Math 361: Introduction to Topology

Asst. 5, due W., 3/07

- read sections 2.2-2.6 of Messer/Straffin

You should submit at least 8 of the following problems.

Required

1. This week you will choose your very own 'pet knot'. Is your knot tricolorable? (This is what the authors call 'colorable' in §2.4.) Either show that it is or prove that it is knot.
2. The writhe of a knot diagram is the sum of the signed crossing numbers (of the knot crossing itself).
(a) Compute the writhe of the following knots: $0_{1}, 3_{1}, 4_{1}, 5_{1}, 5_{2}$.
(b) Draw two different diagrams of your pet knot. Is each diagram reduced? (Draw at least one reduced diagram.) Compute the writhe of each diagram.
3. Is the writhe of a knot diagram invariant under all three Reidemeister moves? (i.e., is writhe a knot invariant?) If not, which moves preserve writhe? which ones change it (and how)?
4. 2.3 .3
5. 2.3.4
6. 2.3 .7

Optional Problems

7. Find a sequence of Reidemeister moves taking the figure-eight knot 4_{1} to its mirror image.
8. If a knot projection has n crossings, explain why there are at most 2^{n} different knot diagrams that result.
9. *** Given a knot projection, find a method for resolving the crossings that guarantees the resulting knot diagram produces an unknot.
10. *** Show there are no knots with crossing number $\operatorname{Cr}(K)=2$.

These problems are also optional:
2.2.4, 2.2.8
2.3.8, 2.3.11***

Problems marked with stars *** indicate that gold stars will be awarded for correct, complete answers to them. (Please cite any sources outside of our course book \& notes you use on these and other problems.)

