Math 331/631: Geometry
Syllabus, Fall 2009

I have discovered such wonderful things that I was amazed... out of nothing I have created a strange new universe. – János Bolyai, upon discovering non-Euclidean geometry

Professor: Dr. Jason Parsley
Office: 334 Manchester Hall
Office hours: Tu 10-11am; TuTh 1:30-3; W 3-4; and by appointment
Online office hour: Tu. 9-10pm
Email: parslrj AT wfu.edu

1. Course Time & Location: TuTh 3-4:20, Manchester 124.

 Donal O'Shea, The Poincaré Conjecture
 Edwin Abbott, Flatland (any edition)

We will cover several chapters of Our emphasis will be towards understanding hyperbolic geometry through one of its models – the half-plane, and how it differs from standard Euclidean geometry.

3. Course description: The subject of geometry was first treated formally and axiomatically by Euclid around 300 B.C. He listed five ‘postulates’ or starting points. Assuming these five statements, Euclid showed that almost every fact we know and love about geometry in a plane was a direct consequence. Four of these postulates are very natural, but the fifth one, Euclid’s parallel postulate, was disputed. It states that given a line and a point not on the line, there exists a unique line through the point that is parallel to the first line.

For over 2000 years, mathematicians tried unsuccessfully to show that this parallel postulate was a consequence of the first four. In the 1800’s, three mathematicians, Bolyai, Gauss, and Lobachevsky, staged a geometric coup; they showed the first 4 Euclidean postulates could hold while the parallel postulate was false! They were working independently, in different countries, but all discovered the same thing around the same time! What they constructed was non-Euclidean geometry, a rich and fascinating subject which forms the core of this course.

“The overthrow of Euclidean geometry is the most important event in the history of science for the epistemologist” – Hilary Putnam. Non-Euclidean geometry has great philosophical implications and will lead us to questioning everything we knew from high school geometry. In particular, most scientists agree the shape of the universe is non-Euclidean, though they cannot agree on its precise geometry. This course will examine hyperbolic geometry, which is non-Euclidean.

4. Homework. Homework will be assigned weekly and will be due on Thursdays, at the start of class. The graduate version of the course will have more stringent homework assignments, in the form of additional problems and/or more difficult problems.
Academic integrity is something I take quite seriously. You are bound to uphold the University Honor Code. For this course, here are my expectations: the assignments that you submit should be your original work. Assignments should be completed individually, not as a group. The key ideas for the problems should be yours; if you want to use an idea that is not yours, you must reference how you came to understand it. Having said all of this, I encourage you to discuss the course material with your classmates.

5. Writing: We begin the class by reading some of The Poincaré Conjecture, to gain some perspective. In some of our first few homeworks, you will discuss it some. We will also read Flatland, a mathematical novel. You will write a 3-5 page essay related to the book, due in October; details to be announced. See the list of topics.

6. Midterm Exam: There will be one midterm exam on Th., Oct. 22 but no final exam. The math 631 exam will be more challenging than the math 331 exam. The midterm exam will consist of an in-class portion followed by a take-home portion.

7. Final Project: In lieu of a final exam, you will complete a final project for the course. See the preliminary list of topics; you may suggest your own topic (with my approval). The end of each chapter of the text lists some ideas for projects. The final project will consist of two portions: (1) a 6-10 page mathematical paper on your topic, and (2) a 10-15 minute presentation on your topic – either a poster or a slideshow is recommended as a backdrop. The default time for the presentations is our final exam period, Saturday, Dec. 12, 9-12. This timing is subject to debate, but changes require unanimous consent of the class. The paper is also due at the time of the presentations.

8. Grade Calculation:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>45%</td>
</tr>
<tr>
<td>Essays</td>
<td>5%</td>
</tr>
<tr>
<td>Midterm Exam 1</td>
<td>20%</td>
</tr>
<tr>
<td>Final Project</td>
<td>30%</td>
</tr>
</tbody>
</table>

9. Math 331 vs. Math 631. The graduate version of this course will involve more challenging homework and midterm exams as described above. Furthermore, the final projects of math 631 students will be held to a higher standard of both mathematics and presentation than those of the math 331 students.

If you have a disability which may require an accommodation for taking this course, please contact the Learning Assistance Center (758 5929), then contact me, within the first 2 weeks of the semester.