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1 Abstract

The Taylor problem is defined on a compact, connected domain Ω in R3 as follows:

among all divergence-free vector fields which are tangent to the boundary of the

domain and have prescribed helicity and flux values, find the field with minimum

energy. Such a minimizing field is an eigenfield of the curl operator (a force-free field

to physicists) and depicts the end result of plasma relaxation in confined vessels.

This paper establishes the existence of such a minimizing field, shows that it must

necessarily have the lowest eigenvalue of all fields with the same helicity and flux,

and provides an explicit solution of the Taylor problem on the solid flat torus.
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2 Introduction

Let Ω be a compact, connected domain in R3 with smooth (C∞) boundary, and

let V F (Ω) be the space of all smooth vector fields on Ω with the L2 inner product

〈V,W 〉 =
∫

Ω
V ·W dvol.

Definition 2.1. The helicity of a vector field V measures to what extent the flow

lines of V wrap around each other. Helicity is defined as

H(V ) =
1

4π

∫
Ω×Ω

V (y) · (V (x)× y − x

|y − x|3
) dvolx dvoly

Helicity was introduced by Woltjer in 1958 and named by Moffat in 1969. Helicity

is an important parameter in the study of fluid dynamics and plasma physics; see

[1], [2], [5] for references.

We obtain a more convenient expression for helicity

H(V ) = 〈V,BS(V )〉

by considering the Biot-Savart operator, BS : V F (Ω) → V F (Ω), defined as

BS(V )(y) =
1

4π

∫
Ω

V (x)× y − x

|y − x|3
dvolx .

This operator expresses the Biot-Savart law in electrodynamics relating a current

distribution V to its magnetic field BS(V ). If V = B is instead a magnetic field

that is tangent to the boundary of its domain, A = BS(B) is a vector potential for

B.
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Extend the Biot-Savart operator to BS : V F (Ω) → V F (Ω), where V F (Ω) is

the L2 completion of the space of smooth vector fields. On this space, BS is a

compact, self-adjoint operator. See [3] for a detailed treatment of the properties of

the Biot-Savart operator.

Definition 2.2. A vector field V ∈ V F (Ω) is a fluid knot if it is divergence-free

and tangent to the boundary ∂Ω. (see the next section for more details)

Woltjer [14] showed that in a non-dissipative plasma, both energy and helicity are

conserved, and an energy-minimizing field V is an eigenfield of curl: ∇× V = λV

for some constant λ. Physicists refer to any V satisfying this equation, for λ =

λ(x) possibly dependent on position, as a force-free field. For magnetic fields, this

equation implies the Lorentz force FL is zero. If J is the current distribution inside Ω,

then by Ampere’s Law, µ0J = ∇×B = λB which implies FL =
∫
J ×B dvol = 0.

We can then state

The Woltjer Problem Among all fluid knots on Ω, that is all divergence-free vec-

tor fields on Ω tangent to the boundary ∂Ω with a fixed helicity value, find the one

with minimum energy.

Cantarella, DeTurck, and Gluck showed in [3], [1] that such an energy-minimizing

field exists and is necessarily a curl eigenfield (we keep this notation rather than
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”force-free field”). Such fields represent steady states of plasmas in a simply con-

nected domain. Lundquist [9] obtained an explicit solution of the Woltjer problem

for the flat solid torus domain D2 × S1. While not embeddable in R3, the flat solid

torus is a good approximation of a large-aspect ratio torus of revolution and sim-

plifies calculations greatly; see Tsuji [13] for explicit results on an ordinary torus of

revolution.

On domains like the solid torus that are not simply-connected, solutions to the

Woltjer problem are not the best approximations to the steady plasma states. By

constraining one more parameter, the flux of the plasma, we transit from the Woltjer

problem into the Taylor problem, whose solutions better approximate steady plasma

states.

Definition 2.3. Let V ∈ V F (Ω) and let Σ be a surface in the interior of Ω with

∂Σ ⊂ ∂Ω and consider FΣ(V ) =
∮

Σ
V · n dA, the (toroidal) flux of the vector field

V through Σ.

An important property of fluid knots is that their flux FΣ depends only upon

the relative homology class of Σ in H2(Ω, ∂Ω,R). For V a fluid knot, we can specify

its overall flux F(V) by its fluxes through a collection of surfaces Σ1, ...,Σg that

generate the relative homology group. Here g is the genus of ∂Ω.

Example 2.4. Let V be a fluid knot. In the closed ball, the flux FΣ(V ) = 0

through any surface Σ. For the solid torus, the flux F (V ) can be computed using
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any cross-sectional surface; the solid double torus requires two flux values to specify

the overall flux F (V ).

Taylor [11], [12] concluded that both magnetic helicity and toroidal magnetic

flux will be approximately conserved in a low-β plasma (one where magnetic forces

dominate hydrodynamic forces) that is confined in a toroidal vessel with perfectly

conducting walls. Thus we consider

The Taylor Problem Among all fluid knots on Ω with fixed helicity and (toroidal)

flux values, find the one with minimum energy.

Taylor claimed that these energy minimizing fields represented the stable plasma

states actually observed experimentally in tokamaks, toroidal chambers used in

plasma experiments.

In this paper we begin with background information first on the Hodge Theorem

for vector fields in Ω, then on plasma physics and experiments related to the Taylor

problem. We begin our analysis by summarizing the Woltjer problem on the solid

flat torus. Then we show the existence of an energy-minimizing vector field for the

Taylor problem using functional analysis techniques and prove that the minimizer

is a principal eigenfield of the curl operator restricted to the subset of fluid knots

which satisfy the helicity and flux restrictions. This leads directly into the heart
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of this paper, a detailed explicit solution of the Taylor problem on the solid flat

torus. Finally we conclude by comparing experimental and theoretical results and

by describing unsolved problems of interest.

3 The Hodge Decomposition Theorem

We make frequent use of the Hodge Theorem applied to domains in R3. Cantarella,

DeTurck, and Gluck provide a detailed treatment of this subject in [4].

Theorem 3.1. There is a decomposition of V F (Ω) into five mutually orthogonal

subspaces,

V F (Ω) = FK ⊕HK ⊕ CG⊕HG⊕GG

FK = fluxless knots = {∇ · V = 0, V · n = 0, all interior fluxes = 0}

HK = harmonic knots = {∇ · V = 0, V · n = 0, ∇× V = 0}

CG = curly gradients = {V = ∇φ, ∇ · V = 0, all boundary fluxes = 0}

HG = harmonic gradients = {V = ∇φ, ∇ · V = 0, φ locally constant on ∂Ω}

GG = grounded gradients = {V = ∇φ, φ|∂Ω = 0}

In addition, HK ∼= H1(Ω,R) ∼= Rgenus ∂Ω , and
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ker div = FK ⊕ HK ⊕ CG ⊕ HG

image curl = FK ⊕ HK ⊕ CG

ker curl = HK ⊕ CG ⊕ HG ⊕ GG

image grad = CG ⊕ HG ⊕ GG

Definition 3.2. Define fluid knots (which we will truncate to ”knots”) as the

subspace K(Ω) = FK ⊕HK. Similarly, define gradients as the subspace G(Ω) =

CG⊕HG⊕GG.

Definition 3.3. A vector field is said to be Amperian if it integrates to 0 around

every closed curve C on ∂Ω that bounds a surface outside Ω.

Clearly all gradients are Amperian. Which knots are Amperian? Restrict the

Biot-Savart operator to knots and project its image onto knots; call the resulting

operator BS ′ : K(Ω) → K(Ω).

Proposition 3.4. The image of BS ′ is equal to the space of Amperian knots AK(Ω).

4 Plasma Physics Background

Plasmas are conducting fluids, usually gases, consisting of charged particles. Heated

sufficiently, most matter ionizes into a plasma state. We restrict ourselves to the

study of low-β plasmas, ones where the electromagnetic forces have a dominant
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effect when compared to hydrodynamic effects. These are characterized by a small

resistivity and small viscosity.

In non-turbulent plasmas, energy and helicity typically decay due to their in-

herent resistivity. The dissipation rate is proportional to the resisitivity value; in

a low-β plasma this time scale can be quite large. If the plasma is isolated, it will

eventually evolve into a vacuum field with no current.

A common setting for experiments on plasmas is a tokamak. A tokamak is a

toroidal plasma chamber surrounded by coils which generate a large magnetic field

inside. When a plasma is introduced into the chamber and a toroidal current is

added, the plasma flow becomes turbulent. The current heats and compresses the

plasma, a result called the pinch effect. Experiments typically show that toroidal

field near the walls is in the opposite direction of the average toroidal field in the

chamber. This is known as the reversed field pinch.

Laboratory results demonstrate that the plasma experiences a highly turbulent

phase when the current is first introduced and then quickly reaches a quiescent

state; this is called plasma relaxation. Turbulence allows the plasma to quickly

attain a particular state of minimum energy. Relaxation occurs on a much smaller

time-scale than energy loss due to resistive decay. The helicity and flux do not vary

significantly during this turbulent period and are essentially preserved during the

relaxation process.



11

See [12], [15] for more information.

5 The Woltjer Problem on D2 × S1

The solid flat torus D2×S1 is not actually a domain in R3. For convenience, consider

its universal covering space D2 × R, an infinite cylinder in R3 of radius a; we use

cylindrical coordinates (r, ϕ, z) to describe this space. Smooth vector fields on the

solid flat torus are precisely those on the infinite cylinder which are periodic in the

ẑ direction with period `. If we write

V (r, ϕ, z) = u(r, ϕ, z)r̂ + v(r, ϕ, z)ϕ̂+ w(r, ϕ, z)ẑ ,

then V (r, ϕ, z+`) = V (r, ϕ, z). Equivalently the three component functions u(r, ϕ, z),

v(r, ϕ, z) and w(r, ϕ, z) must have the same periodicity.

The Woltjer Problem Among all divergence-free vector fields on Ω tangent to the

boundary ∂Ω with a fixed helicity value, find the one with minimum energy.

First, we show that an energy minimizing vector field V must be an eigenfield

of the modified Biot-Savart operator BS ′. Notice BS ′ extends to a compact, self-

adjoint operator on K(Ω), the L2 completion of the fluid knots K(Ω). By the

spectral theorem, BS ′ is diagonalizable on V F (Ω), i.e., for some orthonormal basis
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of vector fields {eα} in K(Ω), we have BS ′(V ) =
∑

α〈V, eα〉µαeα for any V ∈ K(Ω).

The set of eigenvalues {µα} has countably many distinct elements, is bounded, and

converges to 0. Let µ1 be the eigenvalue of BS ′ with the largest absolute value.

Helicity is now related to energy as follows:

H(V ) = 〈BS ′(V ), V 〉 =
∑

α

〈V, eα〉2µα ≤ |µ1|
∑

α

〈V, eα〉2 = |µ1|E(V )

E(V ) ≥ H(V )

|µ1|

So for a fixed helicity value, an energy minimizing field V must lie in the eigenspace

associated to µ1, i.e., BS ′(V ) = µ1V .

Let λ = µ−1
1 ; λ is necessarily nonzero. Since curl is a left inverse of BS ′, an

energy minimizing V must be an eigenfield of curl, i.e., ∇× V = λV . Also, V is

an eigenfield of the Laplacian, since ∆(V ) = ∇× (∇× V ) = −λ2V . By elliptic

regularity, we are now assured that the minimizing field V is indeed smooth.

Cantarella, DeTurck, and Gluck solved the Woltjer problem on the solid flat

torus by finding all curl eigenfields there that are Amperian knots and then compar-

ing their energies to find the minimizer. A presentation of this roster of eigenfields

follows; we use it for our work on the Taylor problem. The calculations below are

based on a more detailed treatment in their upcoming paper [1].
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To begin, consider vector fields with only radial dependence, i.e., V = V (r). For

any choice of λ, the field V0 is a curl eigenfield:

V0 = J1(λr)ϕ̂ + J0(λr)ẑ ,

where Jm(x) denotes the mth order Bessel function of the first kind.

For arbitrary vector fields, we obtain four infinite families of curl eigenfields

for each λ given by V ±i
m,k. They depend on the pair (m, k), where m = 0, 1, 2, ...,

k = 0,
2π

`
,
4π

`
, ..., and n =

√
λ2 − k2 > 0.

V ±1
m,k =

(
−m
r
Jm(nr)∓ mk

λr
Jm(nr)± nk

λ
Jm+1(nr)

)
sin(mϕ± kz) r̂

+

(
−m
r
Jm(nr)∓ mk

λr
Jm(nr) + nJm+1(nr)

)
cos(mϕ± kz) ϕ̂

+
n2

λ
Jm(nr) cos(mϕ± kz) ẑ ,

V ±2
m,k =

(
m

r
Jm(nr)± mk

λr
Jm(nr)∓ nk

λ
Jm+1(nr)

)
cos(mϕ± kz) r̂

+

(
−m
r
Jm(nr)∓ mk

λr
Jm(nr) + nJm+1(nr)

)
sin(mϕ± kz) ϕ̂

+
n2

λ
Jm(nr) sin(mϕ± kz) ẑ ,

(5.1)

When both m and k are nonzero, we obtain four linearly independent eigenfields

for the eigenvalue λ = +
√
k2 + n2 and four for λ = −

√
k2 + n2. Otherwise, if only

one of m or k is nonzero, there are only two linearly independent solutions. The

field V0 corresponds to the case where m and k are both zero, hence its notation.



14

To solve the Woltjer problem, we consider as candidates only those fields from

above which are Amperian knots. All curl eigenfields (for λ 6= 0) are automatically

divergence-free, so we need only check whether the candidate field is both tangent

to the boundary and Amperian. On the flat solid torus, a knot is Amperian if and

only if its ẑ component on the boundary vanishes; we invite the reader to confirm

this.

First consider a field of the form V0: it is tangent to the boundary and ergo a knot.

To be Amperian, we require J0(λa)ẑ = 0. Only a discrete collection of eigenvalues

λ fulfill this requirement; the lowest positive one λ0 satisfies λ0a ≈ 2.4048, the first

zero of J0(x).

Now consider any linear combination of eigenfields V ±i
m,k having the same eigen-

value λ. Its r̂ component includes terms of the form cos(mϕ+ kz) and must vanish

on the boundary. This can only occur if the r̂ component vanishes at r = a for

each fixed pair of values (m, k). So it suffices to consider only one such pair; the r̂

component of V ±i
m,k is identically zero on the boundary precisely when

m

a
Jm(na) = ±

(
−mk
λa

Jm(na) +
nk

λ
Jm+1(na)

)
(5.2)

where the sign of the right hand side is the same as the sign of ±i. This requirement

again forces the acceptable eigenvalues to be discrete. Careful analysis shows that

the eigenvalue λm,k obtained from (m, k) 6= (0, 0) is larger than the minimal value

λ0 found above.
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Thus the solution to the Woltjer problem for positive helicity is some constant

multiple of the Lundquist field

V0 = J1(λ0r)ϕ̂ + J0(λ0r)ẑ .

corresponding to λ0 ≈ 2.4048
a

. The helicity determines which constant multiple.

The Woltjer problem for negative helicity requires negative eigenvalues. Consider

the transformation (r, φ, z) → (r,−φ, z) which maps the Lundquist field to

Ṽ0 = −J1(λ0r)ϕ̂ + J0(λ0r)ẑ

which has eigenvalue −λ0. By the arguments above, −λ0 is the largest negative

eigenvalue meeting our requirements. Thus, some constant multiple of Ṽ0 solves the

Woltjer problem for negative helicity.

6 Existence of an Energy Minimizer

[I am indebted to Ilya Elson for suggesting many of the results and some of the

methods in this section.]

For the Woltjer problem, we proved the existence of an energy minimizer by

establishing that such a field was a principal eigenfield of the modified Biot-Savart

operator BS ′, which is compact and self-adjoint. For the Taylor problem, the min-

imizer is not necessarily an eigenfield of BS ′ (although it remains an eigenfield of
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curl), so existence requires a different argument. The following theorem will estab-

lish that a solution to the Taylor problem must exist.

Theorem 6.1. Let B be a continuous, compact operator on a Hilbert space H. Let

Φ be a continuous linear functional on H; let h, f ∈ R. Suppose that the set

S = {v ∈ H : 〈Bv, v〉 = h, Φ(v) = f}

is non-empty. Then there exists v ∈ S of minimal norm.

Consider the L2 completion of smooth knots on Ω as K(Ω), a Hilbert space. The

flux F is a continuous linear functional on K(Ω) and thus on its completion. The

modified Biot-Savart operator BS ′ extends to a continuous, compact operator on

K(Ω). Provided that all pairs of prescribed helicity and flux values are physically

attainable, the above theorem guarantees that a field of minimum energy exists for

any helicity and flux prescription. In the next section we will show that any energy

minimizer V must be an eigenfield of the curl operator. Since V is divergence-free,

it is also an eigenfield of the Laplacian operator. Then by elliptic regularity, V must

be smooth, so it lies in V F (Ω).

Are all pairs of helicity and flux values attainable? On the solid flat torus, the

answer is yes; our solution in section 8 demonstrates a solution for any values. On

arbitrary domains we expect the answer is also yes, but this is an unsolved problem.

Before beginning the proof of this theorem, we exhibit some facts from functional
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analysis. Recall that the dual space X∗ to X is the collection of all continuous linear

maps X → R.

Definition 6.2. Let X be a Banach space. The weak topology on X is given by

the collection of sets f−1((a, b)) for f ∈ X∗. A sequence (or net) {xn} converges

weakly to x if ∀f ∈ X∗ the sequence f(xn) converges to f(x). The usual topology

on X given by the norm is also called the strong topology.

Theorem 6.3. (Banach-Steinhaus) Let X and Y be Banach spaces and let {An}

be a sequence of bounded transformations from X to Y . If for all x ∈ X there exists

y ∈ Y such that ‖Anx−y‖ → 0, then there is a bounded transformation A such that

‖Anx− Ax‖ → 0 for all x ∈ X and sup ‖An‖ <∞.

Lemma 6.4. A weakly convergent sequence is bounded.

Proof. Consider the canonical embedding i : X ↪→ X∗∗, i : x 7→ x̂, where x̂(f) is

defined to be f(x) for f ∈ X∗. It follows that ‖x̂‖ = ‖x‖.

Let xn → x weakly. Then x̂n(f) = f(xn) converges to f(x) for all f ∈ X∗,

and so sup x̂n(f) < ∞. By the Banach-Steinhaus Theorem, sup ‖x̂n‖ < ∞, so the

sequence {xn} is bounded.

Definition 6.5. Let X,Y be Banach spaces, and let A : X → Y be a bounded

operator. Call A completely continuous if for any sequence {xn} that converges

weakly to x, then {Axn} converges strongly to Ax.
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Lemma 6.6. If A : X → Y is compact, then A is completely continuous.

The converse holds if X is reflexive, i.e., X = X∗∗. For a proof of both the

lemma and converse, see [7], Proposition 6.3.3.

Lemma 6.7. If {xn} weakly converges to x and {yn} strongly converges to y, then

〈xn, yn〉 weakly converges to 〈x, y〉.

Proof. By Lemma 6.4, {xn} is bounded by some M <∞.

|〈xn, yn〉 − 〈x, y〉| ≤ |〈xn, yn〉 − 〈xn, y〉|+ |〈xn, y〉 − 〈x, y〉|

≤ ‖xn‖‖yn − y‖+ |〈xn − x, y〉|

< M
ε

2M
+
ε

2
= ε

if n is chosen large enough such that both ‖yn − y‖ < ε
2M

and |〈xn − x, y〉| < ε
2
,

which is possible by weak convergence since 〈·, y〉 is a linear functional.

Lemma 6.8. If {xn} weakly converges to x, then ‖x‖ ≤ lim infn ‖xn‖ (i.e., the

norm is a weakly lower semicontinuous function).

Proof. Begin with 〈xn, x〉 ≤ ‖xn‖‖x‖ and take the lim inf of each side:

lim infn |〈xn, x〉| ≤ ‖x‖ lim infn ‖xn‖. But limn→∞〈xn, x〉 = ‖x‖2,

so ‖x‖ ≤ lim infn ‖xn‖.

Now we are ready to prove the existence theorem:
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Proof. Some closed ball of radius ρ about the origin must intersect the set S, which

was assumed non-empty. Let r be the infimum of all such ρ; let {vk} ∈ S be a

sequence such that ‖vk‖ → r. The sequence {vk} is thus bounded. Now the Banach-

Alaoglu Theorem in Hilbert spaces states that the unit ball is weakly compact, so

{vk} has some weakly convergent subsequence (we keep the same notation {vk} for

it) to some v ∈ H. We claim v ∈ S.

One condition follows easily: Φ(v) = limn→∞Φ(vk). But Φ(vk) = f∀k, so Φ(v) =

f . As for the second condition, H(vk) = 〈vk, Bvk〉 = h. Now, Bvk is strongly

convergent since B is compact and thus completely continuous. Then Lemma 6.7

implies H(vk) → H(v).

So v ∈ S; it is minimal since by Lemma 6.8, ‖v‖ ≤ lim infn ‖vk‖ = r.

7 The Energy Minimizer Has the Smallest Eigen-

value

In this section, we show that the energy-minimizing solution of the Taylor problem

corresponds to the principal eigenvalue of the curl operator on all fluid knots with

the prescribed helicity and flux. This useful result reduces the Taylor problem into

an eigenvalue problem. Throughout this section, we assume all vector fields V are

fluid knots on Ω.
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Theorem 7.1. A solution to the Taylor problem is an eigenfield of the curl operator.

Proof. Choose a set of surfaces {Σi} which generate the relative homology group

H2(Ω, ∂Ω,R). Let Fi(V ) =
∮

Σi
V · ni dA be the flux of V through Σi. As discussed

in section 2, the overall flux F (V ) is defined by the values Fi(V ). To each surface

Σi, there is associated a unique vector field Wi which measures flux through the

surface, in the sense that Fi(V ) = 〈V,Wi〉. The Wi must be orthogonal to fluxless

knots and therefore lie in the kernel of curl.

We use a Lagrange multipliers approach. Define

Φ(V ) = E(V )− λH(V )− 2
∑

i

µiFi(V )

Φ(V ) = E(V )− λ〈V,BS ′(V )〉 − 2
∑

i

µi〈V,Wi〉

Any energy minimizer V must satisfy, for any Ṽ ∈ K(Ω),

δΦV (Ṽ ) =
d

dt

∣∣
t=0

Φ(V + tṼ ) = 0

= 2〈V, Ṽ 〉 − λ〈BS ′(V ), Ṽ 〉 − λ〈BS ′(Ṽ ), V 〉 − 2
∑

i

µi〈Ṽ ,Wi〉 = 0

Since BS ′ is self-adjoint, we have

δΦV (Ṽ ) = 2〈

(
V − λBS ′(V )−

∑
i

µiWi

)
, Ṽ 〉 = 0 .

Since this holds for any Ṽ , we have that

V − λBS ′(V )−
∑

i

µiWi = 0 .

Now take the curl of both sides and find that ∇× V − λV = 0.
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Definition 7.2. For a closed curve C ⊂ ∂Ω, the period pC(V ) of the vector field

V is its integral around C, pC(V ) =
∮

C
V · ds.

Consider loops on the boundary ∂Ω of the domain. Denote a loop which bounds

some surface inside the domain as M , and a loop on ∂Ω which bounds only surfaces

outside the domain as L. We can choose a collection of loops {Lj} that form a

minimal set of generators for the homology H1(Ω,R) and also a collection of loops

{Mj} such that the corresponding surfaces Σj form a minimal set of generators for

the homology H2(Ω, ∂Ω,R). Many vector fields, including all gradients, harmonic

knots, and curl eigenfields, have periods around these loops that do not depend on

the choice of Lj and Mj within their respective homology classes.

Lemma 7.3. Let V ∈ K(Ω) be any eigenfield of the curl operator with eigenvalue

λ 6= 0. Let the vector fields W1, ...,Wn be a set of generators for the harmonic

knots such that pLj
(Wi) = δij. Then any Amperian vector potential B of V , i.e.,

∇×B = V , has the form

B =
1

λ
V +∇η −

∑ pLi
(V )

λ
Wi ,

for a suitable choice of η.

Proof. The existence of the {Wi} follows from the one-to-one correspondence be-

tween harmonic knots HK(Ω) and homology H1(Ω,R) (see the Hodge Theorem

section).
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Clearly a vector potential B must equal
1

λ
V plus some term from the kernel of

curl. So

B =
1

λ
V +∇η +

∑
ciWi.

To find the constants ci, we use the Amperian condition:

0 = pLi
(B) =

∮
Li

B · ds =
∑

i

1

λ
pLi

(V ) + ci

ci = −1

λ
pLi

(V )

Corollary 7.4. BS ′(V ) =
1

λ
V −

∑ pLi
(V )

λ
Wi

Example 7.5. On the solid ball B3, there are no nontrivial harmonic knots since

H1(B
3,R) = 0, so B = 1

λ
V +∇η.

On the solid flat torus D2×S1, the harmonic knots form a space of dimension 1

since H1(D
2 × S1,R) = R. The vector field W =

1

`
ẑ generates the harmonic knots

and

B =
1

λ
V +∇η − pL(V )

λ`
ẑ .

On the usual solid torus of revolution embedded in R3, the vector fieldW =
1

2πr
ϕ̂

generates the harmonic knots and

B =
1

λ
V +∇η − pL(V )

2πrλ
ϕ̂ .
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By Proposition 3.4, BS ′(V ) is Amperian. So BS ′(V ) satisfies Lemma 7.3, and

B and BS ′(V ) can only differ by a gradient; thus B = BS ′(V ) +∇γ.

Lemma 7.6. With V and B as above, H(V ) = 〈V,B〉

Proof. H(V ) = 〈V,BS ′(V )〉 = 〈V,B〉 − 〈V,∇γ〉. But V is a knot and therefore

orthogonal to gradients.

Proposition 7.7. Let V1, V2 ∈ K(Ω) be curl eigenfields on Ω with equal fluxes. Then

there exist corresponding vector potentials B1 and B2 which agree on the boundary

∂Ω.

Proof. Let λ1 and λ2 be the respective eigenvalues of V1 and V2. From Lemma 7.3,

write

B1 =
1

λ1

V1 +∇η1 −
∑ pLi

(V1)

λ
Wi .

B2 =
1

λ2

V2 +∇η2 −
∑ pLi

(V2)

λ
Wi .

Then

B1 −B2 =
1

λ1

V1 −
1

λ2

V2 −
∑ pLi

(V1 − V2)

λ
Wi −∇(η2 − η1) .

Let U = B1−B2 +∇(η2− η1) = 1
λ1
V1− 1

λ2
V2−

∑ pLi
(V1−V2)

λ
Wi . Then it suffices

to show that U = ∇ψ on ∂Ω. Notice that U is a fluid knot. All of its periods are

zero:

pLi
(U) = pLi

(B1)− pLi
(B2) = 0− 0 = 0

pMi
(U) =

∮
Mi

(
1

λ1

V1 +
1

λ2

V2) · ds =

∫
Σi

(V1 + V2) · n̂i dA = Fi(V1)− Fi(V2) = 0,
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since V1 and V2 are assumed to have the same flux values.

Since all periods are zero, the field U |∂Ω is conservative. On the boundary it must

be a gradient ∇|∂Ωψ, where the subscript denotes that this is a two-dimensional

gradient taken on the surface ∂Ω. Extend ψ on a neighborhood of the boundary

so that
∂ψ

∂n
= 0 on ∂Ω, and then extend it to the rest of the domain in a smooth

manner. Then U = ∇ψ on the boundary. So we have shown that by choosing the

gradient terms appropriately, B1 and B2 will agree on the boundary.

Proposition 7.8. Suppose we have two curl eigenfields V1 and V2 with corresponding

eigenvalues λ1 and λ2 that have the same helicity H and flux F. Let B1 and B2 be

Amperian vector fields such that ∇×Bi = Vi that agree on ∂Ω. Then, the energy

of their difference is given by

E(V2 − V1) = (λ2 + λ1)

∫
Ω

(B2 −B1) · (∇×B2) dvol

Proof. Start with E(V2 − V1) = 〈∇ × (B2 −B1),∇× (B2 −B1)〉.

We use the following identity from vector calculus,

C · (∇×D) = D · (∇× C) +∇ · (D × C) (7.1)

Then,

E(V2 − V1) =

∫
Ω

∇ · ((B2 −B1)× (∇× (B2 −B1))) dvol

+

∫
Ω

(B2 −B1) · [∇× (∇× (B2 −B1))] dvol

=

∫
∂Ω

((B2 −B1)× [∇× (B2 −B1)]) · n̂ dA+ 〈(B2 −B1), (λ2V2 − λ1V1)〉 .
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Since B1 and B2 agree on the boundary, the first term vanishes. Then,

E(V2 − V1) = 0 + 〈(B2 −B1), (λ2V2 − λ1V1)〉

= λ2〈B2, V2〉+ λ1〈B1, V1〉 − λ2〈B2, V1〉 − λ1〈B1, V2〉 .
(7.2)

By substituting the identity (7.1) into the inner product and applying the diver-

gence theorem, we obtain

〈B2, V1〉 =

∫
Ω

B1 · (∇×B2) dvol +

∫
Ω

∇ · (B1 ×B2) dvol

= 〈B2, V1〉+

∫
∂Ω

(B1 ×B2) · n̂ dA .

But the second term vanishes since B1 and B2 agree on the boundary. Therefore

we have 〈B2, V1〉 = 〈B1, V2〉.

Proceeding, equation (7.2) becomes

E(V2 − V1) = (λ2 + λ1)H − (λ2 + λ1)〈B1, V2〉 .

Finally we conclude

E(V2 − V1) = (λ2 + λ1)〈(B2 −B1), V2〉 .

Remark 7.9. Notice by symmetry that 〈(B2 −B1), V2〉 = 〈(B1 −B2), V1〉. We will

use this fact in proving the next statement.

Proposition 7.10. With the same assumptions as above, the difference of the en-

ergies of V1 and V2 is given by

E(V2)− E(V1) = (λ2 − λ1)

∫
Ω

(B2 −B1) · ∇ ×B2 dvol
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on the torus that winds once around the short way and bounds a surface inside the

torus as M (for meridional), and a loop on the torus that winds once around the

long way and bounds only surfaces outside the domain as L (for latitudinal). Recall

that for a large class of vector fields, including curl eigenfields, harmonic knots, and

gradients, their meridional and latitudinal periods are independent of the choice of

loops L and M . So we make specific choices on the flat torus; let M be the loop in

the ϕ̂ direction for fixed r = a, z = z0 and let L as the loop from z = 0 to z = `

(these two points are identified) for fixed r = a, ϕ = ϕ0.

Proposition 8.1. Let V be a fluid knot and a curl eigenfield. Then pM(V ) =

λF (V ).

Proof. pM(V ) =
∮

M
V · ds =

∫
ΣM

(∇× V ) · n dA =
∫

ΣM
λV · n dA = λF (V )

We begin our analysis by examining the zero eigenvalue case. Let V be a fluid

knot which is a curl eigenfield with eigenvalue λ = 0, i.e., ∇× V = 0. Then V

must be a harmonic knot since it is in the kernel of curl; on the flat solid torus,

V = cẑ. Then the flux F (V ) = πa2c. Recall that helicity measures the coiling and

wrapping of field lines; by this definition, the helicity of V is necessarily 0. One can

also obtain this by noting that BS(V ) must be orthogonal to ẑ from its integral

formula, so H(V ) = 〈BS(V ), V 〉 = 0.

Theorem 8.2. For the case of zero helicity, the solution to the Taylor problem

corresponds to eigenfields with eigenvalue 0.
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Proof. Let V = cẑ be the eigenfield given above with eigenvalue λ = 0. Its flux is

F (V ) = πa2c and its energy is E(V ) = πa2`c2. Suppose a vector fieldW ∈ K(Ω) has

flux F (W ) = πa2c and zero helicity. Use the Hodge Theorem to decompose W into

a fluxless knot and a harmonic part, W = WFK + WHK . Now F (W ) = F (WHK),

which implies WHK = V . So

E(V ) = E(WHK) ≤ E(W ) = E(WFK) + E(WHK) .

Proposition 8.3. E(V ) = λH(V ) + pL(V )F (V ) .

Proof. This holds for λ = 0 by the above calculations. For λ 6= 0, recall Corollary

7.4, BS ′(V ) =
1

λ
V − pL(V )

λ`
ẑ. Then the helicity

H(V ) = 〈V,BS ′(V )〉 =
1

λ
〈V, V 〉 − pL(V )

λ
〈V, 1

`
ẑ〉 =

1

λ
E(V )− pL(V )

λ
F (V ),

since the vector field
1

`
ẑ is the unique flux-measuring field on D2×S1, i.e., F (V ) =

〈V, 1
`
ẑ〉.

Now we may assume λ 6= 0. In solving the Woltjer problem, we found all curl

eigenfields with λ 6= 0 that are fluid knots: the Lundquist fields V0 and fields of the

form V ±i
m,k (see eq. 5.1) whose r̂ component vanished on the boundary.

V0 = J1(λr)ϕ̂ + J0(λr)ẑ
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V +1
m,k =

(
−m
r
Jm(nr)− mk

λr
Jm(nr) +

nk

λ
Jm+1(nr)

)
sin(mϕ+ kz) r̂

+

(
−m
r
Jm(nr)− mk

λr
Jm(nr) + nJm+1(nr)

)
cos(mϕ+ kz) ϕ̂

+
n2

λ
Jm(nr) cos(mϕ+ kz) ẑ

(5.1)

Here m = 0, 1, 2, ..., k = 0,
2π

`
,
4π

`
, ..., and n2 = λ2 − k2 > 0. Define the integer k̃

so that k =
2π

`
k̃. We adopt the convention of using k̃ in all references to the fields

Vm,k.

In order for V ±i
m,k to be tangent at the boundary, the following equation must

hold:

m

a
Jm(na) = ±

(
−mk
λa

Jm(na) +
nk

λ
Jm+1(na)

)
. (5.2)

Proposition 8.4. For the Lundquist fields V0, all pertinent information for the

Taylor problem is easily calculated.

pL(V0) = `J0(λa)

F (V0) =
2πa

λ
J1(λa)

pM(V0) = 2πaJ1(λa)

E(V0) = 2π`
(
a2J2

0 (λa) + a2J2
1 (λa)− a

λ
J0(λa)J1(λa)

)
H(V0) =

2π`

λ

(
a2J2

0 (λa) + a2J2
1 (λa)− 2a

λ
J0(λa)J1(λa)

)
Proposition 8.5. For the fields V i

m,k, for all i, pL(Vm,k) = 0, F (Vm,k) = 0 .









35

Theorem 8.8. The lowest eigenvalue from the set of {λm,k} calculated in Step 2

occurs for m = 1 and k ≈ 1.25/a.

Proof. To outline the proof, we show first that only the eigenvalues λ0,1 and λ1,k

need to be considered. Then we show that λ0,1 > λ1,0 which guarantees the lowest

eigenvalue has m = 1. Finally, the result for k is from Taylor [12](section III).

First we show that λ1,k < λm,k for any m > 1 and any fixed k 6= 0. The boundary

condition (5.2) reduces to

Jm+1(na)

mJm(na)
=
λ+ k

kna
.

We seek the lowest value of n which solves this equation. Define

gm(x) =
Jm+1(x)

mJm(x)

ψ(x) ≡ λ(x) + k

kx
.

The latter function is positive and decreasing for x > 0 and does not depend on m.

To find the minimum n, we examine where gm(x) = ψ(x).

We have that g1(x) > gm(x) on the interval (0, ζ1), where ζ1 = 3.832 is the first

positive zero of J1, and that g1(0) = gm(0) = 0. Then g1 intersects ψ before gm

does, so we obtain the smallest value of n. Therefore the smallest λ =
√
n2 + k2

occurs for the value m = 1.

Secondly, this result holds for k = 0: the boundary condition (5.2) becomes

m

a
Jm(λa) = 0.
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Thus λm,0 is the first positive zero of Jm(x); it is lowest for m = 1, so we have

λ1,0 =
3.832

a
< λm,0 for m > 1.

Third, for m = 0, we show λ0,1 < λ0,k for k > 1. In this case, the boundary

condition (5.2) becomes

nk

λ
J1(na) = 0.

So na must be a zero of J1(x); from section 5, we know n 6= 0. We choose the

smallest positive value n = 3.832/a. Then λ0,k =
√(

3.832
a

)2
+ k2 is increasing in k.

So k̃ = 1 produces the smallest eigenvalue of this group. We cannot choose k̃ = 0

because that yields V0, the Lundquist field considered in Step 1.

So we have shown there are only two remaining possibilities, λ0,1 and λ1,k. By

inspection λ0,1 > λ1,0 =
3.832

a
.

We hereafter will refer to the mixed solution eigenfield which has the lowest

eigenvalue λm,k as W0.

Step 4. We could consider a linear combination of more than two curl eigenfields,

W = α0V0 +
∑

m,k,i α
i
m,kV

i
m,k. In order for W to be tangent to the boundary, a sum

involving multiples of cos(mϕ+ kz) and similar terms must be zero. This can only

occur if each term αi
m,kV

i
m,k in the sum individually vanishes. As in Step 3, we can

choose λm,k to force one term to vanish. But the other coefficients must be zero so

that all other terms vanish. Thus we can deal with one specific value of (m, k).
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Proposition 8.9. For fixed m, k values, if V +i
m,k has an eigenvalue λ, then V −j

m,k has

an eigenvalue −λ, where i, j ∈ {1, 2}. The lowest positive eigenvalue λ+ of V +i
m,k is

less than the norm of its greatest negative eigenvalue λ−.

Proof. By rewriting the boundary condition (5.2) the first statement is obvious

m

a
Jm(na) = ±1

λ

(
−mk

a
Jm(na) + nkJm+1(na)

)
. (8.2)

We obtained λ+ in Step 3 by defining the function gm(x) ≡ Jm+1(x)

mJm(x)
where x =

na and solving gm(x) =
λ+ + k

kx
> 0. This gave us an n+ value, dependent on (m, k);

when m = 1, we obtained a minimal n+ value which was less than 3.832/a. For

λ−, we are instead solving gm(x) =
k + λ−

kx
< 0. The function gm(x) does not attain

negative values until x > ζm, the first zero of Jm(x). Thus the minimal n− value for

this case is larger than 3.832/a. Since n+ > n−, we see λ+ > λ−.

We seek linear combinations of fields with the same eigenvalues. Since both λ

and −λ cannot both be eigenvalues, we can only combine two fields, e.g., V 1
m,k and

V 2
m,k. Taking a linear combination of the two only produces a phase angle shift ϕ0

from considering one alone, and clearly these fields have the same energy. So we are

justified in considering just V 1
m,k in our analysis.

Step 5: Compare Eigenvalues. Determine which of the two fields V0 and W0,

given in Steps 1-3, has the lower eigenvalue. According to Taylor [12](section III),
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the eigenvalue for W0 is approximately 3.11/a. Then the solution to the Taylor

problem is:

Theorem 8.10. (Taylor Problem Solution) For nonzero helicity, calculate the

eigenvalue λ0 as in Step 1. If λ0 < 3.11/a, then the vector field cV0 is the solution,

where the flux can be used to determine the constant c. If λ0 > 3.11/a, then we have

a ”mixed” solution W = αV0 + βV1,k, where the constants α and β are determined

from the helicity and flux values, and k depends on the radius a of the domain.

In the case of zero helicity, the Taylor solution is given by the harmonic knot

V = cẑ, where the flux determines the constant c.

9 Conclusions

First, some bookkeeping. Two results appear in this paper without proof. First, in

section 6 we asked is every prescription of helicity and flux values physically realized

by some vector field? Proposition 8.6 guarantees this on the solid flat torus. We

hypothesize that it is true for arbitrary domains.

Second, in Proposition 8.1, we quoted Taylor’s claim that the lowest eigenvalue

λm,k has k ≈ 1.25/a; this identity remains to be proven. Taylor in [12] references

his own internal unpublished memo for this result. In the same paper, Taylor also

claims that the mixed solution W0 has eigenvalue λ0 ≈ 3.11/a. Both values agree

with our numerically obtained results.
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The vector fields predicted by the solution do indeed exhibit the reversed field

pinch found experimentally; see Taylor’s paper [12] for certain experimental results.

Reversed field pinch occurs in practice for eigenvalues slightly greater than those

predicted by theory. Taylor attributes this result to increased plasma resistivity

near the boundary walls.

In a literature search, we found no explicit solutions of the Taylor problem on

other domains nor any generalizations to arbitrary domains. This question regarding

arbitrary domains is likely of interest to both mathematicians and physicists, and

it is the obvious continuation of this work.
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