Mar 14, 1999

PHY 742 -- Notes on Clebsch-GordanPHY 742 - Notes on Clebsch-Gordan coefficients



Reference: Abramowitz & Stegum - pg. 1006

Original formula:

< j1 j2 m1 m2|j1 j2 j m > = dm,m1+m2   æ
Ö

(j1+j2-j)!(j1-j2+j)!(-j1+j2+j)!(2j+1)
(j1+j2+j+1)!
 
(1)
×
å
k 
(-1)k   ______________________________________
Ö(j1+m1)!(j1-m1)!(j2+m2)!(j2-m2)!(j+m)!(j-m)!
 

k!(j1+j2-j-k)!(j1-m1-k)!(j2+m2-k)!(j-j2+m1+k)!(j-j1-m2+k)!

Working formula:

< j1 j2 m1 m2|j1 j2 j m > = dm,m1+m2   æ
Ö

(j1-j2+j)!(-j1+j2+j)!(2j+1)
(j1+j2-j)!(j1+j2+j+1)!
 
(2)
×   æ
Ö

(j1+m1)!(j2-m2)!(j+m)!
(j1-m1)!(j2+m2)!(j-m)!
 
×
å
k 
(-1)k
k!
(j1+j2-j)!
(j1+j2-j-k)!
(j1-m1)!
(j1-m1-k)!
(j2+m2)!
(j2+m2-k)!
(j-m)!
(j-j2+m1+k)!(j-j1-m2+k)!

Additional reference for Clebsch-Gordan coefficients: Complement B_X and C_X of Cohen-Tannoudji's text (Volume #2).

A related quantity is the Gaunt coefficient:

GL Ml1m1 l2m2 º   æ
Ö

4 p
 
ó
õ
dWY*l1m1( ^
r
 
)Y*LM( ^
r
 
)Yl2m2( ^
r
 
).
As discussed in Cohen-Tannoudji's text, the Gaunt coefficent can be expressed in terms of a product of two Clebsch-Gordan coefficients and hence can also be calculated analytically.


File translated from TEX by TTH, version 1.92.
On 14 Mar 1999, 17:07.