A}}{\partial t} \Rightarrow\left\langle n_{\mathbf{k}^{\prime} \sigma^{\prime}}\right| \mathbf{E}(\mathbf{r}, t)\left|n_{\mathbf{k}^{\prime} \sigma^{\prime}}\right\rangle=i \sum_{\mathbf{k} \sigma} \sqrt{\frac{\hbar \omega_{\mathbf{k}}}{2 V \epsilon_{0}}} \boldsymbol{\varepsilon}_{\mathbf{k} \sigma}\left\langle n_{\mathbf{k}^{\prime} \sigma^{\prime}}\right|\left(a_{\mathbf{k} \sigma} e^{i \mathbf{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t}-a_{\mathbf{k} \sigma}^{\dagger} e^{-\left(i \mathbf{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t\right)}\right)\left|n_{\mathbf{k}^{\prime} \sigma^{\prime}}\right\rangle=0
$$

Magnetic field:

$$
\mathbf{B}=\nabla \times \mathbf{A} \Rightarrow\left\langle n_{\mathbf{k}^{\prime} \sigma^{\prime}}\right| \mathbf{B}(\mathbf{r}, t)\left|n_{\mathbf{k}^{\prime} \sigma^{\prime}}\right\rangle=i \sum_{\mathbf{k} \sigma} \sqrt{\frac{\hbar}{2 V \epsilon_{0} \omega_{\mathbf{k}}}} \mathbf{k} \times \boldsymbol{\varepsilon}_{\mathbf{k} \sigma}\left\langle n_{\mathbf{k}^{\prime} \sigma^{\prime}}\right|\left(a_{\mathbf{k} \sigma} e^{i \mathbf{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t}-a_{\mathbf{k} \sigma}^{\dagger} e^{-\left(i \mathbf{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t\right)}\right)\left|n_{\mathbf{k}^{\prime} \sigma^{\prime}}\right\rangle=0
$$

In order to compare the classical treatment to the quantum approach we need to calculate expectation values of the observables. In addition to mean value of an observable, its statistical properties are also of interest, particularly the variance and the standard deviation (its square root) which is defined in terms of the average of the squared value of the observable and the average value itself:

$$
\text { Standard deviation: } \quad \Delta V \equiv \sqrt{\left\langle V^{2}\right\rangle-|\langle V\rangle|^{2}}
$$

The next few slides review the relationship of this variance to observables in quantum mechanics which have non trivial commutation relationships and thus have built in variance values.

Digression -- Commutator formalism in quantum mechanics

Definition:
Given two Hermitian operators A and B, their commutator is $[A, B] \equiv A B-B A$

Theorem:
Given Hermitian operators A, B, C such that
$[A, B]=i C$,
it follows that $\quad \Delta A \Delta B \geq \frac{1}{2}|\langle C\rangle|$

Note that:

$$
\begin{aligned}
& {[A, B]^{\dagger}=(i C)^{\dagger}} \\
& \begin{aligned}
(A B-B A)^{\dagger} & =B^{\dagger} A^{\dagger}-A^{\dagger} B^{\dagger}=-i C^{\dagger} \\
& =B A-A B=-i C
\end{aligned}
\end{aligned}
$$

Calculation of the variance:

$$
\begin{array}{rrr}
(\Delta A)^{2} & \equiv\langle\psi|(A-\langle A\rangle)^{2}|\psi\rangle & \text { Define }\left|\psi_{A}\right\rangle \equiv|(A-\langle A\rangle) \psi\rangle \\
& =\langle(A-\langle A\rangle) \psi \mid(A-\langle A\rangle) \psi\rangle & \left|\psi_{B}\right\rangle \equiv|(B-\langle B\rangle) \psi\rangle \\
\text { Similarly, } & \text { Schwarz ineauality. }
\end{array}
$$

$$
\begin{aligned}
(\Delta B)^{2} & \equiv\langle\psi|(B-\langle B\rangle)^{2}|\psi\rangle \\
& =\langle(B-\langle B\rangle) \psi \mid(B-\langle B\rangle) \psi\rangle
\end{aligned}
$$

Schwarz inequality:
$\left\langle\psi_{A} \mid \psi_{A}\right\rangle\left\langle\psi_{B} \mid \psi_{B}\right\rangle \geq\left|\left\langle\psi_{A} \mid \psi_{B}\right\rangle\right|^{2}$

Define $\left|\psi_{A}\right\rangle \equiv|(A-\langle A\rangle) \psi\rangle \quad$ and $\quad\left|\psi_{B}\right\rangle \equiv|(B-\langle B\rangle) \psi\rangle$
Schwarz inequality:

$$
\begin{aligned}
& \left\langle\psi_{A} \mid \psi_{A}\right\rangle\left\langle\psi_{B} \mid \psi_{B}\right\rangle \geq\left|\left\langle\psi_{A} \mid \psi_{B}\right\rangle\right|^{2} \\
& \left\langle\psi_{A} \mid \psi_{B}\right\rangle=\langle\psi|(A-\langle A\rangle)(B-\langle B\rangle)|\psi\rangle \\
& (A-\langle A\rangle)(B-\langle B\rangle)=\frac{1}{2}((A-\langle A\rangle)(B-\langle B\rangle)+(B-\langle B\rangle)(A-\langle A\rangle)) \\
& \quad+\frac{1}{2}((A-\langle A\rangle)(B-\langle B\rangle)-(B-\langle B\rangle)(A-\langle A\rangle))
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\psi_{A} \mid \psi_{B}\right\rangle=\langle\psi|(A-\langle A\rangle)(B-\langle B\rangle)|\psi\rangle \quad=\langle\psi| F|\psi\rangle+\frac{i}{2}\langle\psi| C|\psi\rangle \\
& \left.\left.\left.\left|\left\langle\psi_{A} \mid \psi_{B}\right\rangle\right|^{2}=|\langle\psi| F| \psi\right\rangle\left.\right|^{2}+\frac{1}{4}|\langle\psi| C| \psi\right\rangle\left.\right|^{2} \geq \frac{1}{4}|\langle\psi| C| \psi\right\rangle\left.\right|^{2}
\end{aligned}
$$

Putting it all together:
$\left.\left\langle\psi_{A} \mid \psi_{A}\right\rangle\left\langle\psi_{B} \mid \psi_{B}\right\rangle \geq\left|\left\langle\psi_{A} \mid \psi_{B}\right\rangle\right|^{2} \geq \frac{1}{4}|\langle\psi| C| \psi\right\rangle\left.\right|^{2}$
$\Rightarrow(\Delta A)^{2}(\Delta B)^{2} \geq \frac{1}{4}|\langle C\rangle|^{2}$
Therefore: $[A, B]=i C$ implies $\quad \Delta A \Delta B \geq \frac{1}{2}|\langle C\rangle|$
Example: $A=X, \quad B=P$
$[X, P]=i \hbar \quad$ implies $\quad \Delta X \Delta P \geq \frac{\hbar}{2}$

What does this have to do with quantum EM fields?

In fact, Carlson's textbook shows that although
$\left\langle n_{\mathbf{k}^{\prime} \sigma^{\prime}}\right| \mathbf{E}(\mathbf{r}, t)\left|n_{\mathbf{k}^{\prime} \sigma^{\prime}}\right\rangle=0 \quad$ and $\quad\left\langle n_{\mathbf{k}^{\prime} \sigma^{\prime}}\right| \mathbf{B}(\mathbf{r}, t)\left|n_{\mathbf{k}^{\prime} \sigma^{\prime}}\right\rangle=0$,
the variances of the fields are both infinite for a pure eigenstate --

$$
\begin{gather*}
\left.\langle 0| \mathbf{E}^{2}(\mathbf{r})|0\rangle=|\mathbf{E}(\mathbf{r})| 0\right\rangle\left.\right|^{2}=\frac{\hbar}{2 \varepsilon_{0} V} \sum_{\mathbf{k} \sigma} \sum_{\mathbf{k}^{\prime} \sigma^{\prime}} \sqrt{\omega_{k} \omega_{k^{\prime}}}\left(\varepsilon_{\mathbf{k} \sigma} \cdot \varepsilon_{\mathbf{k}^{\prime} \sigma^{\prime}}^{*}\right) e^{i \mathbf{k} \cdot--\lambda \mathbf{k}^{\prime} \mathbf{r}}\left\langle 1, \mathbf{k}, \sigma \mid 1, \mathbf{k}^{\prime}, \sigma^{\prime}\right\rangle \\
=\frac{\hbar}{2 \varepsilon_{0} V} \sum_{\mathbf{k} \sigma} \omega_{k}=\frac{\hbar c}{\varepsilon_{0} V} \sum_{\mathbf{k}} k=\frac{\hbar c}{\varepsilon_{0}} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} k, \quad \text { infinite } \tag{17.19a}
\end{gather*}
$$

$\left.\langle 0| \mathbf{B}^{2}(\mathbf{r})|0\rangle=|\mathbf{B}(\mathbf{r})| 0\right\rangle\left.\right|^{2}=\frac{\hbar}{2 \varepsilon_{0} V} \sum_{\mathbf{k}, \sigma, \mathbf{k}^{\prime}, \sigma^{\prime}} \frac{e^{i \mathbf{k} \mathbf{k}-\mathrm{k}^{\prime} \cdot \mathbf{r}}}{\sqrt{\omega_{k} \omega_{k^{\prime}}}}\left(\mathbf{k} \times \boldsymbol{\varepsilon}_{\mathbf{k} \sigma}\right) \cdot\left(\mathbf{k}^{\prime} \times \boldsymbol{\varepsilon}_{\mathbf{k}^{\prime} \sigma^{\prime}}^{*}\right)\left\langle 1, \mathbf{k}, \sigma \mid 1, \mathbf{k}^{\prime}, \sigma^{\prime}\right\rangle$

$$
=\frac{\hbar}{2 \varepsilon_{0} V} \sum_{\mathbf{k}, \sigma} \frac{\left|\mathbf{k} \times \boldsymbol{\varepsilon}_{\mathbf{k} \sigma}\right|^{2}}{\omega_{k}}=\frac{\hbar}{2 \varepsilon_{0} V} \sum_{\mathbf{k}, \sigma} \frac{k^{2}}{\omega_{k}}=\frac{\hbar}{\varepsilon_{0} V c} \sum_{\mathbf{k}} k=\frac{\hbar}{\varepsilon_{0} c} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} k, \bigcup_{\text {infinite }}^{\text {(17.19b) }}
$$

A more careful treatment shows relations such as
$\left[\mathrm{E}_{x}(\mathbf{r}, t), B_{y}\left(\mathbf{r}^{\prime}, t\right)\right]=i c \hbar \frac{\partial \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\partial z}$

It is also possible to show that components of the E and B field have nontrivial commutation relations, indicating that in general it is not possible to simultaneously determine E and B at the same point in space to arbitrary accuracy.

Effects of the phase of each mode.
In deriving these equations, we neglected the phase of each mode. A more careful treatment of photon number and phase show that these also have nontrivial commutation relations.

How is this quantum treatment of the electromagnetic fields consistent with the classical picture?

1. There is no need for consistency.?
2. There should be consistency in certain ranges of the parameters.?

Glauber's coherent state: $\left|c_{\alpha}\right\rangle \equiv \sum_{n=0}^{\infty} \frac{\alpha^{n} e^{-\alpha \alpha^{2} / 2}}{\sqrt{n!}}|n\rangle$ based on a single mode $n \rightarrow n_{\mathrm{k} \sigma}$ Electric field: $\left\langle c_{\alpha}\right| \mathbf{E}(\mathbf{r}, t)\left|c_{\alpha}\right\rangle=i \sqrt{\frac{\hbar \omega_{\mathbf{k}}}{2 V \epsilon_{0}}} \boldsymbol{\varepsilon}_{\mathbf{k} \sigma}\left(\alpha_{\mathbf{k} \sigma} e^{i \mathbf{k} \cdot \boldsymbol{r}-i \omega_{\mathbf{k}} t}-\alpha_{\mathbf{k} \sigma}^{*} e^{-\left(\mathbf{i} \boldsymbol{k} \cdot \mathbf{r}-i \omega_{\mathbf{k}} t\right)}\right)$
Magnetic field: $\left\langle c_{\alpha}\right| \mathbf{B}(\mathbf{r}, t)\left|c_{\alpha}\right\rangle=i \sqrt{\frac{\hbar}{2 V \epsilon_{0} \omega_{\mathbf{k}}}} \mathbf{k} \times \boldsymbol{\varepsilon}_{\mathbf{k} \sigma}\left(\alpha_{\mathbf{k} \sigma} e^{i \mathbf{k} \cdot-i \omega_{\mathbf{k}} t}-\alpha_{\mathbf{k} \sigma}^{*} e^{-\left(\mathbf{i} \mathbf{k} \mathbf{r}-i \omega_{\mathbf{k}} t\right)}\right)$
Note that α is a complex number which can be written in terms of a real amplitude and phase: E_{0} and ψ :
$\left\langle c_{\alpha}\right| \mathbf{E}(\mathbf{r}, t)\left|c_{\alpha}\right\rangle=-2 \sqrt{\frac{\hbar \omega_{\mathbf{k}}}{2 V \epsilon_{0}}} \boldsymbol{\varepsilon}_{\mathbf{k} \sigma} E_{0} \sin \left(\mathbf{k} \cdot \mathbf{r}-\omega_{\mathbf{k}} t+\psi\right)$
$\left\langle c_{\alpha}\right| \mathbf{B}(\mathbf{r}, t)\left|c_{\alpha}\right\rangle=-2 \sqrt{\frac{\hbar}{2 V \epsilon_{0} \omega_{\mathbf{k}}}} \mathbf{k} \times \boldsymbol{\varepsilon}_{\mathbf{k} \sigma} E_{0} \sin \left(\mathbf{k} \cdot \mathbf{r}-\omega_{\mathbf{k}} t+\psi\right)$

Single mode coherent state continued
It can also be shown that

$$
\left\langle c_{\alpha}\right||\mathbf{E}(\mathbf{r}, t)|^{2}\left|c_{\alpha}\right\rangle=\frac{\hbar \omega_{\mathbf{k}}}{2 V \epsilon_{0}}\left(4 E_{0}^{2} \sin ^{2}\left(\mathbf{k} \cdot \mathbf{r}-\omega_{\mathbf{k}} t+\psi\right)+1\right)
$$

Therefore

$$
\left.\left\langle c_{\alpha} \|\left.\mathbf{E}(\mathbf{r}, t)\right|^{2} \mid c_{\alpha}\right\rangle-\left|\left\langle c_{\alpha}\right| \mathbf{E}(\mathbf{r}, t)\right| c_{\alpha}\right\rangle\left.\right|^{2}=\frac{\hbar \omega_{\mathbf{k}}}{2 V \epsilon_{0}}
$$

This means that variance of the E field for the coherent state is independent of the amplitude E_{0}. Therefore, for large E_{0} the variance is small in comparison.

Visualization of coherent state

 electric fields for various amplitudesSource: Rodney Loudon, "The Quantum Theory of Light"

Fig. 4.3. Pictorial representation of the electric-field variation in a cavity mode excited to state $|\alpha\rangle$. Three different values of the mean photon number $|\alpha|^{2}$ are shown, the vertical scales being different for the three cases. The uncertainties in field values are indicated by the vertical widths $2 \Delta E$ of the sine waves. These widths can also be regarded as combinations of the amplitude uncertainty associated with Δn and the phase uncertainty associated with $\Delta \cos \phi$.

Single mode coherent state continued

Now consider the expectation values of the number operator and its square:
$\mathbf{N}_{\mathbf{k} \sigma} \equiv a_{\mathbf{k} \sigma}^{\dagger} a_{\mathbf{k} \sigma}$
$\left\langle c_{\alpha}\right| \mathbf{N}_{\mathbf{k} \sigma}\left|c_{\alpha}\right\rangle=|\alpha|^{2} \quad\left\langle c_{\alpha}\right| \mathbf{N}_{\mathbf{k} \sigma} \mathbf{N}_{\mathbf{k} \sigma}\left|c_{\alpha}\right\rangle=|\alpha|^{4}+|\alpha|^{2}$
Square of the variance: $\left.\quad\left\langle c_{\alpha}\right| \mathbf{N}_{\mathbf{k} \sigma} \mathbf{N}_{\mathbf{k} \sigma}\left|c_{\alpha}\right\rangle-\left|\left\langle c_{\alpha}\right| \mathbf{N}_{\mathbf{k} \sigma}\right| c_{\alpha}\right\rangle\left.\right|^{2}=|\alpha|^{2}$
Fractional uncertainty in the number of photons for the coherent state:
$\frac{\sqrt{\left.\left\langle c_{\alpha}\right| \mathbf{N}_{\mathbf{k} \sigma} \mathbf{N}_{\mathbf{k} \sigma}\left|c_{\alpha}\right\rangle-\left|\left\langle c_{\alpha}\right| \mathbf{N}_{\mathbf{k} \sigma}\right| c_{\alpha}\right\rangle\left.\right|^{2}}}{\left\langle c_{\alpha}\right| \mathbf{N}_{\mathbf{k} \sigma}\left|c_{\alpha}\right\rangle}=\frac{1}{|\alpha|}$

Interpretation of a single mode coherent state

$$
\left|c_{\alpha}\right\rangle \equiv \sum_{n=0}^{\infty} \frac{\alpha^{n} e^{-|\alpha|^{2} / 2}}{\sqrt{n!}}|n\rangle \quad \text { based on a single mode } n \rightarrow n_{\mathbf{k} \sigma}
$$

The probability of finding n photons in this state is given by:
$\left|\left\langle n \mid c_{\alpha}\right\rangle\right|^{2}=\frac{|\alpha|^{2 n} e^{-|\alpha|^{2}}}{n!} \quad$ This is the form of a Poisson distribution for a mean value of $|\alpha|^{2}$.

Modern Physics

Coherence Properties of Optical Fields*

L. MANDEL, E. WOLF

Department of Physics and Astronomy, University of Rochester, Rochester, New York
This article presents a review of coherence properties of electromagnetic fields and their measurements, with special emphasis on the optical region of the spectrum. Analyses based on both the classical and quantum theories are described. After a brief historical introduction, the elementary concepts which are frequently employed in the discussion of interference phenomena are summarized. The measure of second-order coherence is then introduced in connection with the analysis of a simple interference experiment and some of the more important second-order coherence effects are studied. Their uses in stellar interferometry and interference spectroscopy are described. Analysis of partial polarization from the standpoint of correlation theory is also outlined. The general statistical description of the field is discussed in some detail. The recently discovered universal "diagonal" representation of the density operator for free fields is also considered and it is shown how, with the help of the associated generalized phase-space distribution function, the quantummechanical correlation functions may be expressed in the same form as the classical ones. The sections which follow dealwith the statistical properties of thermal and nonthermal light, and with the temporal and spatial coherence of blackbody radiation. Later sections, dealing with fourth- and higher-order coherence effects include a discussion of the photoelectric detection process. Among the fourth-order effects described in detail are bunching phenomena, the Hanbury Brown-Twiss effect and its application to astronomy. The article concludes with a discussion of various transient superposition effects, such as light beats and interference fringes produced by independent light beams.

