Coulomb's law has the form:
  | (1) | 
  | (2) | 
The choices for these constants in the SI and Gaussian units are given below:
| CGS (Gaussian) | SI | |
| 
 KC  | 1 | [1/( 4 pe0)] | 
| 
 KA  | [1/( c2)] | [(m0)/( 4 p)] | 
| 
 
  | 
Below is a table comparing SI and Gaussian unit systems. The fundamental units for each system are so labeled and are used to define the derived units.
| Variable | SI | Gaussian | SI/Gaussian | ||
| Unit | Relation | Unit | Relation | ||
| 
 length  | m | fundamental | cm | fundamental | 100 | 
| 
 mass  | kg | fundamental | gm | fundamental | 1000 | 
| 
 time  | s | fundamental | s | fundamental | 1 | 
| 
 force  | N | kg ·m2/s | dyne | gm ·cm2/s | 105 | 
| 
 current  | A | fundamental | statampere | statcoulomb/s | [1/ 10 c] | 
| 
 charge  | C | A ·s | statcoulomb | Ö{dyne ·cm2} | [1/ 10 c] | 
| 
 
  | |||||
| CGS (Gaussian) | SI | 
| 
 Ñ·D = 4 pr  | Ñ·D = r | 
| 
 Ñ·B = 0  | Ñ·B = 0 | 
| 
 Ñ×E = - 1/c [(¶B)/( ¶t)]  | Ñ×E = - [(¶B)/( ¶t)] | 
| 
 Ñ×H = [(4 p)/ c] J + 1/c [(¶D)/( ¶t)]  | Ñ×H = J + [(¶D)/( ¶t)] | 
| 
 F = q (E + [(v)/ c] ×B  | F = q (E + v ×B | 
| 
 u = [1/( 8 p)] (E·D+B·H)  | u = 1/2 (E·D+B·H) | 
| 
 S = [c/( 4 p)] (E ×H)  | S = (E ×H) | 
| 
 
  |