PHY 712 Electrodynamics
10-10:50 AM MWF Olin 103

Notes for Lecture 36:
Some quantum effects in electrodynamics

-- General quantum states of EM fields
and related correlations functions

a. Review of eigenstates of EM Hamiltonian and of
Glauber’s coherent states

b. Comments on experimental situation

c. Squeezed states
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33 Wed: 04/10/2024 Chap. 13& 15 |Otherradiation - Cherenkov & bremsstrahlung %27 04/22/2024
34 Fri: 0411212024 Special topic: E & M aspects of superconductivity

-~ Mon: 04/15/2024 Presentations |

 Wed: 04/17/2024 Presentations ||

- Fri: 0411912024 Presentations [l

35 Mon: 04/22/2024 Special topic: Quantum Effectsin E& M

36 Wed: 0412412024 Special topic: Quantum Effectsin E & M

37 Fri- 0412612024 Special topic: Quantum Effectsin E& M

38 Mon: 04/29/2024 Review

39 Wed: 05/01/2024 Review

Final exam will be a take-home exam with similar form to
mid-term due May 1077
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Review of what we learned from Lecture 35

For a single mode plane wave with wave vector k, frequency
®, and polarization c:

EM Field Hamiltonian acting on eigenstate |nk0> ;

where k denotes wavevector and o denotes polarization direction --
fixed _ T _
Hﬁeld nk0> T Z (ha)k'ak'a'ak'a')| nk0'> o hmknka | nk0'>
k'c'
Here n _ =0,1,2,3,4.......

aka nk0> = \/E nka _1>
alta nk0> = \/nka +1|nka +1>

Commutation relations:

r]= _ Pt ]
|:ak0'9ak'o":|_5kk'50'o" [akaﬂak'a'}_o |:ak0'9ak'o":| =0




In terms of the same operators and with polarization unit vectors g, _ ——

Vector potential:

ko C()k
Electric field:
_ OA _ 3 ha)k ik-r—iewt t  —(ik-r—iogt)
E = T = E(r,t) = ZZ We, £, (akge —a,_e )
Magnetic field:

B=VxA = B — ZZ\/zy kxg, (akaeik-r—ia)kt _ al’iae—(ik-r—ia)kt))
€ C()



While the photon eigenstates |nk,0.> form a complete basis for describing

quantum electromagnetic fields, they have some troublesome properties
such as found in evaluating the field expectation values --

Vector potential:

< | A |nk o' > Z 2V€ <nk'0" | (akaeik.r_iwkt + aliae_(ik.r_iwkt) )| nk'o"> - O
0 k

Electric field:

(o ()| ) =i
ko

Magnetic field:

<nk N |B | n. . > _ ZZ T k X, <nk'0'|(akaeik-r—i0)kt _ alige—(ik-r—iwkt))|nk'0'> —0
0®)

o

k ikr—iopt 1 _—(ikr-iog) .
. <nk,a,|(akae a,_e |nk,0,>—0




A convenient superposition thanks to R. Glauber, PR 131, 2766 (1963)

n — a /2
‘ca> Z ‘n> based on a single mode n — n, _
n=0
. . ha)k ik-r—iot * —(ik-r—ia)kt)
Electric field: <ca |E(r,t) c,) =i €. (akae —a, e )
€

0

, h — b —(ilori
Ca> — k Xaka (ako_ezkr iyt _akae (ik-r za)kt))
2V e,

Let o= AeY where both A and W are unitless real values.

(c,|E(r,1)|c,)=-2 /;ZOE Asin(k-r—-ot+y)

(c,|B(r.1)|c,) = _2\/2VZCOkk xg Asin(k-r—ot+y)

Magnetic field: <ca |B(r,t)




Single mode coherent state continued

It can also be shown that

(e, ||E(r,0)[ | c,) = ;i) (4/\28111 (k.r—a)kt+w)+1)
Therefore
(e l[E0 e, - [(e. [E(r0)e, ) = >

2Ve,

This means that variance of the E field for the coherent
state is independent of the amplitude A. Therefore, for
large A the variance is small in comparison.



o0 n —|0(|2/2

Gauber's coherent state: |ca> = Z a

2™

Here a represents a complex amplitude

It 1s possible to prove the following 1denties for the coherent states:
1. <ca |ca> =1

2. <ca |a|ca> =

3. <ca |aT |ca> =a

2 2
L
4. <ca cﬂ> =e




Visualization of
coherent state
electric fields
for various
amplitudes

Source:

R. Loudon,
“The Quantum
Theory of
Light”

The quantized radiation field 151

1
z

Electric field in units of (Awi2e, V')

ST
AV VAN

FiG. 4.3. Pictorial representation of the electric-field variation in a cavity mode excited to state
). Three different values of the mean photon number |«|* are shown, the vertical scales being
diffierent for the three cases. The uncertainties in field values are indicated by the vertical widths
2AE of the sine waves. These widths can also be regarded as combinations of the amplitude
uncertainty associated with An and the phase uncertainty associated with A cos ¢,




Additional properties of single mode coherent state --

Consider the expectation values of the number operator and its square:

Nka = al.iaaka

(| Nig e, )= o] (| NigNig [c)= || +[e]

(o[ Nug e, =lof

Fractional uncertainty in the number of photons for the coherent state:

Y NN e e N le ) Jlaf +laf <o 1
(¢a [N |€2 ) of o] A

when a = Ae”

Square of the variance: <ca |NkGNkG |ca > —




Interpretation of a single mode coherent state
o0 n —|0£|2/2
o
c )= n) based on a single mode n — n
‘ 0(> Z /n! ‘ > g ko

n=0

The probability of finding n photons in this state 1s given by:

(n]e, ) =12

2 af

' This 1s the form of a Poisson distribution
n!

2
for a mean value of ‘a‘ .

For a = Ae", the probability of finding the eigenstate with
eigenstate ‘n} 1s given by

2 AP

‘Ae

P =‘<n‘ca>‘2 =

n

n!



Poisson distributions
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Focusing on a particular pure EM mode with wavenumber k and frequency @, :

For a coherent state ¢, with a = Ae'", the probability

of finding the eigenstate with photon number ‘n} 1s given by

2n _|A]?
2 ‘A e||

Coherent __
})n T Kn ‘ Ca >

n!

For "a black body system" at temperature 7', the probability

of finding the eigenstate with photon number ‘n> 1s given by

PThermal (T) — e—nha)/kBT (1 . e—ha)/kBT)

n



Thermal distributions:

PThermal (T) _ e—nha)/kBT (1 _ e—ha)/kBT )

ho
—nI’ - .
=e l-e with I = ——
0.9 ( ) k,T
0.8 =3
0.7—_
_0.6-

& 0.5 =2
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Other thoughts about the coherent photon state from
Professor Kandada and from the Mandel and Wolf textbook —
1. It turns out that the coherent state basis can be quite
well realized using laser technology
2. There are problematic issues with the coherent state
basis stemming from the fact that it is mathematically
“over complete”.
3. Despite these mathematical difficulties, because of #1
and related experimental processes, the coherent state
formalism remains useful.



A derivation of the coherent state from Mandel and Wolf:

Here we will focus on a single photon mode k, o dropping those indicesA

in describing the creation @', anhilation a, and number a'a operators.

While a” and a are not hermition operators, we can attempt to find their

eigenvalues A and functions |/1> , expecting the eigenvalues to be complex.
alAy= A|4) and (A|a'= (2|2

Assume that the eigenfunctions can be expanded in the number operator basis:

|/1> = ch |n> where the coefficients ¢, can be determined.

A
l’l> = Cn+1 = +1 Cn
n

a|y= 2|2y = Zn:cn\/;|n—l>=

After several steps the normalized coherent eigenfunction is given by

4= Z | )



The result |Z> — W Z | > 1s equivalent to the previous result

from Glauber.  Writing 4= Ae"” we found that the expection value of the

electric and magnetic fields take the form

(A|E(r,1)|A)=-2 /;i)eos JAsin(k-r—o+y)
(A|B(r,1)|A)=-2 /2Vza)kkxskGAsin(k-r—a)kt+w)

Where A and w determine the amplitudes and phases of the fields.

It turns out that the amplitude and phase of the fields have
complicated non-commuting relationships resulting in a
Heisenberg uncertainty relationship. Unfortunately, the direct
representation of the phase operator is complicated, and it is
convenient to express the phenomenon through related

operators.



Further analysis and modifications of the “coherent state”

Recall that we can write the EM Hamiltonian for a single mode @, = @ ——
1

H = —ha)(aTa + aaT) where [a,a*] =1
2

Define convenient unitless Hermitian operators

N Vel

Qz(a“ra) and Pzi( T—a) :[Q,ﬁ]z%
ho

H:T(QA2+IA’2)

From the Heisenberg uncertainty ideas applied to the standard deviations:

AQAP > 1



In terms of the eigenstates of the EM Hamiltonian:

H|n)= hw(n+1j\ )

.- 1o

= AQ AP =2n+1>1

=\2n+1=AP

)

(n]0

In terms of coherent states: --



For the coherent state:

|4) = "X'Z

AD, = \/<

— AQZAI-A’ =

2 A

O =1=AP,

T

g

In this sense, the coherent state represents the minimum
uncertainty process.



Allowed variance products
3-

Range of values
allowed by quantum
mechanics

AP

o

AQ
Coherent state
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_ “Squeezed”
Allowed variar

state with
3 larger AP but
smaller 4Q.
2_

Range of values
allowed by quantu
mechanics

AP

“Squeezed”
state with
smaller AP but

1 2 3 larger4a.
AQ

Coherent state
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Altered operators --
Qﬁ = (a e’ +ae ﬂ) and Isﬁ = i(alfe"ﬂ —ae_’ﬁ)

Note that [Qﬂ, f)ﬂ] =21 which implies AQAﬂA}A’ﬂ > 1
Also note that Qﬂzo =0 and }A’ﬂzo

It also can be shown that

Qﬂ =cos f3 QO +s1n,BP

Pﬁ = —sin ,BQO + Cos ,BP

This means that by changing £, 1t may be possible to make
AQAﬂ <1 and A]A’ﬁ >1 or AQAﬁ >1 and Af’ﬂ <1 which leads to

P

the notion of "squeezing".



A 2
Estimation of <(AQﬁ) >

Suppose that the expectation value can be evaluated with the help of
a density matrix expressed in terms of coherent states |i> and positive

weight factor ¢(1)
p =[] A){(2]d(RA)d (1) =[#(D)|A)(A]d*2

(0,)=Tr(p0, )= [#(W)(4|0,] 2)d*2 = [ p(A)(A]a"e” +ae™” | A)d’
Letting A = Ae" <Qﬂ> =2[p(A)Acos(y - B)d*A

<(Q/, )2> = [¢(A)][4A* cos’ (- B)+1]d’4

((20,)')=((0,) )-(0,)



Next time, following Mandel and Wolf,

we 1ntroduce the squeeze operator

~ 1 * A A ;
S(z) =exp (5(2 a’ —za' )j where z = re”

With this transformation, we see that

((80una) ) =€ ((20) )
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