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PHY 712 Electrodynamics
11-11:50 AM in Olin 103

Class notes for Lecture 4:

Reading: Chapter 1 in JDJ

1.

Review of electrostatics with one-
dimensional examples

Poisson and Laplace Equations

Green’s Theorem and its use in
electrostatics
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Presenter Notes
Presentation Notes
In this lecture, we will return to the materials presented in our textbook.     Some of the ideas were presented in PHY 711.


THURSDAY

4 PM Qlin 101
JaNUARY 25TH, 2024

PHysics CoLLoQuiuM

Exploring emergent quantum phases
in two-dimensional flat band systems

Quantum phases such as superconductivity and
ferromagnetism are among the most important topics in
condensed matter physics research. Recently, a family of
two-dimensional flat band systems, including magic-angle
twisted graphene, uncovered an abundance of symmetry
breaking and novel quantum phases.

In this talk, | will introduce the recent advances in these
materials and give two examples of how we engineered and
revealed new quantum phases of matter in twisted graphene.
These include an orbital ferromagnetic state induced by
spin-orbit coupling and a zero-field superconducting diode
effect. In the last part of the talk, | will present our discovery of
a new type of Coulomb-driven rotational symmetry breaking
state in the moiré-less bilayer graphene. These examples
establish the two-dimensional flat band systems as a versatile
platform with multiple tuning knobs, where new physics

emerges from the interplay between various quantum phases. . . . .
® P e Jiang-Xiazi Lin, Ph.D.
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PHY 712 Electrodynamics

\MWF 10-10:50 AM \Olin 103 \Webpage: http://www.wfu.edu/~natalie/s24phy712/ ‘

Instructor: Natalie Holzwarth Office:300 OPL

e-mail:natalie@wfu.edu ‘

Course schedule for Spring 2024

(Preliminary schedule -- subject to frequent adjustment.)

Lecture date JDJ Reading Topic HW| Due date
1 |Wed: 01/17/2024 |Chap. 1 & Appen. |Introduction, units and Poisson equation #1 101/19/2024
2 |Fri: 01/19/2024  Chap. 1 Electrostatic energy calculations #2 01/29/2024
3 [Mon: 01/22/2024 Chap. 1 Electrostatic energy calculations #3 101/29/2024
4 |\Wed: 01/24/2024 |Chap. 1& 2 Electrostatic potentials and fields #4 01/29/2024
9 |Fri: 01/26/2024  |Chap. 1-3 Poisson's equation in 2 and 3 dimensions #9 101/29/2024

1/124/2024

PHY 712 Spring 2024 -- Lecture 4




PHY 712 -- Assignment #4

Assigned: 1/24/2024 Due: 1/29/2024
Continue reading Chap. 1in Jackson.

1. Using the Ewald summation methods developed in class, find the electrostatic interaction energy
of a NaCl lattice having a cubic lattice constant a. Check that your result does not depend of the
Ewald parameter n. You are welcome to copy (and modify) the maple file used in class. A
FORTRAN code is also available upon request.
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PHY 712 — Problem Set #5
Assigned: 01/26/2024  Due: 01/29/2024
Continue reading Chaper 1 & 2 in Jackson

1. Consider a one-dimensional charge distribution of the form:

0 for =< —a
p(x) =< posin(rx/a) for —a<x<a
0 for x> a,

where pg and a are constants.

(a) Solve the Poisson equation for the electrostatic potential ®(z) with the
boundary conditions ®(—a) = 0 and %%(a) = 0.

(b) Find the corresponding electrostatic field F(x).

(c) Plot ®(x) and E(z).

(d) Discuss your results in terms of possible electronic devices.
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Presenter Notes
Presentation Notes
Updated schedule.   Note new homework assignment which follows from today’s lecture.


Comment on HW #2

Recall that we "proved" the following 1dentity:

V? (lj = —475°(r) =471 5(x)8(1)5(2)

r
‘ Three dimensional O function

Note that Jackson often writes x to denote a vector position,

while we use r for this purpose.

In Cartesian coordinates: r = xX+ )y + zz
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Your questions —

From Joe: | was working through Chapter 1 of Jackson and got
stuck at the beginning of 1.6 (pg32) where he mentions the
"dipole-layer distribution of strength D(x)". | don't think I've seen
this quantity before, and the way he defines it seems a bit
circular, so I'm guessing he assumes we know what it is. It'd be
helpful if you could talk about what it is and how he uses it in
that section.

Comment: From the previous slide, it is apparent that the
transition from point charges q to continuous distributions
p(r) is non-trivial and singularities can arise. We will discuss
dipolar fields in Chap. 4 where these ideas may be presented
more clearly. (I personally find the notion of D(r) rather
confusing.)
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Poisson and Laplace Equations
We are concerned with finding solutions to the Poisson
equation: p(r)
2
VD,(r)=-
&y

and the Laplace equation:
2
VO, (r)=0
The Laplace equation is the *homogeneous” version of the
Poisson equation. The Green's theorem allows us to
determine the electrostatic potential from volume and surface

integrals: !
D(r) = d’r' p(r"G(r,r") +
(r) WOJV p(r)G(r,r')

4L 4 [G(r, V'S () — dr)WV'G(r,r)]-#".
T S



Presenter Notes
Presentation Notes
Here we start our systematic derivations of solution of the electrostatic equation for a potential with a given charge source and the associated homogeneous equation.


Poisson equation -- continued

Note that we have previously shown
that the differential and integral forms

of Coulomb's law 1s given by:

qu)(r):_p;l‘) and CD(r):4;g j d’r ,p(r)

Generalization of analysis for non-trivial boundary conditions:

j d’r' p(r"G(r,r") +

D(r) =
(r) dre, 7

[ (G o) - OV G )]
T


Presenter Notes
Presentation Notes
What we discussed last week is still true for isolated charges.   Now we consider the case where the charges are within a volume V whose surface may have some imposed restrictions (boundary conditions).


General comments on Green’s theorem

1 ! ! !
d’r p(r)G(r,r )+
r | &r p(r)Gr,r)
LI ER G(r,r Vo) -0 )VG(r,r)|-F.
A7 7S

D(r) =

This general form can be used in 1, 2, or 3 dimensions. In
general, the Green's function must be constructed to satisfy
the appropriate (Dirichlet or Neumann) boundary conditions.
Alternatively, or in addition, boundary conditions can be
adjusted using the fact that for any solution to the Poisson
equation, @ ,(r) other solutions may be generated by use
of solutions of the Laplace equation

O(r)=d,(r)+ CD, (r),for any constant C.


Presenter Notes
Presentation Notes
Comment about how the boundary conditions may or may not work.   Note that it is important to not over specify the boundary conditions..


Physics Today 56(12), 41 (2003); https://doi.org/10.1063/1.1650227

The Green of Green Functions

In 1828, an English miller from Nottingham published a
mathematical essay that generated little response. George
Green’s analysis, however, has since found applications in
areas ranging from classical electrostatics to modern

quantum field theory.

Lawrie Challis and Fred Sheard

ottingham, an attractive and thriving town in the Eng-

lish Midlands, is famous for its association with Robin
Hood, whose statue stands in the shadow of the castle wall.
The Sheriff of Nottingham still has a special role in the
city government although happily no longer strikes terror
into the hearts of the good citizens.

Recently a new attraction, a windmill, has appeared
on the Nottingham skyline (see figure 1). The sails turn on
windy days and the adjoining mill shop sells packets of
stone ground flour but also, more surprisingly, tracts on
mathematical physics. The connection between the flour
and the physics is part of the mill’s unique character and
is explained by a plaque once attached to the side of the
mill tower that said,

HERE LIVED AND LABOURED
GEORGE GREEN
MATHEMATICIAN
B.1793-D.1841.
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his family built a house next to the
mill, Green spent most of his days and
many of his nights working and indeed
living in the mill. When he was 31,
Jane Smith bore him a daughter. They
had seven children in all but never
married. It was said that Green’s fa-
ther felt that Jane was not a suitable
wife for the son of a prosperous trades-
man and landowner and threatened to
disinherit him.

Little is known about Green’s life from 1802 until
1823. In particular, it is not known whether he received
any help in his mathematical development or if he was en-
tirely self-taught. He may have received help from John
Toplis, a fellow of Queens’ College in the University of
Cambridge and headmaster of the Nottingham Grammar
School. Toplis’s translation of Pierre-Simon Laplace’s book
Mécanique Céleste, published in Nottingham in 1814,
seems a likely source of Green’s interest in potential the-
ory. The work was unusual in Britain at that time inas-
much as Toplis used Gottfried Leibniz’s more convenient
notation for differentials rather than Isaac Newton’s. Be-
cause Green adapted the Leibniz notation, it seems plau-
sible that Green was influenced by Toplis, but there is no
evidence that Toplis acted in any way as his tutor.

In 1823, Green joined the Nottingham Subscription
Library, the center of intellectual activity in the town. The
library was situated in Bromley House (see figure 2). Li-

hrarv mamhercdhin nravidad Grean with enconracemaent
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https://doi.org/10.1063/1.1650227

“Derivation” of Green’s Theorem
p(r)
gO

Green's relation: V'°G(r,r") = 470> (r —r)).

Poisson equation: V’®(r) =—

Divergence theorm: jd3r V-A= C_’Sdzr A-r
V S

Let A= f(r)Vg(r)-g(r)Vf(r)
[ (7 (e)5e(e)-(6) 97 0) i (1(0) (o) ()57 ()

)

S

l &r (f(r)Ve(r)-g(r)V'/(r))
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Presenter Notes
Presentation Notes
Here we derive the equations stated on the previous slides.


“Derivation” of Green’s Theorem
p(r)

€9

Poisson equation: V’®(r)=—

Green's relation: V'°G(r,r") = 470> (r —r)).

far (1 ~2())V1 () =fd’r (/(r)Ve(r)-2(r)V/(r)

f(r)<«> o(r) g(r)=G(r,r')

: Iyd3r'p(r')G(r,r')+

D(r) =
(x) 41e,

1

— dzr'[G(r,r')V'CD(r " —D(r ')V'G(r,r')]-f"
4 v


Presenter Notes
Presentation Notes
Derivation continued.


Example of charge density and potential varying in one dimension

Consider the following one dimensional charge distribution:

r

0 forr < —a

(2) = < —po for—a<x<0
px) =
+po for0<z<a

0 forx > a

.

We want to find the electrostatic potential such that

Po(x) _ p(x)

dx? £0n ’

dod
with the boundary condition ®(—o0) = 0. and d—(oo) =0
x
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Presenter Notes
Presentation Notes
Simple one-dimensional example of a particular charge distribution.


Electrostatic field solution

The solution to the Poisson equation is given by:

r

0 forx < —a
Lo . _
() = d-(z +a) 2 for —a < x <0
—(z—a)* + 2% for0<z<a
Eogq forz > a
“ =0

The electrostatic field is given by:

4

0 forr < —a

—B(r4+a) for—a<xz<0
E(I)=< E{}( )

P(r—a) for0<z<a

0 forx > a
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Laplace
Poisson

" Poisson

Laplace

15


Presenter Notes
Presentation Notes
Resultant potential and electric field.


Electric charge density

Electric potential

I

Electric field
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Presenter Notes
Presentation Notes
Graph of results for this example


Comment about the example and solution

This particular example is one that is used to model
semiconductor junctions where the charge density is
controlled by introducing charged impurities near
the junction.

The solution of the Poisson equation for this case can
be determined by piecewise solution within each of the
four regions. Alternatively, from Green's theorem in
one-dimension, one can use the Green's function

D(x) = : j_oo G(x,x")p(x")dx' where G(x,x")=4rx_
d7e, *

x_ should be take as the smaller of x and x".


Presenter Notes
Presentation Notes
Comment and generalization.


Notes on the one-dimensional Green’s function

The Green's function for the one-dimensional

Poisson equation can be defined as a solution to

2
the equation: V’G(x,x") = %G(x,x') =—4ro(x—x")
X

Here the factor of 4 1s not really necessary, but

ensures consistency with your text's treatment of

the 3-dimensional case. The meaning of this expression
is that x' 1s held fixed while taking the derivative with

respect to x.


Presenter Notes
Presentation Notes
Some details.


Construction of a Green’s function in one dimension

Consider two independent solutions to the homogeneous equation
V24,(x) = 0
wherei=1or 2. Let
. 4r
G(x9 X ) — W¢1 (x< )¢2 (x>)'

This notation means that x_ should be taken as the

smaller of x and x' and x_ should be taken as the larger.

W 1s defined as the "Wronskian':

W — d¢1 (.X) ¢2 (.X) ¢1 (.X) d¢2 ()C)



Presenter Notes
Presentation Notes
Details continued for one dimensional Poisson equation.


Summary

V:G(x,x") =416 (x —x")

G(x, x") = 4—”¢1 () ()

W =S g (x) - g (0 2
lim[a’G(x,x W dG(x,x )
€0 dx e dx



Presenter Notes
Presentation Notes
Summary for one dimensional Poisson equation.


One dimensional Green'’s function in practice

: J: G(x,x")po(x")dx'

47e,

1

- { [" Glx.x)p(x)dx'+ j“’ G(x,x") p(x")dx }

D(x) =

For the one-dimensional Poisson equation, we can construct
the Green's function by choosing ¢ (x)=x and ¢,(x)=1W =1:
D(x) = i{ |" xp(xdx'+ x| p(x')dx'}.
gy (0 X
G(x,x")=4rx_
This expression gives the same result as previously

obtained for the example p(x) and more generally is
appropriate for any neutral charge distribution.


Presenter Notes
Presentation Notes
Some general comments.


Question -- How do we know which one of x and X'
Is the x_ term?

G(x,x")=4rx_

D(x) = i{r x'p(x")dx'+ xrop(x')dx'}.
Ey 70 X
X'<x X'>x



Orthogonal function expansions and Green’s functions

Suppose we have a “complete” set of orthogonal functions {u,(z)} defined in the

interval r; < x < x5 such that

L (@)t (2) d = O

1
We can show that the completeness of this functions implies that

>

Z Uy (2) Uy (2) = 6(x — 2).

n=1

This relation allows us to use these functions to represent a Green’s function for our

system. For the 1-dimensional Poisson equation, the Green’s function satisfies

82 ! !
ﬁG(m.}m ) = —4nd(x — x').
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Presenter Notes
Presentation Notes
Now we will discuss another approach to analyzing Green’s functions based on expansion in terms of a complete set of orthogonal functions.


Orthogonal function expansions —continued

Therefore, if

where {u,(z)} also satisfy the appropriate boundary conditions, then we can write |

Green’s functions as

T

G(z,z') =4n Z un(xlﬂ”(f).
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Presenter Notes
Presentation Notes
Some details for orthogonal function expansion method.


Example

For example, consider the example discussed earlier in the interval —a < x < a with

r

0 forx < —a

(z) —pg for—a<xr <0 04)
plz) = <
+py for0<z<a

0 forx > a

.

We want to solve the Poisson equation with boundary condition d®(—a)/dz = 0 and

d®(a)/dxz = 0. For this purpose, we may choose

() = \E sin ([2” ;1]m) | (25)

The Green’s function for this case as:

B I

2
a “— ( [2n+l]:rr)

2a
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Presenter Notes
Presentation Notes
Application to our example.


Example — continued

q Constant shift to
0 ~ SiIl [2n+1)mx frm 1 allow ®(0) =0.
T3

162 2.-1

B(z) = poa

€0 ([211, -+ l]ﬂ')
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Presenter Notes
Presentation Notes
Graph of potential (green) and expansion for a few terms.    Note that it was necessary to shift the potential by a constant.
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