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4.5 Plot of γ (eV/Å2), or the amount of energy it takes to create a surface per

surface area of the interface, for the (001) and (100) surfaces. The blue line
is for the (001) surface and the gray dot is the six formula unit (100) surface 27



iv
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Abstract
This thesis mainly focuses on characterizing and understanding the electronic properties of

sodium-ion electrolytes using first-principles calculations. The core of these calculations is

built upon a functional understanding of the relationship between quantum mechanics and

the crystalline geometries that contribute to unique properties of materials such as diffusion

mechanisms of ions within solid-state materials, conductivity, and ground state structures.

The goal of this body of work is to understand how this relationship can give us insight

into materials that might have use in an emerging field within battery technology. Sodium-

ion solid-state batteries are an auspicious technology because nature has provided us with

widely distributed precursor materials in such a way that removes geopolitical constraints

in its construction and distribution. This is extremely important to individuals (and a

collection of individuals) who want to expedite the wide use of clean and renewable energy

from a societal perspective. An example is Morocco’s initiative to generate 52% of its total

energy consumption from clean and renewable energy sources to eliminate dependencies

on foreign countries to supply energy resources[1]. Sodium-ion solid-state batteries are an

inexpensive option for large-scale grid storage, so this could play a role in providing a cost-

effective option for Morocco. The challenging part is to sift through the large chemical

space of sodium-ion solid-state electrolytes to find optimal materials for battery technology,

and that is what motivates this body of work.
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Chapter 1

Introduction

Storing energy and converting it to something useful has been a difficult problem

for humanity, especially when one adds additional constraints such as solving this issue in

a safe and cost-effective manner (e.g. Samsung’s explosive battery issue[2]). Batteries are

an important component for solving our societal energy demands because they are able to

convert electrochemical energy to electrical energy in a way that allows us to take advantage

of its portability and effectiveness for off-grid usage. Lithium-ion solid-state batteries are

widely used in numerous industries including automotive (e.g. Tesla’s electric vehicles and

the Los Angeles Police Department’s stealthy electric motorcycles), portable electronics,

medical devices, and so forth. However, lithium has the drawback of being expensive, it

has the need to be protected from over-charging during the charge/discharge cycle, and

lithium-ion batteries have to be transported in a restricted manner due to the lack of air-

stability within the material; therefore, the demand for seeking an alternative to lithium-ion

batteries has increased.

Sodium-ion solid-state batteries are ideal candidates for replacements of its lithium

counterparts because sodium lies in the same group on the periodic table as lithium, it has

similar chemical properties to lithium, and sodium is much more abundant than lithium,

which makes it a cost-effective and geopolitically-neutral alternative. Another important

feature for sodium-ion battery materials is the fact that the sodium ions seem to have

higher intercalation than lithium ions, meaning that sodium ions are able to reversibly seep

through layers within the electrodes better than lithium ions during the charge/discharge

cycle[3]. This work, however, will further explore the boundaries for sodium-ion containing
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electrolytes as battery materials by investigating the interface properties of Na3SbS4 with

metallic sodium, in order to simulate the electronic effects that occur when the anode comes

in contact with the electrolyte. Furthermore, this work will illuminate a structural puzzle

between Na4P2S6 and Li4P2S6, to expand on the electronic differences between sodium-ion

solid-state electrolytes and lithium-ion solid-state electrolytes in battery materials.
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Chapter 2

Methods

Density Functional Theory (DFT) is the basis on which all calculations in this

work was built. DFT is an approximation to the many-body problem by mapping the exact

ground-state many-electron wavefunction to a more manageable wavefunction that solves

for a ground-state one-body electron density. In order to understand how this is done,

consider the following[4]:

The many-body Hamiltonian can be written as:

H = Hint + Vext. (2.1)

Hint is the kinetic energy of the electrons plus electron-electron Coulomb interactions:

Hint =
∑
i

p2i
2m

+
1

2

∑
i 6=j

e2

|ri − rj |
(2.2)

where pi is the momentum of each electron, ri and rj are the positions of the ith and jth

electron from the origin. Vext is a single particle interaction

Vext =
∑
i

vext(ri), (2.3)

which is naturally chosen as the electron-nuclear interaction:

vext(r) ≡ Vnucl(r) =
∑
I

− ZIe
2

|r −RI |
. (2.4)

Here RI is the position of the Ith nucleus and ZI is its atomic number.

If we suppose that for a given system with a ground-state many-body non-degenerate

wavefunction |ψG〉 where vext is fixed, the Hohenberg-Kohn theorem states that there is a
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one-to-one correspondence between the ground-state density of a N-electron system and

vext. This means that the ground-state electron density becomes the variable of interest.

Since the ground-state wavefunction depends on a given external potential, it can be written

as ψG[vext], which makes it a functional (meaning that ψ is a function of a function). The

electron density for N particles is defined as:

n(r) = 〈ψG(r1, r2, ..., rN )|
∑
i

δ(r − ri) |ψG(r1, r2, ..., rN )〉 (2.5)

If we multiply n(r) by vext and integrate over all space, we get:∫
all−space

〈ψG(r1, r2, ..., rN )|
∑
i

δ(r − ri)vext(ri) |ψG(r1, r2, ..., rN )〉 d3r (2.6)

which is

〈ψG(r1, r2, ..., rN )|Vext |ψG(r1, r2, ..., rN )〉 (2.7)

Since the wavefunction is a functional of the external potential, this implies that

n(r) is equal to some functional, F [vext], which foundationally leads to vext = F−1[n(r)] =

G[n(r)]. This is novel because knowledge of the ground-state density, n(r), can determine

uniquely the external potential of the system or vice versa (and thus the Hamiltonian which

keeps track of all interactions in the system to give us knowledge about the properties of a

system).

To prove this, let us consider two external potentials, vext(r) and v̄ext(r), such

that vext(r) 6= v̄ext(r) which implies n(r) 6= n̄(r). If we wanted to describe these systems

with the corresponding Hamiltonians, H and H̄, this would lead to H = Hint + Vext and

H̄ = Hint + V̄ext. If we were to consider the eigenvalues EG and ĒG for the ground-state

wavefunctions |ψG〉 and |ψ̄G〉, we have:

〈ψ̄G|H |ψ̄G〉 = 〈ψ̄G|Hint + Vext + V̄ext − V̄ext |ψ̄G〉 (2.8)

= 〈ψ̄G|Hint + V̄ext |ψ̄G〉+ 〈ψ̄G|Vext − V̄ext |ψ̄G〉 (2.9)

⇒ 〈ψ̄G|Hint + Vext |ψ̄G〉 = ĒG +

∫
n̄(r)[vext − v̄ext]d3r (2.10)

Since ground-state eigenvalue of H is strictly lower than the mean value of the Hamultonian

in any other state (i.e. the Variational Principle), equation 2.10 becomes:

〈ψG|Hint + Vext |ψG〉 < 〈ψ̄G|Hint + Vext |ψ̄G〉 (2.11)
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⇒ EG < ĒG +

∫
n̄(r)[vext(r)− v̄ext(r)]d3r (2.12)

Similarly, if one were to examine 〈ψG| H̄ |ψG〉, one would find the eigenvalue of H̄ to be:

ĒG < EG +

∫
n(r)[v̄ext(r)− vext(r)]d3r (2.13)

If you take the assumption that n(r) = n̄(r), then vext(r) = v̄ext(r) and thus

equations 2.12 and 2.13 are contradictory statements. Therefore, we must impose that the

electron densities and consequently the external potentials must not be equal, thus proving

uniqueness.

Therefore, if we want to write the energy of the system as a function of electron

density, Hohenberg-Kohn theorem states

E[n(r); vext(r)] = T [n(r)] + Eee[n(r)] +

∫
vext(r)n(r)d3r, (2.14)

where

T [n] = 〈ψG|
∑
i

p2i
2m
|ψG〉 (2.15)

and

Eee[n] = 〈ψG|
1

2

∑
i 6=j

e2

|ri − rj |
|ψG〉 . (2.16)

The minimum of this energy will give us the exact ground-state energy for the

many-body system. If the functional,

F [n(r)] = T [n(r)] + Eee[n(r)], (2.17)

which does not depend on vext(r) was known explicitly, we could just take the functional

derivative with respect to the density to find the ground-state. In reality, F [n(r)] is not

known explicitly so it must be approximated. I will refer to the ground-state energy of

sodium-ion solid-state electrolytes, and this is how the software that I ran calculated the

ground-state for the system. Before I go further, let us consider what a functional derivative

is by considering the action integral in the principle of least action in physics:

A =

∫ t2

t1

L(x(t), ẋ(t), t)dt (2.18)

Where L is the Lagrangian that is a function of the coordinate x(t), velocity ẋ(t), and time.

If we consider the variation of A:

δA =

∫ t2

t1

(
∂L

∂x
δx+

∂L

∂ẋ
δẋ)dt (2.19)
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explicit t dependence goes away since t is an independent variable (meaning it is not a

function). We know from the product rule that:

d

dt
(
∂L

∂ẋ
δx) =

d

dt
(
∂L

∂ẋ
)δx+

∂L

∂ẋ
δẋ (2.20)

⇒ ∂L

∂ẋ
δẋ =

d

dt
(
∂L

∂ẋ
δx)− d

dt
(
∂L

∂ẋ
)δx (2.21)

We can substitute equation 2.15 into equation 2.13 and separate the integrals such

that:

δA =

∫ t2

t1

d

dt
(
∂L

∂ẋ
δx)dt+

∫ t2

t1

(
∂L

∂x
− d

dt

∂L

∂ẋ
)δxdt (2.22)

(
∂L

∂ẋ
δx

)t2
t1

= 0 (2.23)

Since the boundaries of the function are fixed,

δx(t)

∣∣∣∣t2
t1

= 0 (2.24)

This yields:

δA =

∫ t2

t1

(
∂L

∂x
− d

dt

∂L

∂ẋ
)δxdt (2.25)

so the functional derivative is:

δA

δx
=
∂L

∂x
− d

dt

∂L

∂ẋ
(2.26)

So how does this relate to density functional theory?

E =

∫
V

(F [n(r)] + vext(r)n(r)) d3r (2.27)

⇒ δE =

∫
V

(
∂F

∂n
+ vext(r)

)
δnd3r (2.28)

The Kohn-Sham equations minimize the energy functional, E[n(r); vext(r)], with

respect to the electron density n(r). The key assumption in the Kohn-Sham equations is for

each non-uniform ground-state density n(r) of an interacting electron system, there exists

a non-interacting electron system with the same non-uniform ground-state density. This

means that the ground-state density of any interacting electron system with N electrons

can be decomposed into the sum of N independent orthonormal orbitals, or

n(r) =
∑
i

φ∗i (r)φi(r) (2.29)
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where i designates the occupied states including the spatial and spin configurations.

Now, it is important to note that this is an exact representation and minimization

of the exact ground-state density will provide the exact ground-state energy; however, an

approximate process is to minimize equation 2.28. Minimization for this process leads to an

optimized (yet approximate) ground-state wavefunction and an approximate upperbound

for the ground-state energy. The Coulomb interaction between electrons EH is also referred

to as the Hartree potential defined as:

EH [n] =
1

2

∫
n(r)

e2

|r − r′ |
n(r

′
)drdr

′ ≡ 1

2

∑
ij

〈φiφj |
e2

r12
|φiφj〉 ≡

1

2

∫
VH(r)n(r)d3r. (2.30)

The kinetic energy T0[n] of the system of non-interacting electrons with the same density

is:

T0[n] =
∑
i

〈φi| −
~252

2m
|φi〉 (2.31)

The Hohenberg-Kohn functional can now be written as:

E[n(r); vext] = T0[n] + EH [n] +

∫
vext(r)n(r)dr + Exc[n] (2.32)

where Exc is defined as:

Exc[n] = T [n]− T0[n] + Eee[n]− EH [n] (2.33)

The functional can now be written explicitly as:

E[n(r); vext] =
∑
i

〈φi| −
~252

2m
+ vext |φi〉+ EH [n] + Exc[n] (2.34)

If we look at the variation δExc[n] using the same notion of the functional derivative

that I previously mentioned, it yields:

δExc[n] =

∫
Vxc(r)δn(r)d3r =

∫
Vxc(r)δ

∑
i

φ∗i (r)φi(r)d
3r (2.35)

From the definition of a functional derivative, we know that this means that Vxc ≡ δExc
δn(r) .

Finally, this gives rise to the Kohn-Sham equations that will form the basis of the

calculations that were performed in this thesis from first principles. Note the eigenvalue

equation that will be performed iteratively until self-consistency:[
−~252

2m
+ vext(r) + VH(r) + Vxc(r)

]
φi(r) = εiφi(r) (2.36)
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Please also note that the local density approximation[5] for the exchange-correlation

functional is used in my calculations, which is used for slowly varying spatial density n(r).

It takes the form:

Vxc(r) =
δExc[n]

δn(r)
= εxc(n(r)) + n(r)

dεxc(n(r))

dn(r)
(2.37)

The simulations in this work were performed using Quantum Espresso[6] with

the Projector Augmented Wave[7] formalism. The atomic datasets were generated using

ATOMPAW[8] code with a plane wave expansion for the wavefunction and the cut-off radius

of |k+G|2≤ 64 Ry.

High-performance computing

Data compression is a useful way to manage the vast amount of data that is gen-

erated by simulating physical phenomena. One form of compressing data and achieving

reduced scaling for large-scale simulations is to factor a large tensor of data into a smaller

one and corresponding matrices that will together be an approximation known as the Tucker

Decomposition. Although we did not use this technique in our simulations, I explain how to

perform this technique[9, 10] and suggest how it can be used in Density Functional Theory

simulations in the following way:

The Tucker approximation is when you have a large tensor, a 3-way tensor in this

case, and you decompose that tensor into a smaller core tensor and three factor matrices.

The core tensor can be any size that is appropriate for the problem that one is trying to

solve, but the approximation can be seen in figure 2.1 below: Each entry in the tensor X

can be approximated as:

xijk ≈
P∑
p=1

Q∑
q=1

R∑
r=1

gpqr aipbjqckr, (2.38)

where xijk is each entry in X, gpqr is each entry in G, and aip, bjq, ckr are column vectors

in the factor matrices A, B, and C, respectively. The dimensions of X are I × J × K

which is usually much greater (given how you construct your model) than the dimensions

of the tensor G. The dimensions of G are P ×Q×R. One can see that each entry in G is
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Figure 2.1: Tucker decomposition of a three-way tensor

multiplied by the outer product of each vector in the factor matrices, A, B, and C to give

the approximation.

When familiarizing oneself with a data tensor, one must know what modes of a

tensor and fibers are in order to understand the algorithm. Modes are the subarrays that

form when a subset of the indices are fixed and fibers are the higher-order analogue of

matrix rows and columns. A matrix column is a mode-1 fiber and a matrix column is a

mode-2 fiber. Third-order tensors have row, column, and tube fibers denoted x:jk, xi:k, and

xij: respectively in figure 2.2.

Figure 2.2: Fibers of a third-order tensor

In order to understand what this means when you have data, consider figure 2.3

where there are two matrices, X1 and X2. The modes of the tensor are denoted as X(1),

X(2), and X(3) for the first, second, and third modes, respectively.

The Sequentially-Truncated Higher-Order Singular Value Decomposition (ST-HOSVD)
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Figure 2.3: Example of modes in a three-way tensor

algorithm[10], which is a parallelized form of the Tucker decomposition can be computed

in the following way:

Figure 2.4: Sequentially-Truncated Tucker decomposition of a three-way tensor
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1) procedure ST-HOSVD(X, ε)

2) Y ← X

3) for n = 1, ..., N do

4) S ← Y(n)Y
T
(n)

5) Rn ← min R such that
∑
r>R

λr(S) ≤ ε2‖X‖2

N

6) U(n) ← leading R eigenvectors of S

7) Y ← Y ×n U (n)T

8) end for

9) G ← Y

10) return G,U (n)

11) end procedure

Here, the inputs are the tensor X and machine epsilon. To give an overview, the higher-

order SVD decomposition of the first mode is given by:

X(1) = U (1)Σ(1)V (1)T (2.39)

Where X(1) is I × JK, U (1) is I × I, Σ(1) is I × I, and V (1)T is I × JK. The

algorithm is called truncated because only the first ‘P’ column vectors of U (1) are selected

that satisfy condition (6). Also, one can think of modes of a tensor as “flattening” the

tensor to form a matrix.

Now, in order to use this algorithm in DFT, one must figure out how to place

equation 2.36 on a grid in such a way that will contain the correct physics in the reduced

Tucker basis. Ay, there is the rub.

In addition to the Tucker Decomposition, another effective way to cut convergence times

for matrix multiplication is to use Strassen’s algorithm[11]. We did not use this algorithm

in our simulations, but I believe that one would find it useful. Matrix multiplication is the

most time consuming aspect of scientific computing because it scales as O(n3), where n is

usually the number of atoms in your system, and Strassen’s algorithm effectively reduces

eight matrix multiplications in a square matrix–when the size of the matrix is sufficient

enough to overcome the increased number of matrix additions and subtractions (meaning
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at least 16×16 square matrices), because the number of arithmetic operations approximately

scale as O(n2.81). This difference in the exponent makes a significant difference when one’s

system is large. Although I am not certain how Strassen formulated his algorithm, one can

think of a simpler case when considering how his algorithm works. For instance, consider

the multiplication (a+bi)(c+di) where a, b, c, and d are positive constants. Normally, this

multiplication would take take a total of four multiplications when using the FOIL method

to produce (ac− bd) + (ad+ bc)i. There is a way, however, to do the above multiplication

in three steps, and that is to multiply (a + b)(c − d) [I] (meaning do the addition and

substraction first), ad [II], and bc [III]. To get the total product, one would need to take

(I + II − III) + (II + III)i to get (ac− bd) + (ad+ bc)i.

In a similar way, Stassen takes the multiplication of two square matrices A and B,

where A =
(
A11 A12
A21 A22

)
and B =

(
B11 B12
B21 B22

)
, and multiplies them in such a way that there

are seven matrix multiplications (which is significant because matrix multiplication is more

expensive than matrix addition or subtraction between matrices). If one wants to analyze

the difference between Strassen’s algorithm and normally multiplying two 2 × 2 matrices,

one must consider the following:

C = AB =
(
C11 C12
C21 C22

)
Normal:

C11 = A11B11 +A12B21

C12 = A11B12 +A12B22

C21 = A21B11 +A22B21

C22 = A21B12 +A22B22

Strassen (note that the additions and subtractions in the parenthesis should be
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performed first like the example above):

I = (A11 +A22)(B11 +B22)

II = (A21 +A22)B11

III = A11(B12 −B22)

IV = A22(−B11 +B21)

V = (A11 +A12)B22

V I = (−A11 +A21)(B11 +B12)

V II = (A12 −A22)(B21 +B22)

C11 = I + IV − V + V II

C21 = II + IV

C12 = III + V

C22 = I + III − II + V I

Please note that Strassen’s algorithm can be written in such a way that exploits how the

matrices are stored in the cache (i.e. column-major, zig-zag, etc.) in order to minimize the

amount of cache-misses and to get even higher performance[12, 13].
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Chapter 3

Na4P2S6

In 1982, Mercier et al.[14] analyzed the structure for Li4P2S6 and concluded that

the structure was the hexagonal space group, P63/mcm; however, in 2014, Kuhn et al.[15]

concluded that the structure for Na4P2S6 was the monoclinic space group, C2/m. This

presents a structural puzzle because the only difference between the two compounds is the

cation, and it produces the question, why does exchanging lithium ions for sodium ions

in the same compound produce a different arrangement of atoms? Also, how does this

affect the electronic properties of the material? The goal of my research is to find materi-

als that can be suitable solid-state electrolytes for sodium-ion batteries, and this structural

puzzle could shed light on the difference between sodim-ion electrolytes and lithium-ion elec-

trolytes. It could also provide information on how to improve the conductivity of sodium-ion

electrolytes, especially if one wants to use them to replace their lithium-ion analogues in

battery techonology in some instances. The monoclinic space group, C2/m, which can be

seen in figures 3.1 and 3.2, has very low symmetry compared to the hexagonal space group,

P63/mcm, because there are only four symmetry elements compared to twenty-four, so one

expects that these different geometries might have remarkable differences in formation en-

ergies and differences in conductivity.

It is important to note that for this paper, I did all of the calculations for Na4P2S6

(except for the partial density of states plots) while Dr. Natalie Holzwarth did all of the

calculations for Li4P2S6. A subgroup of the Mercier structure, space group P3̄1m which is

based on a hexagonal bravais lattice shown in figure 3.3 and figure 3.4, was studied in place

of the Mercier structure because of the difficulty when modeling such a disordered structure
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Figure 3.1: Ball-and-stick model of C2/m in the ab-plane. The Na, P, and S sites are
represented by the blue, orange, and yellow balls, respectively. There are two different
sodium sites (denoted ‘g’ and ‘h’ sites in the Wyckoff label) for space group C2/m, which
is represented by two shades of blue balls.

Figure 3.2: Ball-and-stick model of C2/m in the bc-plane with the same convention as figure
3.1.

with a periodically repeating framework that forms the basis of our simulations (i.e. the

Projector Augmented Wave (or PAW) method[7]). The Na, P, and S sites are represented

by the blue, orange, and yellow balls, respectively. There are two different sodium sites

(denoted ‘c’ and ‘d’ sites in the Wyckoff label) for space group P3̄1m, which is represented
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by two shades of blue balls represented in figures 3.3 and 3.4.

Figure 3.3: Ball-and-stick model of P3̄1m showing a projection onto the hexagonal plane

Figure 3.4: Ball-and-stick model of P3̄1m showing a view that includes the c axis.

The disordered ground states for P63/mcm, space groups Pnnm and Pnma that

can be seen in figures 3.5 and 3.6, respectively, were used for both Li4P2S6 and Na4P2S6

because they were derived from analyzing the disorder structures of Li4P2S6 in terms of
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the placements of the P2S6 units along the hexagonal c-axis in a previous study by Hood

et al[16].

Figure 3.5: Ball-and-stick model of Pnnm using the same convention in figure 3.3

Figure 3.6: Ball-and-stick model of Pnma

In order to understand the geometric relationship between the space groups P3̄1m,
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Pnnm, Pnma, and C2/m, consider the following:

~aKuhn = ~ahex, ~bKuhn = ~ohex, and ~cKuhn = ~chex, (3.1)

where ~aKunh, ~bKunh, ~cKunh are the lattice vectors in C2/m, and ~ahex, ~ohex, ~chex are the

hexagonal vectors defined in figure 3.3.

When considering figure 3.5, the geometric relationship is:

~aPnnm = ~chex, ~bPnnm = ~ahex, and ~cPnnm = ~ohex, (3.2)

where ~aPnnm, ~bPnnm, and ~cPnnm are the lattice vectors in Pnnm.

Lastly, when considering figure 3.6, the geometric relationship is:

~aPnma = 2~ahex, ~bPnma = ~ohex, and ~cPnnm = ~chex, (3.3)

where ~aPnma, ~bPnma, and ~cPnma are the lattice vectors in Pnma.

To begin to compare the conductive properties of the two compounds and the

different arrangements for them (meaning space groups C2/m, P3̄1m, and Pnma), I con-

structed vacancies for those geometries in order to run Nudged Elastic Band (NEB)[20, 21,

22] calculations and obtain conductivities for them. The migration path for P3̄1m can be

seen in figure 3.7, and the corresponding migration energy from the NEB calculations is in

figure 3.8. The migration path for C2/m can be seen in figure 3.9, and the corresponding

migration energy from the NEB calculations is in figure 3.10. The migration path for

Pnma can be seen in figure 3.11, and the corresponding migration energy from the NEB

calculations is in figure 3.12.

The results indicated that the migration energy for Pnma structure of Na4P2S6

was lower than Li4P2S6 along the a-axis (or migration between “d” atoms according to

the Wyckoff label), and the migration was higher and lower in certain directions for the

P3̄1m and C2/m structures. When migrating from one type of ion to the next, meaning

going from “c” to “d” in P3̄1m and “g” to “h” in the C2/m structure, sodium ions have

a slightly higher migration energy than its lithium-ion counterpart. Migration energies

for ion migration in between the P2S6 were lower for sodium with respect to its lithium
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Figure 3.7: Ball-and-stick model of migration path for P3̄1m

Figure 3.8: Activation energy for the migration path in figure 3.7 for Na4P2S6 and Li4P2S6
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Figure 3.9: Ball-and-stick model of migration path for C2/m

Figure 3.10: Activation energy for the migration path in figure 3.9 for Na4P2S6 and Li4P2S6
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Figure 3.11: Ball-and-stick model of migration path for Pnma

Figure 3.12: Activation energy for the migration path in figure 3.11 for Na4P2S6 and Li4P2S6



22

Figure 3.13: Vacancy energy (in eV) for the migration paths for Na4P2S6 and Li4P2S6

Figure 3.14: Heats of formation (in eV per formula unit) for the four optimized structures
in Na4P2S6 and Li4P2S6

counterpart in both P3̄1m amd C2/m structures, but migration energies for ion migration

above and below those units were lower for lithium with respect to its sodium counterpart.

A comparison of the activation energy for the structures between Na4P2S6 and Li4P2S6 can

be seen in figure 3.13.

The heats of formation is another important measure when ascertaining the dif-

ference between the various geometries for Na4P2S6 and Li4P2S6, because the structure

with the lowest amount of energy (or enthalpy) it takes to form the compound will be the

most likely structure to form in nature. After analyzing the enthalpy for each structure

per formula unit of Na4P2S6 and Li4P2S6, the most probable geometries for both Na4P2S6

and Li4P2S6 are Pnnm and Pnma. These are the models for the Mercier structure (or the

disordered structure models), and the difference in energy between these structures and the

others for Na4P2S6 was 0.09 eV per formula unit. The results can be seen in figure 3.14.

These calculations suggest that the Kuhn structure is meta-stable.
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Chapter 4

Na3SbS4

As part of an effort to develop energy storage technology based on all-solid-state

Na-ion batteries, recent papers in the literature[17, 18, 19] demonstrate the electrochemical

stability of the solid electrolyte Na3SbS4 interfaced with a metallic Na anode. The integrity

of this electrolyte/anode interface, which is essential to the success of these battery com-

ponents, is attributed to the formation of a stable solid-electrolyte interphase (SSEI). We

report the results of a computational study of this system, using first principles methods

to model ideal interfaces of Na3SbS4 with Na metal. The ideal interfaces were constructed

from (110), (100), and (001) surfaces of tetragonal crystals of Na3SbS4 and Na metal in

various configurations. The results show several likely components of the SSEI including a

few broken SbS bonds and Na2S groups stabilized at the outer layer of the interface.

Before we investigated the Na3SbS4/Na interface, we constructed the (100), (001),

and (110) surfaces for Na3SbS4 with the intention of calculating the surface with the lowest

energy. The lowest energy surface would be presumed to be the most probable surface

that forms when creating a solid-state battery, and the intensive parameter, γ, was used to

calculate the most probable surface.The surface energy γ is defined as,

γ =
Etotal − nbulkEbulk

2A
, (4.1)

Etotal is the total energy of the supercell for the simulation that contains nbulk unit cells.

Ebulk is the energy of a single unit cell for Na3SbS4 and 2A is the total cross-sectional area

for the interface.

As reported in Wang et al.[17], there are two phases for Na3SbS4: a low tem-

perature phase, and a high temperature phase. We modeled the low temperature phase by
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creating a supercell of the figure below to create the (100), (001), and (110) surfaces.The low

temperature phase, space group P 4̄21c, has two distinct sodium sites labelled “a” and “d”

in the Wyckoff label and is tetragonal, thus the material has two different lattice constants

labelled “a” and “c” in figure 4.1.

Figure 4.1: Ball-and-stick model of low temperature Na3SbS4 with corresponding symmetry
elements

Figure 4.2: Ball-and-stick model of (100) surface with vacuum

The (100) surface was constructed by creating a supercell, or more specifically,

5 unit cells of Na3SbS4 and removing atoms along the “a-axis” until the vacuum was ap-

proximately 15 Å thick. Figure 4.2 illustrates how the (100) surface was constructed. The

(100) surface normal is along the a-axis, and the pink rectangle represents the supercell of
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5 unit cells of Na3SbS4 that was constructed. As one can see, atoms were removed within

the rectangle so that the (100) surface could be constructed. The image on the left is a

periodically repeated image of the right. One can think of there being an infinite amount

of periodically repeating images, but I just illustrated two of them to show the width in

between the surfaces.

Figure 4.3: Ball-and-stick model of (001) surface with vacuum

Similarly, the (001) suraface was constructed by generating a 5 times larger unit

cell along the c-axis and removing atoms within the rectangle until a vacuum thickness of

approximately 15 Å . Figure 4.3 illustrates how the (001) surface was constructed. The

material on the top is just a periodically repeated image of what is on the bottom. Again,

I showed two images to illustrate the width of the surface.

Lastly, I constructed the (110) surface by creating a supercell of the surface that

is along the diagonal of the cube from edge to edge through the center, meaning, if a sharp
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plane (i.e. a knife) were to cut the square base of Figure 4.1 along this surface, it would

split the rectangular prism into two triangular prisms. I then rotated the crystallographic

coordinate system such that the surface normal pointed in the vertical direction. Figure 4.4

illustrates how the (110) surface was constructed. It is important to note that the “a′” and

Figure 4.4: Ball-and-stick model of (110) surface with vacuum

“c′” directions are different from the “a” and “c” directions in the (001) and (100) surfaces

because the coordinate frame has been rotated.“a′” = ~c, “c′” =
√

1
2 (~a + ~b), and “b′” =√

1
2 (~a−~b). This surface was constructed by enlarging the cell to be 5 times as large as the

normal unit cell for the (110) direction, and atoms were removed until there was a vacuum

thickness of approximately 15 Å . It is also important to note that in order to construct this

surface, two sodium atoms must be removed from the top and bottom of the surface in order

to have the correct ratio of atoms in Na3SbS4. I tested 12 different permutations (or two
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times four-choose-two) of the possible configurations, and Figure 4.4 is the configuration

with the lowest energy (thus presumed to be the most probable structure).

One might ask the question, how did I choose the seemingly arbitrary size of three

layers for the (100), (001), and (110) Na3SbS4 surfaces (which are six, six, and twelve formula

units, respectively, since the (110) surface takes twice as many formula units to construct

as the (001) and (100) surfaces)? To answer that, I calculated the intrinsic parameter, γ,

for up to 8 formula units for the (001) surface with a six formula unit comparison to the

(100) surface and an addition test of higher and lower vacuum thickness for the six formula

unit (001) surface, which can be seen in Figure 4.5 below.

Figure 4.5: Plot of γ (eV/Å2), or the amount of energy it takes to create a surface per
surface area of the interface, for the (001) and (100) surfaces. The blue line is for the (001)
surface and the gray dot is the six formula unit (100) surface

The blue dots represent γ for six formula units of the (001) surface with approx-

imately 15Å for the thickness of the vacuum layer, the gray dot corresponds to γ for six

formula units of the (001) surface with approximately 22Å for the thickness of the vacuum

layer, the yellow dot corresponds to shrinking the thickness of the vacuum layer for the

(001) surface to approximately 10Å, and the purple dot corresponds to γ for six formula

units of the (100) surface with approximately 15Å for the thickness of the vacuum layer.

One can see that altering the vacuum and switching surfaces between the (001) and (100)

surfaces when the layer thickness of the vacuum is constant adds approximately 1 meV/Å2
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for γ, which is within the noise or error of the calculation itself, so one can safely assume

that arbitrarily choosing the layer thickness for the vacuum size and the amount of layers

of Na3SbS4 that one will use for the interface for the sake of convenience when factoring

in convergence times is a relatively inconsequential assumption based on this data. There-

fore, we choose to model the interface of Na3SbS4/Na using three layers of Na3SbS4. The

question now becomes, how does the (110) surface compare with these two surfaces when

calculating the amount of energy it takes to create the surface per area of the interface of

the surface, or γ? To answer this, I calculated γ for all possible configurations of the (110)

surface for Na3SbS4. The figure below shows how γ changes when considering the different

configurations of removing two sodium atoms from the top of the surface and the bottom

of the surface to achieve the right ratio of Na:Sb:S atoms in Na3SbS4.

Figure 4.6: Plot of γ (eV/Å2), or the amount of energy it takes to create a surface per
surface area of the interface, for the (110) surface with all configurations

Figure 4.6 shows that the minimum energy to create the surface per unit area

of the interface was 20 meV/Å2, which is approximely 1-2 meV/Å2 lower than the (001)

and (100) surface with 3 layers of Na3SbS4. That difference is within the error of Density

Functional Theory calculations, so we decided to perform interfacial simulations with all

surfaces because they are all equally probable.

To further test whether or not the selection to represent Na3SbS4 with three layers

for the interface with metallic Na, I calculated the parameter, ∆d/d, which will tell how
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much selected atoms within certain layers move after creating the surface and allowing

the atoms to “relax” in Quantum Espresso with respect to the distance before relaxing

the atoms, meaning all of the atoms in the system were allowed to move freely to find a

minimum in energy where they prefer to sit. The following figure shows how much the

atoms moved to indicate whether or not the surface would be stable enough to perform

calculations with the interface with metallic sodium:

Figure 4.7: Plot of ∆d/d, or the amount that selected atoms moved after running “relax”
in Quantum Espresso for the entire surface. ∆d is the change in distance between layers
after relaxation and d is the distance between the layers before relaxation

The negative values in Figure 4.7 correspond to the selected atoms moving inward

(meaning away from the vacuum layer) and the positive values correspond to those atoms

moving toward the vacuum layer. The atoms that were selected were the same sodium or

sulfur atoms for the (001), (100), or (110) surfaces, and they were selected from the first

layer closest to the vacuum layer to the second and the third. Since there were two formula

units per layer for the (001) and (100) surface (and double for the (110) surface), the third

layer of sodium or sulfur corresponded to the center of the surface. The numbers in Figure

4.7 have the following corresponding meanings:

1 = 3 layers (or 6 formula units) of (001) Na3SbS4 with 15 vacuum

2 = 3 layers (or 6 formula units) of (100) Na3SbS4 with 15 vacuum

3 = 3 layers (or 12 formula units) of (110) Na3SbS4 with 15 vacuum

4 = 3 layers (or 6 formula units) of (001) Na3SbS4 with 22 vacuum
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As you can see, atoms minimally move when allowed to find spaces within the

material that give a minimum energy for the surface, so establishing that each surface will

be three layers thick for Na3SbS4 in the interface with sodium is seemingly practical based

on the tests that were performed.

Finally, as a last measure of whether or not we could model the surfaces of Na3SbS4

using a smaller thickness, I performed Density of States (DOS) plots for the surface of

Na3SbS4 vs the bulk interior. Figures 4.8 and 4.9 show the charge distribution on each

atom in the DOS for Na3SbS4 at the surface and in the bulk interior for 4 formula units

and 5 formula units of the (001) surface, respectively. The top DOS plots for figures 4.8

and 4.9 are the atoms in Na3SbS4 at the surface and the lower DOS plots are the atoms in

the bulk (or in between the top and bottom of the surface). I chose 4 and 5 formula units

to test because it would speed up convergence times, but the fact that the top and bottom

DOS plots don’t match means that 6 formula units is a good lower limit.

Figure 4.8: DOS plots for 4 formula units of (001) Na3SbS4

Now that the problem of how to represent the surfaces of Na3SbS4 for the interface

has been decided, I then began the next phase of modelling the anode and the electrolyte

by stacking metallic sodium on top of the surface of Na3SbS4.

Figure 4.10 represents the model of the (110) Na3SbS4/Na interface that was

created by stacking blocks of sodium on top of the solid-state electrolyte. Since the blocks of

sodium on top of Na3SbS4 could have led to strain (due to the lack of the cubic materials not

being commensurate with one another), the system was allowed to expand or contract along
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Figure 4.9: DOS plots for 5 formula units of (001) Na3SbS4

Figure 4.10: Ball-and-stick model of the initial (110) surface for Na3SbS4

the direction of the surface normal. That is to say, the system was under the conditions

of “vc-relax” where the degrees of freedom were restricted to one degree, which was the

vertical direction or the direction that is perpendicular to the surface of (110) Na3SbS4.
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Figure 4.11: Ball-and-stick model of the vc-relaxed (110) surface for Na3SbS4

Figure 4.11 indicates that Na3SbS4 decomposes at the interface with metallic

sodium, and based on how sulfur moves from the bulk structure and surrounds itself with

proportionate amounts of metallic sodium (almost like escaping into the sea of sodium),

it suggests that Na2S is forming, which leaves Na3SbS3 at the surface. This would sug-

gest that Sb undergoes a change in oxidation state, from a +5 state to a +3 state, when

the electrolyte comes in contact with the anode at the interface. We believe that these

components of the interface (both Na3SbS3 and Na2S) contribute to what is known as the

stable solid-electrolyte interphase layer (or SSEI layer), which can lead to a gradual loss of

capacity of a battery if the thickness of the SEI layer grows too large. In order to confirm

that Na3SbS3 and Na2S form at the interface between metallic Na and Na3SbS4, I decided

to plot the DOS of the bulk materials and compare it to the bulk and surface atoms of the

simulation from Figure 4.12. The following figure illustrates this comparison:

As one can see from Figure 4.12, the (110) Na3SbS4/Na interface DOS is in fairly

good agreement with the DOS of the bulk materials, so this further confirms that Na3SbS3

and Na2S form at the interface. This was only for one surface of Na3SbS4 and for one

configuration of stacking sodium, so further testing is needed to confirm this basis.
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Figure 4.12: Ball-and-stick model of the vc-relaxed (110) surface for Na3SbS4 and the
corresponding DOS for each layer, along with the DOS of the bulk materials: Na3SbS4,
Na3SbS3, and Na2S

Another way to represent the Na3SbS4/Na interface was to stack sodium on top of

the (100) Na3SbS4 surface and allow the system to expand or contract along the direction

of the surface normal, or to state it another way, to run “vc-relax” in Quantum Espresso

and allow the degree of freedom to be along the a-axis for the (100) surface. Figure 4.13

illustrates this interface.

Figure 4.13: Ball-and-stick model of the (100) surface for Na3SbS4 with metallic sodium
stacked on top along the a-axis

It is important to note that this model periodically repeats and there is no vacuum

between the periodically repeating interfacial images, rather only sodium. The system was

allowed to expand and contract along the a-axis in order to relieve some strain associated
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with stacking blocks of sodium that might not be commensurate with tetragonal Na3SbS4.

One can also see a phase separation (in Figure 4.14) when the atoms moved in the simulation

to find a minimum energy configuration that was prefered. It appears as though Na3SbS3

and Na2S also form at the surface of the Na3SbS4/Na interface.

Figure 4.14: Ball-and-stick model of the vc-relaxed (100) surface for Na3SbS4 with metallic
sodium stacked on top along the a-axis

Again, it is important to note that this interface periodically repeats along the

a-axis, so what is seen at the right end of the surface (namely degredation and formation

of Na3SbS3 and Na2S, along with Na) is also at the left end of the surface even though it

isn’t apparent in this picture.

After seeing that Na2S forms at the interface, we hypothesized that stacking Na2S

on top of Na3SbS4 for the interface would stabilize the surface and prevent Na3SbS4 from

degrading into Na3SbS3 and Na2S.

As one can see, polar Na2S was stacked on top of Na3SbS4 in Figure 4.16, and

the system was allowed to “relax” with all three degrees of freedom in Quantum Espresso

(meaning the atoms could move freely in any direction to find a minimum energy config-

uration). It is important to know that the image on the top is the same image that is on

the bottom since the images periodically repeat. I showed two surfaces to show how Na2S

is stacked in between the top and bottom surfaces.

One can see that the surface remained intact after the simulation completed in

Figure 4.16, but this is far from conclusive evidence that Na2S acts as a buffer layer and

stabilizes the surface of Na3SbS4. There is more testing that has been done and testing

that needs to be done that includes introducing a nonpolar Na2S interface at the surface,

while allowing the system to contract or expand along the direction of the surface normal
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Figure 4.15: Ball-and-stick model of the (001) surface for Na3SbS4 Na2S stacked on top
along the c-axis

like what has been done for the Na3SbS4/Na interface.

Furthermore, I explored the electronic properties of Na3SbS4 by using the Nudged

Elastic Band method[20, 21, 22] (or NEB) to obtain the conductivity. I considered a mi-

gration mechanism where vacancies for sodium ions were created and allowed to propagate

along the a-axis and along the c-axis in Figure 4.1. The mechanism and the activation

energy, which is essential when one considers the conductivity of a material (that is an

important feature when considering whether or not a material can be used for a solid-state

battery because the premise of a battery is to convert chemical energy to electrical energy),

is shown in the following figure:

One can see that migration along the a-axis path is the lowest energy path, since

the migration energy is 0.05 eV. Banerjee et al.[19] reported the activation energy for

Na3SbS4 to be 0.2 eV at room temperature based on experiment, so there is some dis-
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Figure 4.16: Ball-and-stick model of the (001) surface for Na3SbS4 Na2S stacked on top
along the c-axis

crepancy with our low temperature model. Since the interface simulations showed the

formation of Na3SbS3 at the interface, one must consider the conductivity of this material

since it is predicted to form after Na3SbS4 comes in contact with metallic sodium during

cycling of a battery. To model the conductivity of Na3SbS3 that forms at the interface of

Na3SbS4/Na, I modeled the bulk structure for Na3SbS3, which is cubic (space group P213).
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Figure 4.17: Ball-and-stick model of the migration of sodium ions in Na3SbS4

Figure 4.18: Ball-and-stick model of bulk Na3SbS3

Na3SbS3 has three distinct sodium atoms in its structure, but all of them have the

same symmetry elements (which is why all three colors have the same Wyckoff label of “a”.

Also, the structure is cubic so there is only one lattice parameter that is also named “a” in

Figure 4.18 (although this “a” is not the same as the Wyckoff label and is just generic).

NEB calculations were performed for pure Na3SbS3, although the pure form did

not form at the Na3SbS4/Na interface. There are many paths for sodium ions to flow

throughout the crystal (since it is combinatorial), but some knowledge about paths help us

reduce the number of plausible ones. Figure 4.19 below shows one path that we believe to
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be the lowest based on path length and testing paths that include the third type of sodium

(along with the first two types as depicted in the figure). We believe that the minimum

Figure 4.19: Ball-and-stick model of NEB path for bulk Na3SbS3

energy path for Na3SbS3 only involves migration of the sodium atoms of the first two types

because any path that includes the third type of sodium adds approximately .3 eV to the

migration energy. Based on the minimum migration energy being 0.4 eV, which is higher

than the migration energy for Na3SbS4, the barrier is still relatively surmountable so we

believe that the battery would still be operational (meaning conductive) even after the

formation of the SSEI layer (which is composed of Na3SbS3 and Na2S).
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Chapter 5

Conclusions

Na4P2S6 and Li4P2S6 have key differences in diffusion mechanisms, preferred ge-

ometries, and formation energies. The fact that sodium is a larger compound in size could

be the reason why ionic diffusion between P2S6 units have a lower energy cost than its

lithium counterpart, and the Kuhn structure for Na4P2S6 could have a higher conductivity

than its lithium counterpart based on the fact that there is a .12 eV difference in activation

energy for ions moving throughout the crystal. Although the Kuhn structure has more

favorable conductivity for Na4P2S6 than for Li4P2S6, Li4P2S6 has a lower heat of formation

which means that it is thermodynamically more stable. That means the story for ascertain-

ing how one can exploit the properties of sodium-ion solid-state electrolytes to construct an

operational battery with greater or equal benefits to its lithium counterparts is a bit unclear.

Na3SbS4 is experimentally known to have a high conductivity, but there are two

phases for this compound: a high temperature phase and a low temperature phase. We

modeled the conductivity for the low temperature phase, space group P4̄21c which is tetrag-

onal, and the activation energy for this phase was 0.05 eV (which is .15 eV lower than what

was reported) for ion migration along the a-axis. We also modeled the interface between

the solid-state electrolyte, Na3SbS4, and the metallic anode, Na, and the simulations show

Na3SbS4 is reactive towards Na. The intermediates that form at the interface, namely

Na3SbS3 and Na2S, form a buffer layer known as the SEI layer, and this layer shows con-

ductivity that suggests that the battery would remain operational if it forms (meaning the

activation energy of these materials are comparable to Na3SbS4, although it is higher).
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