next up previous
Next: About this document ... Up: No Title Previous: Introduction

Units - MKSA vs Gaussian

Coulomb's law has the form:
\begin{displaymath}
F = K_C \frac{q_1 q_2}{r^2}.
\end{displaymath} (1)
Ampere's law has the form:
\begin{displaymath}
F = K_A \frac{i_1 i_2}{r_{12}^2} \; d{\bf{s}_1} \times d{\bf{s}_2} \times {\bf{\hat{r}}_{12}},
\end{displaymath} (2)
where the current and charge are related by i1 = dq1/dt for all unit systems. The two constants KC and KA are related so that their ratio KC/KA has the units of (m/s)2 and it is experimentally known that in both the MKSA and CGS (Gaussian) unit systems, it the value KC/KA = c2, where c is the speed of light.

The choices for these constants in the MKSA and Gaussian units are given below:

  CGS (Gaussian) MKSA
     
KC 1 $\frac {1}{4 \pi \epsilon_0}$
     
KA $\frac{1}{c^2}$ $\frac {\mu_0}{4 \pi}$
     

Here, $\frac {\mu_0}{4 \pi} \equiv 10^{-7} N/A^2$ and $\frac {1}{4 \pi \epsilon_0} = c^2 \cdot 10^{-7} N/A^2 = 8.98755\times10^9 N \cdot m^2/C^2$.

Below is a table comparing MKSA and Gaussian unit systems. The fundamental units for each system are labeled ``fixed" and are used to define the derived units.

Variable 2c||MKSA 2c||Gaussian MKSA/Gaussian    
  Unit Relation Unit Relation  
           
length m fundamental cm fundamental 100
           
mass kg fundamental gm fundamental 1000
           
time s fundamental s fundamental 1
           
force N $kg \cdot m^2/s$ dyne $gm \cdot cm^2/s$ 105
           
current A fundamental statampere statcoulomb/s $\frac{1}{10 c}$
           
charge C $ A \cdot s$ statcoulomb $\sqrt{dyne \cdot cm^2}$ $\frac{1}{10 c}$
           

One advantage of the Gaussian system is that all of the field vectors: ${\bf{E,D,B,H,P,M}}$ have the same dimensions, and in vacuum, ${\bf{B=H}}$ and ${\bf{E=D}}$ and the dielectric and permittivity constants $\epsilon$ and $\mu$ are unitless.

CGS (Gaussian) MKSA
   
$\nabla \cdot {\bf{D}} = 4 \pi \rho$ $\nabla \cdot {\bf{D}} = \rho$
   
$\nabla \cdot {\bf{B}} = 0$ $\nabla \cdot {\bf{B}} = 0$
   
$\nabla \times {\bf{E}} = - \frac{1}{c} \frac{\partial{\bf{B}}}{\partial t}$ $\nabla \times {\bf{E}} = - \frac{\partial{\bf{B}}}{\partial t}$
   
$\nabla \times {\bf{H}} = \frac{4 \pi}{c} {\bf{J}} + \frac{1}{c} \frac{\partial{\bf{D}}}{\partial t}$ $\nabla \times {\bf{H}} = {\bf{J}} + \frac{\partial{\bf{D}}}{\partial t}$
   
${\bf{F}} = q ({\bf{E}} + \frac{{\bf{v}}}{c} \times {\bf{B}}$ ${\bf{F}} = q ({\bf{E}} + {\bf{v}} \times {\bf{B}}$
   
$u = \frac{1}{8 \pi} ({\bf{E}}\cdot{\bf{D}}+{\bf{B}}\cdot{\bf{H}})$ $u = \frac{1}{2} ({\bf{E}}\cdot{\bf{D}}+{\bf{B}}\cdot{\bf{H}})$
   
${\bf{S}} = \frac{c}{4 \pi} ({\bf{E}} \times {\bf{H}})$ ${\bf{S}} = ({\bf{E}} \times {\bf{H}})$
   


next up previous
Next: About this document ... Up: No Title Previous: Introduction
natalie holzwarth
1/14/1998