PHY 712 Electrodynamics
10-10:50 AM MWF in Olin 103
Plan for Lecture 7:
Continue reading Chapters 2 & 3

1. Methods of images -- planes,
spheres

2. Solution of Poisson equation in
for other geometries -- cylindrical
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THURSDAY

4 PM in Olin 101
FEBRUARY 1ST, 2024

PHysics CoLLoQuIuM

Principles for Modeling
Physically-Relevant Quantum Systems
of Many Particles with Computers

Systems of many strongly-interacting particles are key to
explaining many phenomena: from the magnets in our
everyday experience to more exotic phenomena such as
superconductivity, quantum hall physics, and emergent
gauge symmetries. However, the necessary quantum
mechanical treatments of these systems involve Hilbert
spaces that grow exponentially with the system volume,
putting naive calculations out of reach. In this talk, | will
motivate three useful principles for building models that are
both relevant to nature and amenable to computer
simulation in polynomial time: locality, symmetry, and small

ultralocal Hilbert spaces. With classical computers we will Emilie Huffman
see how locality as a guiding principle allows us to study ’
antiferromagnetism and superconductivity with relativity, PhD

and how symmetry as a guiding principle allows us to detect
conformal field theories using the quantum hall effect.
Finally for quantum computers we make use of small
ultralocal Hilbert spaces as a guiding principle, and then
design and study resource-efficient qubit-friendly models
that realize continuous gauge symmetries found in
fundamental physics.
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Course schedule for Spring 2024

(Preliminary schedule - subject to frequent adjustment.)

Lecture date JDJ Reading Topic HW| Due date
1 Wed: 01/17/2024 |Chap. 1 & Appen. Introduction, units and Poisson equation #1 101/19/2024
2 |Fri: 01/19/2024 |Chap. 1 Electrostatic energy calculations #2 101/29/2024
3 [Mon: 01/22/2024 Chap. 1 23 Electrostatic energy calculations #3 (01/29/2024
4 Wed: 01/24/2024 |Chap. 1 & 2 Electrostatic potentials and fields #4 101/29/2024
o |Fri: 01/26/2024 |Chap. 1-3 Poisson's equation in 2 and 3 dimensions #5 101/29/2024
6 (Mon: 01/29/2024 |Chap.1-3 Brief introduction to numerical methods #6 (02/05/2024
7 Wed: 01/31/2024 |Chap. 2 & 3 Image charge constructions #7 102/05/2024

1/31/2024
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PHY 712 -- Assignment #7

Assigned: 1/31/2024 Due: 2/05/2024
Continue reading Chap. 2 in Jackson.

1. Eq. 2.5 on page 59 of Jackson was derived as the surface change density on a sphere of radius a due
to a charge q placed at a radius y > a outside the sphere. Determine the total surface charge on the
sphere's outer surface.

2. Now consider the same system except assume y < a representing the charge q being placed inside the
sphere. What is the surface charge density and the total charge on the inner sphere surface in this
case?
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Survey of mathematical techniques for analyzing
electrostatics — the Poisson equation

V2D(r) = p(r)
&9

. Direct solution of differential equation

. Solution by means of an integral equatioriy] D¢Pends on

, _ _ geometry;
Green’s function techniques artesian, spherical,
Orthogonal function expansions and cylindrical

cases considered in
textbook

nalll

Numerical methods (finite differences an
finite element methods)
. Method of images € today
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Method of images
Clever trick for specialized geometries:
> Flat plane (surface)
> Sphere

Planar case:

Consider a grounded
metal sheet, a distance d
from a point charge q.

+
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A grounded metal sheet, a distance d from a point charge q.

Mobile charges from the
“ground” respond to the
force from the charge q.

9
q

y

— VPO(x=0,y,z)=0
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Fiction Truth

Image charge Real charges
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A grounded metal sheet, a distance d from a point charge q.

V2D =—-L 5 (r - dk)
80

®(x=0,y,z)=0

Trick forx>0:

D(x>0,y,7)=— L 1 1 )

- Are, ‘r — d&‘ B ‘r + d&‘

Surface charge density :

dd|(0, y, 2d
0'()7,2):80E(0,)/92):—80 (dxy Z):_4q7z-((d2+y2+ 2)3/2)
4



A grounded metal sheet, a distance d from a point charge q.

Surface charge density:  o(y,z) = — c 2d =
A (dz +y° +22)3

Note: [ [ dydz a(y,z)_—ﬁzﬂj( )3 -

a(y.2)
d 9

x=0
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A grounded metal sheet, a distance d from a point charge q.

Surface charge density :

q 2d
o(y,z)=—
d 9 4ﬂ£(d2+y2+22)3/2j

Force between charge and sheet :

2 A
— F =
4re,(2d )

Image potential between charge and sheet at distance x :

2
V(x) — — 9 Note: this effect can be observed
472-50 (4)6) in photoemission experiments.



Image charge methods can be used in some other geometries --

A grounded metal sphere of radius a, in the presence of a
point charge q at a distance d from its center.
r

Trick forr>a:

1
CD(r > a) = 7 __ 1 -
4re, ‘r —d‘ %‘r —d 4
d Interpreted as
q a
— Image charge of ¢' = —qg

Located along d at fla%



A grounded metal sphere of radius a, in the presence of a
point charge q at a distance d from its center.
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A grounded metal sphere of radius a, in the presence of a
point charge q at a distance d from its center.

Surface charge density:

P
‘ﬂ G(l‘) €0 or|._, Ara’ d (14—2—2—2%?.&)3/2

q

— Force between ¢g and sphere
1 g°(a/d) _ q’ ad
An6 (d—a* Id) 47 (d°~a®)

F|=

2



Comment on HW problem #7

For #1, integrate the charge induced on the outer surface of the sphere

due to the point charge g at the point d > a.

ja(f')dS:_ 9 4 (1—22) gs—__ 4 a(l—i)Zﬂazj d cos @

Ara’ d (1+ a’ _23f._a)3/2 _47Z'a2 E d’ (1+Zi_230089)3/2

d2
For #2, the point charge ¢ is located at a point d < a and a similar analysis follows.
Integrate the charge induced on the inner surface of the sphere.
(Answer to #2 should be different from that of #1.)
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Use of image charge formalism to construct Green’s function

Example:
Suppose we have a Dirichlet boundary value problem
on a sphere of radius a :
qu):_il') cb(rza)zO
80
VG(r,r')= 475 (r - ')

— For rr'>a: G(l‘,l"):‘ 1 ,‘_ . 1
r-r| =~
a

r—“—2r"



Analysis of Poisson/Laplace equation in various regular
geometries

1. Rectangular geometries =» previous lectures

2. Cylindrical geometries = now

3. Spherical geometries =» later



Solution of the Poisson/Laplace equation in various
geometries -- cylindrical geometry with no z-dependence
(infinitely long wire, for example):

Aé Corresponding orthogonal functions from solution of
p Laplace equation: VD =0

1 0 oD 1 oD
Pt 2 > =0
pop \' Op p- 0p

D(p,0)= O(p,0+m2r)
—> General solution of the Laplace equation

in these coordinates:

D (p,p)=A, +Boln(p)+Z(Ampm +Bmp_’”)sin(mg0+am)

o0
m=1
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Solution of the Poisson/Laplace equation in various
geometries -- cylindrical geometry with no z-dependence
(infinitely long wire, for example):

Note that here p means radial coordinate

Green's function appropriate for this geometry with
p

boundary conditions at p =0 and p =0

1 ¢ 0 1 &
— | p—= G(p,p',d,8") =
(p@p(pﬁpj_l_ = (sz (PP 9,9")

_472.5(/0_10')5(¢_¢v)
o,
G(p,p',4.8") =~Inlp 2)+2i%[‘;j cos(m(¢—¢')
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Solution of the Poisson/Laplace equation in various
geometries -- cylindrical geometry with z-dependence

Corresponding orthogonal functions from solution of
N
P

Laplace equation: VO =0

=0

1 o ( acpj 1 &*d &
Z pop ' Op

O(p,0,z)= ©(p,p+m2r,z)
O(p,p,2)=R(p)0(0)Z(z)

+
p2 &(02 822
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Cylindrical geometry continued:

d*7Z

2

~k’Z=0 = Z(z) = sinh(kz), cosh(kz),e™"™

dz

1O w0=0  =0@)=c

m

¢ __]R S0 = (). (ko)



Cylindrical geometry example:

D(p,p,z=L)=V(p,p)
®(p,p,z) =0 on all other boundaries

O(p,¢,2) =Y A,.J,(k,,p)sinh(k,,z)sin(mé+a,,)
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Cylindrical geometry example:

D(p=a,p,2)=V(¢,z)
O(p,d,z) =0 on all other boundaries

O(p,p,z) = ZAmn m(nzpjsm(nzzjsin(m¢+amn)
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Comments on cylindrical Bessel functions

(dz +1 d +(i1—m—EDFnj(u):O

du’  u du u
F (u)=J (u),N (u),H (u)=J (u)xiN, (u)
F,(u)=1,u),K,(u)

-0.5-

_1_:

1/31/2024
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Comments on cylindrical Bessel functions

(cﬁ Jr1 d +(+1_m_2DF () =0

du’  u du u
F (u)=J (u),N (u),H (u)=J (u)xiN, (u)
F,(u)=1,u),K,(u)

.
: K,
i ~— ><<)£
0/ I
_ 1
-0.5- N, 7
o
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