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An important and well studied problem in hyperspectral image data

applications is to identify materials present in the object or scene being

imaged and to quantify their abundance in the mixture. Due to the increasing

quantity of data usually encountered in hyperspectral datasets, effective data

compression is also an important consideration. In this paper, we develop

novel methods based on tensor analysis that focus on all three of these goals:

material identification, material abundance estimation, and data compression.

Test results are reported in all three perspectives. c© 2008 Optical Society of

America
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1. Introduction

Hyperspectral remote sensing technology allows one to capture images using a range

of spectra from ultraviolet to visible to infrared. Multiple images of a scene or object

are created using light from different parts of the spectrum. These hyperspectral im-

ages can be used, for example, to detect and identify objects at a distance, to identify

surface minerals, objects and buildings from space, and to enable Space Object Iden-

tification (SOI) from the ground. In this particular study within the domain of SOI,

we concentrate on the material identification only.
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Three major objectives in processing hyperspectral image data of an object (tar-

get) are data compression, spectral signature identification of constituent materials,

and determination of their corresponding fractional abundances. Here we propose a

novel approach to processing hyperspectral data using Nonnegative Tensor Factor-

ization (NTF), which reduces a large tensor into three nonnegative factor matrices,

the Khatri-Rao product which approximates the original tensor, see e.g. [1–6]. This

approach preserves physical characteristics of the data such as nonnegativity and

is a natural extension of nonnegative least squares approximate nonnegative matrix

factorization, see e.g. [7].

In (approximate) Nonnegative Matrix Factorization (NMF), an m×n (nonnegative)

mixed data matrix X is approximately factored into a product of two nonnegative

rank-k matrices, with k small compared to m and n, X ≈ WH. This factorization

has the advantage that W and H can provide a physically realizable representation

of the mixed data. Since the early work of Paatero and Tapper [8] and Lee and

Seung’s seminal paper on learning the parts of objects [9], NMF algorithms have

been developed and applied in numerous areas of engineering, science, and medicine.

In particular, NMF is widely used in a variety of applications, including air emission

control, image and spectral data processing, text mining, chemometric analysis, neural

learning processes, sound recognition, remote sensing, spectral unmixing and object

characterization, see, e.g. [3, 10].

Nonnegative Tensor Factorization (NTF) is a natural extension of NMF to higher
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dimensional data. In NTF, high-dimensional data, such as hyperspectral or other

image cubes, is factored directly and is approximated by a sum of rank-1 nonnegative

tensors. See Figure 5 for an illustration of 3-D tensor factorization. The ubiquitous

tensor approach, originally suggested by Einstein to explain laws of physics without

depending on inertial frames of reference, is now becoming the focus of extensive

research, e.g. [3]. Here, we develop and apply NTF algorithms for the analysis of

spectral and hyperspectral image data. The method described in this paper combines

features from both NMF and NTF methods.

For safety and other considerations in space, non-resolved space object character-

ization is an important component of Space Situational Awareness (SSA). The key

problem in non-resolved space object characterization is to use spectral reflectance

data to gain knowledge regarding the physical properties (e.g., function, size, type,

status change) of space objects that cannot be spatially resolved with normal panchro-

matic telescope technology. Such objects may include geosynchronous satellites, rocket

bodies, platforms, space debris, or nano-satellites. Spectral reflectance data of a space

object can be gathered using ground-based spectrometers, such as the SPICA sys-

tem, see [11–13], located on the 1.6 meter Gemini telescope and the ASIS system,

see [14–16], located on the 3.67 meter telescope at the Maui Space Surveillance Com-

plex (MSSC), and contains essential information regarding the makeup or types of

materials comprising the object. Different materials, such as aluminum, mylar, paint,

plastics and solar cell, possess fairly unique characteristic wavelength-dependent ab-
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sorption features, or spectral signatures, that mix together in the spectral reflectance

measurement of an object.

Spectral unmixing is a problem that originated within the hyperspectral imaging

community and several computational methods to solve it have been proposed over the

last few years. A thorough study and comparison of various computational methods

for endmember or spectral signature computation, in the related context of hyperspec-

tral unmixing, can be found in the work of Plaza et al., [17]. An information-theoretic

approach has been provided by Chang [18].

In an earlier project on spectral data analysis for SOI, some of the authors have

employed Non-negative Matrix Factorization (NMF) algorithms for unmixing of spec-

tral reflectance data from a single pixel imaged by the SPICA spectrometer at MCSS

to find endmember candidates. In that work, regularized inverse problem methods for

determining corresponding fractional abundances were developed [12,13].

A new spectral imaging sensor, capable of collecting hyperspectral images of space

objects, has been installed on the 3.67 meter Advanced Electrocal-Optical System

(AEOS) at the MSSC. The AEOS Spectral Imaging Sensor (ASIS) is used to collect

adaptive optics compensated spectral images of astronomical objects and satellites.

In a series of papers, Blake et al., [14–16], have developed model-based spectral im-

age deconvolution methods that can simultaneously remove much of the spatial and

spectral blurring introduced by the ASIS sensor. See Figure 5 for a simulated hyper-

spectral image of the Hubble Space Telescope from [14], similar to that collected by
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ASIS.

Other methods and algorithms have been developed for some of the three main

objectives for processing hyperspectral data. For compressing the hyperspectral data,

while maintaining the endmembers’ presence in the original data, a set of techniques

under the umbrella of dimensionality reduction have been developed, including the

traditional Principal Component Analysis (PCA), Independent Component Analysis

(ICA) [18], Wavelet [19] and vector quantization [20] methods. For a single material

identification purpose, a group of algorithms under the name of Endmember Extrac-

tion Algorithms (EEA) has been used to match endmembers with a material library,

e.g. Pixel Purity Index (PPI) [21], N-finder (N-FINDR) algorithm [22], Iterative Error

Analysis (IEA) [23] and Automated Morphological Endmember Extraction (AMEE)

algorithm [17]. However, in remote sensing image analysis the difficulty arises in the

fact that information captured by a detector pixel is mixed linearly or nonlinearly by

different materials resident in the physical area of the scene associated with the pixel.

Here direct application of approaches described above may not work well [21, 24].

One popular approach to linearly unmix spectral signatures is to solve a regu-

lar least square problem to fit for the fractional abundances by minimizing the l2

norm difference between the observed vector and the material signature matrix times

the fractional abundance vector. Due to the nature of fractional abundances, two

constraints are usually desired, i.e. non-negativity and sum-to-one [25, 26]. A linear

matched filter approach [21] computes fast and reveals those prevalent signatures by
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suppressing the background. It can also satisfy the sum-to-one constraint, but not nec-

essarily the non-negativity constraint [27]. Keshava [24] provides a nice comparison

and classification of various spectral unmixing algorithms.

NMF algorithms have been developed and applied to various applications, see e.g.

[3,10]. In [12], additional constraints are explored to better recover material spectra.

Two sets of factors, one as endmembers and the other as fractional abundances, are

optimally chosen to balance fit to data and smoothness of endmembers and sparsity

of fractional abundances. And, due to reduced size of factors all three purposes,

including data compression, can be fulfilled at the same time. When compared with

linear unmixing methods, NMF inherently imposes a non-negativity constraint and

the sum-to-one constraint can also be posed by adding an extra term in the cost

function, see [12]. Du et al. [28] proposed a similar compression method to save only

the material signatures and their fractional abundances within each pixel, which is

exactly the two factor matrices of NMF, and they also imposed the non-negative and

sum-to-one constraints.

For 3-D hyperspectral data, Shashua and Levin [6] have shown better compression

and preservation of components can be achieved with NTF than with NMF [5]. The

purpose of our paper is to extend work by Pauca et al. [12,13] on the use of NMF for

space object material identification, where a single image pixel of the object collected

by a spectrometer was used. Here we consider more recent hyperspectral image data

of the type collected by the AEOS ASIS system on Maui. Work related in various
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ways to ours can be found, e.g., in papers by Blake et al. [14–16], Hege et al. [29],

and Scholl et al. [30].

In Section 2, we define the NTF problem and present a block optimization approach

to divide the NTF problem into three NMF sub-problems, the solutions of which are

sought through an improved projected gradient method. In Section 3, we test our

method using four simulated datasets of the Hubble Space Telescope, considering

the presence of both noise and blurring in hyperspectral images, and we present test

results, including a comparison with a linear unmixing method with constraints. We

conclude with a brief discussion and ideas for future research.

2. Tensor Methods for Spectral Unmixing

Next we introduce notation commonly used within tensor analysis literature, followed

by the core NTF problem and its solution.

2.A. Notational Preliminaries

We call a three-way data array T = (tijk) a tensor, where i = 1, . . . , D1, j = 1, . . . , D2

and k = 1, . . . , D3. For fixed i and j, we call the vector tij = (tij1, . . . , tijD3)
T a fiber.

In our hyperspectral data application, the third dimension represents wavelength. The

symbol ◦ denotes the usual outer product of two vectors, x ◦ y = xyT . A three-way

outer product of three vectors x ∈ Rn, y ∈ Rm, and z ∈ R`, leads to a three-way
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tensor of rank one,

T = x ◦ y ◦ z ∈ Rn×m×`,

where tijk = xiyjzk, for i = 1, . . . , n, j = 1, . . . ,m, and k = 1, . . . , `. Moreover, a

tensor T ∈ Rn×m×` that can be written as a finite sum of rank-one tensors,

T =
k∑

i=1

x(i)y(i)z(i),

where x(i) ∈ Rn, y(i) ∈ Rm and z(i) ∈ R` is said to be in CANDECOMP (CP)

canonical factored form.

The symbol ⊗ denotes the Kronecker product, which for two vectors x and y is

given by,

x⊗ y = (x1y, x2y, · · · , xny).

The symbol � denotes the Khatri-Rao product, which for two matrices, X ∈ Rm×k,

Y ∈ Rn×k, having the same number of columns is given by,

X � Y = (x1 ⊗ y1, · · · , xn ⊗ yn) ∈ Rmn×k,

where xi and yi denote columns of X and Y respectively.

Tensor unfolding is the process of rearranging tensor entries into a matrix, similar

to unfolding a data cube to a flat matrix. For a three-way tensor, T ∈ RD1×D2×D3 ,
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there are three typical ways of unfolding T along each dimension, i.e.

(T1)(k−1)∗D3+j,i = tijk, T1 ∈ RD2D3×D1 ,

(T2)(k−1)∗D3+i,j = tijk, T2 ∈ RD1D3×D2 ,

(T3)(j−1)∗D2+i,k = tijk, T3 ∈ RD1D2×D3 ,

where i = 1, . . . , D1, j = 1, . . . , D2 and k = 1, . . . , D3. The Frobenius norm of a tensor

is defined as the square root of the sum of squares of all its entries, i.e.

||T ||F =

√∑
i

∑
j

∑
k

t2ijk.

Definition 1. Let T ∈ RD1×D2×D3 be a nonnegative tensor and T̂ =
∑k

i=1 x(i) ◦y(i) ◦

z(i) a tensor in CP factored form, where x(i) ∈ RD1 , y(i) ∈ RD2 , z(i) ∈ RD3. Then a

rank-k nonnegative approximate tensor factorization problem is defined as:

min
T̃
||T − T̃ ||2F , subject to T̃ ≥ 0. (1)

The factor matrices associated with the CP tensor T̃ can then be expressed as

X = [x(1), . . . ,x(k)] ∈ RD1×k, Y = [y(1), . . . ,y(k)] ∈ RD2×k, Z = [z(1), . . . ,z(k)] ∈ RD3×k,
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leading to the following representation of (1) in terms of unfolded matrices.

Remark 1. The norm of the residual defined in Definition 1 can be equivalently

written in the Frobenius norm of unfolded matrices, i.e.

||T − T̃ ||2F = ||T1− (Z �Y )XT ||2F = ||T2− (Z �X)Y T ||2F = ||T3− (X �Y )ZT ||2F .

2.B. Alternating Least Squares Method

A common approach in solving the optimization problem in Definition (1), the Alter-

nating Least Squares (ALS) method [2,4,31,32], is a special case of the block coordi-

nate descent method, also known as the Block Gauss-Seidel (BGS) method [33]. At

each iteration step, the BGS method alternatingly optimizes only a subset of the vari-

ables, while keeping the rest fixed, and turns the original non-convex problem into

a sequence of convex least squares sub-problems. In NTF, this means holding two

matrix factors fixed while fitting for the other one. Thus the original NTF problem

is transformed into three semi-NMF sub-problems in each iteration. Here we use the

term “semi” to represent the optimization only for one of the two factor matrices,

while assuming the other is given.

Definition 2. Given A ∈ Rm×n ≥ 0 and W ∈ Rm×k ≥ 0, a semi-NMF problem is

defined as,

min
H

Φ(H) = ||A−WH||2F , subject to H ≥ 0. (2)
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The solution of (2) can also be specified as a function Ψ of A and W ,

Ψ(A, W ) = min
H
||A−WH||2F , subject to H ≥ 0. (3)

A semi-NMF problem for W given A and H can be similarly defined, leading to a

2-block BGS method. NTF can be correspondingly transformed into a 3-block BGS

method. Grippo and Sciandrone [33] proved for BGS methods that if the objective

function is componentwise strictly quasi-convex for b− 2 blocks, where b is the total

number of blocks, and the sequence generated by the BGS methods has limit points,

then every limit point is a critical point also. For an unfolded tensor T̃ with factor

matrices X, Y , and Z, the functions Φ(X), Φ(Y ), and Φ(Z) are convex, and the

remaining issue is to ensure their sequences, e.g. {Xp}, have at least one limit point,

which often comes from the boundedness of the feasible region. The nonnegative

constraint provides a lower bound, i.e. a zero matrix, and thus we will need an upper

bound also, which can be easily added.

Now we can redefine the semi-NMF problem in Definition 2 by adding an upper

bound and gain confidence about the convergence of our ALS method to solve the

NTF algorithm previously described. Much of the success of applying tensor analysis

is attributed to the Kruskal essential uniqueness, see [34], of the NTF problem in

Definition 1. In practice, we may not need the upper bound, and so far we have

not observed results moving up to infinity, possibly because the line search used by
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the Projected Gradient Descent method might be essentially bounded above. Some

further analysis in this perspective might be helpful.

Definition 3. We define a bounded semi-NMF problem as,

min
H

Φ(H) = ||A−WH||2F , subject to 0 ≤ H ≤ U , (4)

where A ∈ Rm×n ≥ 0 and W ∈ Rm×k ≥ 0 are given. The solution of (4) can also be

defined as a function Ψb of A and W ,

Ψb(A, W ) = min
H
||A−WH||2F . (5)

We summarize the discussion above in Algorithm 1, providing a method for solving

the approximate nonnegative tensor factorization problem of Definition 1. Next, we

Algorithm 1: Alternating Least Squares Algorithm for NTF

Input: T ∈ RD1×D2×D3 , k
Output: X ∈ RD1×k, Y ∈ RD2×k, Z ∈ RD3×k

Initialize randomly X(0), Y (0);
n ⇐ 0;
repeat

Z(n+1) ⇐ Ψb(T3, X
(n) � Y (n))T ;

Y (n+1) ⇐ Ψb(T2, Z
(n+1) �X(n))T ;

X(n+1) ⇐ Ψb(T1, Z
(n+1) � Y (n+1))T ;

until converged ;

describe our numerical approach for efficiently solving the three semi-NMF problems

needed for computing Z(n), Y (n), and X(n).
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2.C. Improved Projected Gradient Descent Method

Various approaches for solving NMF have been proposed over the last few years,

several of which are based in part on early work by Lawson and Hanson [35] on

Nonnegative Least Squares (NNLS) computations, see e.g. [7,10,36–39] and references

therein. The seminal work of Lee and Seung [9] provided an alternating approach

for computing the nonnegative factors W and H of a matrix A, Bro and Jong

[36] improved the active/passive set method of Lawson and Hanson [35], Recently,

Chu and Lin [37] improved Lee and Seung method significantly with respect to the

convergence time. Here we use a modified non-alternating version of a Projected

Gradient Descent (PGD) method developed by Lin [38] to solve the three semi-NMF

problems of the form H ⇐ Ψb(A, W ) in Algorithm 1.

In the PGD method, determining an appropriate step size at each iteration can be

difficult. Lin [38] pointed out that Armijo’s Rule is an effective criteria to determine

step sizes. The rule can be expressed as

Φ(H(p+1))− Φ(H(p)) ≤ σ∇Φ(H(p)) ∗ (H(p+1) −H(p)), (6)

where H (p+1) = P+[H(p)−αp∇Φ(H(p))], αp is the step size at the pth iteration and P+

is the projection function that replaces all negative entries with zeros and all entries

greater than the specified upper bound, U , with U . ‘∗’ is the operator for entry wise

multiplication or Hadamard product. Armijo’s Rule ensures sufficient decrease of Φ
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for each iteration. And by trying αp = 1, β, β2, ... where β ∈ (0, 1), it is proved by

Bertsekas [40] that one can find a positive αp satisfying (6).

In general, the step size search is the most time consuming part in the iterations.

To address this problem, Lin suggested to transform (6) by using the quadratic and

convex properties of Φ, and then show that the new form leads to a much lower

computational cost.

(1− σ)∇Φ(H)⊗ (H̃ −H) +
1

2
(H̃ −H)⊗ [(W T W )(H̃ −H)] ≤ 0. (7)

Table 1 shows a comparison of the computational costs associated with (6) and (7),

with respect to the number of multiplications for parts of these computations.

From the table, we conclude that, if W T W and ∇Φ(H) are given and if k = n,

(7) approximately reduces the complexity of (6) by a factor of 2. When k � n, which

is common in real situations, the improvement in performance will be considerable.

Further significant reduction in computational cost can be obtained using αp−1 as the

initial guess for αp, as suggested by Lin [38]. We summarize our improved Projected

Gradient Method in Algorithm 2.

Table 2 illustrates the reduction in computational cost obtained by the improve-

ments made to PGD, with matrices of increasing size. For each matrix size, we set

k = 50 and maxiter = 30. Test 0 shows the performance associated with the orig-

inal PGD method. Test 1 shows the performance of PGD with (6) replace by (7).

15



Algorithm 2: An Improved Projected Gradient Method

Input: A ∈ Rm×n ≥ 0, W ∈ Rm×k ≥ 0
Output: H ∈ Rk×m ≥ 0
Set β = 0.1, σ = 0.01, α0 = 1, and p = 1;
Initialize randomly H1 ∈ Rk×m ≥ 0;
while p < maxiter do

αp ⇐ αp−1;

H̃ ⇐ P+[Hp − αp∇Φ(Hp)];
if αp satisfies (7) then

while αp satisfies (7) do
αp ⇐ αp/β;

H̃ ⇐ P+[Hp − αp∇Φ(Hp)];
end

else
while αp does not satisfy (7) do

αp ⇐ αp ∗ β;
H̃ ⇐ P+[Hp − αp∇Φ(Hp)];

end

end
Hp+1 ⇐ P+[Hp − αp∇Φ(Hp)];
p ⇐ p + 1;

end

Test 2 shows the performance of PGD with αp−1 as initial guess for αp. Test 3 shows

the performance of PGD with both improvements. Clearly, when n � m, the com-

putational cost is greatly reduced when both improvements to PGD are used. This

observation is critical for nonnegative tensor factorization, because we usually expect

Di � k, i = 1, 2, 3. Note that the first improvement appears to be much more

effective that the second improvement suggested by Lin [38]. All tests were run on a

Dell Precision 690 platform with an Intel Xeon 3.0GHz processor and 2GB available

memory.
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2.D. Adaptive Resampling Method

Sharp changes in magnitude along the wavelength dimension, such as narrow peaks

and valleys, are often exploited in fields such as chemistry to identify ions that respond

with certain absorption characteristics to specific wavelength of light [41]. These sharp

changes, however, often reduce the quality of reconstructed images using NTF and

other techniques [13]. For space object identification it is further observed that fea-

tures of interest are often relative smooth and large, covering fairly broad spectral

bands. We propose an adaptive resampling method that increases the amount of data

along spectral regions with sharp changes in magnitude, leading to a reduction of

frequency change of the discrete data along the z-direction.

We define spectral change using the concept of total variations. Assume the hy-

perspectral tensor we observe is a discrete sampling of a continuous, bounded and

differentiable multivariate function, t(x, y, λ). Note that we replace z by λ, since in

our application, the third dimension is wavelength. We define the variation at a given

wavelength λ ∈ [λ1, λD3 ] as:

v(λ) =

∫∫
Ω

∣∣∣∣∂t(x, y, λ))

∂λ

∣∣∣∣ dxdy, (8)

where Ω is a finite region in xy space determined by the detector. A discretization of
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(8) using forward differences to approximate the partial derivative can be written as

v(λk) = vk ≈
D1∑
i=1

D2∑
j=1

D3−1∑
k=1

|tij,k+1 − tijk|, (9)

where tijk = t(xi, yj, λk). Thus, vk measures the intensity changes between neighboring

wavelengths λk over all fibers of a tensor T .

Figure 3(a) shows the variation v(λ) that results from applying (9) to the simulated

dataset used for experimentation in Section 3. The large variation at the first few

wavelengths is due to sharp changes near .4µm found in the spectral signature of

composing solar panel material used in the mixture (see Figure 4). Wang [42] uses a

cumulative function of v(λ), defined as

c(λ) =

∫ λ

λ1

v(λ̂)dλ̂, (10)

and looks for a set of λ values that evenly divide c(λ) from 0 to its maximum.

Figure 3(b) shows a plot of c(λ) for the set of λ values at which to resample the

data. Observe that there are more sampling points around steeper slopes of c(λ).

We propose herein a more efficient and information preserving approach that identi-

fies and resamples t(x, y, λ) along regions that incur large changes in magnitude, con-

siderably reducing computation time and memory requirement, while keeping much

of the original information untouched. Let v̄ and σv denote the mean and standard
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deviation of v, respectively, and identify the set of discrete wavelength values, S, for

which v(λ) > v̄ +2σv. This is the set of points for which the data must be resampled.

The number of equally spaced sampling points to be introduced for each λi ∈ S is

given by v(λi)/v̄, and t(x, y, λ) is linearly interpolated at these sampling points. Thus

we are able to smooth out sharp changes by adaptively inserting interpolated data

into the original observed dataset, leaving regions for which v(λ) ≤ v̄+2σv untouched.

This approach significantly improves the reconstruction quality of NTF as shown in

Section 3.

3. Numerical Results

In this section, we explore the efficacy of the tensor factorization approached pre-

sented in Section 2 for the reconstruction, compression, and material identification of

hyperspectral data.

3.A. Simulation Data

We constructed an initial dataset of simulated spectral data using a 3-D model of the

Hubble Space Telescope and a library of 262 material spectral signatures [43]. These

are lab-measured the absolute reflectance by comparing the measured reflectance

of each material to a known reflectance of a white reference. The 3-D model was

discretized into a 128× 128 array of pixels for which a specific mixture of 8 materials

was assigned based on orientation of the Hubble telescope. Figure 4 shows the spectral
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signatures of these materials. The signatures cover a band of spectrum from .4µm to

2.5µm for 100 evenly distributed sampling points, leading to a data cube or tensor T 0

of size 128× 128× 100. Three other datasets, T 1, T 2, and T 3 were then constructed

from the T 0 by considering: i) spatial blur (Gaussian point spread function with

standard deviation of 2 pixels), ii) noise (independent Gaussian, and signal-dependent

Poisson noise associated with the light detection process), and iii) a mixture of blur

and noise. In this first study of hyperspectral analysis using NTF, we try to simulate

the practical situations of observing hyperspectral data in a simple way, i.e. to simulate

the atmospheric compensation using a Gaussian PSF and the various noises present in

the atmosphere and in the imaging system with a noise model. These simplifications

can easily be replaced by for example, more complicated turbulence models, for any

future studies.

We adopt a widely-used noise model [44] for modifying the tensor T to T̃ specified

by:

t̃ijk = tijk + η
(1)
ijk

√
tijk + η

(1)
ijk, (11)

where η(1) ∈ N(0, σ1) and η(2) ∈ N(0, σ2). Here we set σ1 = .05 and σ2 = .005.

Figure 5(a) shows images at 1.4µm, for each of the four datasets. As an illustration

of original material signatures assigned to each image pixel, we render an image of

Hubble Space Telescope, Figure 5(b), using the color map defined in Table 3.
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3.B. Compression and Reconstruction

We report the reconstruction and compression results obtained from applying Algo-

rithm 1 together with Algorithm 2 to each of the four of datasets, T 0, T 1, T 2 and T 3,

for a variety of values of k. By reconstruction we mean the approximation of a tensor

T with a nonnegative tensor T̃ of low rank, as described in Section 2. We report on

results obtained for k = 50 as this value provides an appropriate balance of recon-

struction quality and compression versus good recovery of original material spectral

signatures. For k = 50 we obtained a compression ratio of 92. Decreasing k results in

a higher compression ratio but poorer reconstruction quality relative. This is not an

uncommon phenomena [3,10]. Compared with a compression ratio of 76 achieved by

Du et al. [28], our result is higher but in the same order of magnitude. The possible

reason is that the method from Du et al, is similar to NMF. Their method unfolds

the original data cube into a large matrix and factor it into two matrices, while NTF

factors the original data cube directly into three smaller matrices, and thus a higher

compression ratio should be expected from NTF.

Figure 6 shows a comparison of original versus reconstructed images at wavelengths,

0.4µm and 2.0µm. Figure 7 shows how the relative residual norm error decreases and

converges through 25 iterations, the number of which is determined by the stopping

criteria. It takes less than 1 minute to fully process each dataset T i on an Intel Xeon

3.0GHz processor. It is of interest to see that relative norm error curves of the clean

21



dataset and the noisy dataset almost coincide after only 3 iterations, which shows

that our method is robust to noise. Note that for all relative residual norm errors, we

use the original tensor T 0 as the only reference to be compared with reconstructed

tensors from all four datasets. The best reconstruction quality is achieved in the band

of spectrum values from 1.0µm to 2.0µm, as seen in Figure 9.

3.C. Adaptive Resampling and Reconstruction Quality

As previously mentioned, appropriate resampling of the spectral data can lead to

better reconstruction results of NTF type algorithms. We applied the adaptive re-

sampling approach described in Section 2 to each of the four simulation datasets, T 0

(original), T 1 (blurred), T 2 (noisy), and T 3 (blurred and noisy), increasing the num-

ber of frames along the wavelength or z-direction from 100 to 121, 121, 103, and 104,

respectively. The small increase in size for the last two datasets is due to the relative

increase of the total variation due to noise, which reduces the number of sampling

spectral points. In general, resampling results in less than 20% increase in the tensor

size for all datasets.

Figure 8 shows a comparison of the reconstruction of the original tensor, with and

without resampling. Apparently, without resampling, the reconstruction quality at the

0.4µm wavelength is rather poor, due to a sharp peak observed in the spectral trace

of the ’Solar Cell’ material (Figure 4). After resampling, a significant improvement in

reconstruction is observed.
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A plot of relative residual norm error at each wavelength between the original and

reconstructed tensors is given in Figure 9, where we see a large decrease at .4µm and

.5µm for the clean dataset and the blurred dataset. For the noisy dataset and the

blurred and noisy dataset we observe no improvement due to fewer sampling points

added.

3.D. Endmembers Matched

For each computed tensor T̃ , we matched each column of factor Z with material

spectral signatures from the library, by comparing the cosine of the angle between

their gradients. We chose the material for which the gradient has the smallest cosine

of the angle. This choice comes after experimenting with different measures including

Kullback-Liebler Divergence, Du’s measure [45], Euclidean distance, and the cosine

angle measure.

In Figure 10 we compared the recovered endmember spectral signatures with the

original ones using the noisy dataset and we see good matches for all materials except

‘Black Rubber Edge’, whose spectral signature possesses little feature to be detected

and its prevalence is also small. Similar results are seen in the other three datasets

that are not shown here. Table 4 gives a count of matched Z-factors in each dataset.

Out of a total of 100 Z-factors (columns of Z), we are able to match around and over

90% for all four datasets, but in the next subsection when we estimate the fractional

abundances, we do see that the blurring and noise will bring down the identifica-
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tion performance. Among the eight original materials, five major materials, ‘Hubble

Aluminum’, ‘Hubble Green Glue’, ‘Solar Cell’, ‘Copper Stripping’, and ‘Hubble Hon-

eycomb Top’ are matched well. Quite a few materials in the material library have

signatures similar to that of ‘Hubble Honeycomb Side’. As a result we do not have a

good match for this material.

3.E. Identification of Materials and their Fractional Abundances

If we unfold the original tensor T along the z direction as a matrix T3, the approxi-

mation of the tensor becomes

T3 ≈ (X � Y )Z.

Here X � Y is the mixing matrix, while Z is the component matrix. Each fiber of

the data cube, i.e. tij ∈ RD3 , is approximated by

tij ≈
k∑

l=1

(xilyjl)zl,

which is a linear combination of Z-factors, i.e. zl. After matching Z-factors, we may

have a group of Z-factors matching to the same material. To account for the material’s

abundance at pixel (i, j), we sum up the mixing coefficients of the Z-factors in the

same group. Then we are left with only a few mixing coefficients at each pixel, and

picking the largest one will give us the most abundant material at pixel (i, j).
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Knowing the most abundant material at each pixel, we use the same color map as

given by Table 3 to render a recovered image of HST in Figure 11 to be compared with

Figure 5(b). This shows that we are able to identify major materials and their spatial

presence for all four datasets. However, the quality of our identification is affected by

noise and blurring, especially the presence of both within our observed data.

Table 5 compares the recovered material prevalence with the true values which we

have assigned to image pixels. Note that due to the usual definition of the fractional

abundance as the percentage of material within each pixel, we use the term material

prevalence to indicate amount of materials present within the scene. We have suc-

cessfully recovered the prevalence of five major materials. However, we do see ‘Solar

Cell’ abundance went up from the true 37% to around 50%, due to the difficulty in

detecting ‘Black Rubber Edge’. These pixels are mostly regarded as ‘Solar Cell’. This

reduces their prevalence but increases that of ‘Solar Cell’. We see the same happen-

ing to “Copper Stripping” which is located between pixels of “Solar Cell” and thus

blurring would reduce its presence and attribute it to “Solar Cell”.

3.F. Comparison with a Linear Unmixing Method

By definition, NTF is a linear unmixing method with non-negativity constraints but

not necessarily the sum-to-one constraint, because it further factors the coefficient

matrix to achieve a better compression ratio. To compare our results with a linear

unmixing method with two constraints, we first define the method using our semi-
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NMF notation.

Definition 4. We define a bounded semi-NMF problem with a sum-to-one constraint

as,

min
h

Φ(h) = ||tij − Sh||22 + αhT e, subject to 0 ≤ h ≤ u, (12)

where e = (1, 1, . . . , 1), α is the weight given to the sum-to-one term, tij ∈ RD3×1 ≥ 0

is a fiber out of our data cube and W ∈ RD3×l ≥ 0 is the known material signature

matrix.

To simulate the supervised and unsupervised cases, we solve Problem (12) by setting

the matrix W with signatures either from known 8 materials or from the entire

library of 262 materials. In the former case, we assume a complete prior knowledge of

materials present, while in the latter case, we assume no prior knowledge on materials

present. For each fiber tij, Problem (12) is solved by the improved PGD method and

the maximum coefficient in h is regarded as the matched material and color-coded in

Figures 11 and 12.

Comparing Figure 11 and 12, we can see the unsupervised NTF method matches

slightly worse than the supervised linear unmixing results, but much better than

the unsupervised linear unmixing results, which can only identify ‘solar cell’ and

‘copper stripping’.. Even in the supervised case, the linear unmixing method can not

differentiate ‘Hubble Honeycomb Side’ from ‘Bolt’, shown as the white ellipse and two

white triangles in Figure 12(a) respectively, because their signatures look somewhat
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similar. The large difference between our result and the unsupervised one, might be

due to the endmember matching method we have chosen, which uses the cosine of the

angle between the gradients of two signatures, rather than the signatures themselves,

because in the material library we see many similar signatures whose gradients would

differ significantly. One last note is that after experimenting with various weights, α,

we found the best results were achieve by setting α to zero, which might be due to the

relatively weak mixing we simulated using the Gaussian blur with a small standard

deviation. In the future research, we plan to expand the range of blurring and also

simulate the atmospheric compensation through a turbulence model [46].

4. Concluding Remarks and Further Research

We have developed methods based on tensor analysis for solving three major prob-

lems in processing hyperspectral image data of an object or scene: data compression,

spectral signature identification of constituent materials, and determination of their

corresponding fractional abundances. Here we have proposed an approach to process-

ing hyperspectral data which reduces a large 3-D tensor into three factor matrices,

the Khatri-Rao product which approximates the original tensor. This approach pre-

serves physical characteristics of the data such as nonnegativity. Test results have

been reported for space object material identification and indicate the effectiveness

of the tensor methods developed in this paper for this application.

Below is a list of tasks that we plan to consider in further work.
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• Deblurring. Observe that in Figure 11 and Table 5(b) the spatial blurring af-

fects the material identification. Running deblurring algorithms on the blurred

dataset before our algorithm will likely help much in this regard. Also, we have

not yet considered spectral blurring, e.g. [16]. We plan to incorporate spectral

along with spatial blurring in our data simulations and to enhance the resolu-

tion (deblurring and denoising) of the spectral images before our tensor analysis

of the hypercube data. Fast PDE-based total variation minimization schemes

will be used, applying the approach in [47] to hyperspectral data cubes in joint

work with Y. Huang and M. Ng.

• Atmospheric compensation. Imaging through turbulence is an indispensable

problem that optical SOI studies must face. In the next three years through

a grant funded by AFOSR, we plan to degrade our simulated dataset by a tur-

bulence model [46], and then apply our methods described here plus the total

variation deblurring method to further evaluate their success in situations closer

to reality.

• Selection of k. The number, k, of factors in X, Y and Z is selected to achieve

better reconstruction quality and a better compression ratio, while covering all

possible endmembers in the Z-factors. In our computations we have considered

various values of k, and reported on our tests for k = 50, leading to a compres-

sion factor of 92. We have observed in the tests that only 8 material signatures
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can sufficiently describe variations in the z direction, while k = 8 would not

be large enough to cover all the details in x and y directions. If we had cho-

sen k = 8, the reconstruction quality would have been rather poor. However,

choosing k = 50, one order higher than 8, we observed many highly correlated

Z-factors, which can be collapsed into one Z-factor to further improve the com-

pression ratio. Certain criteria need to be identified and developed to find an

optimum range of values for k, which can even vary in different factors, i.e. we

could have kx, ky and kz values.

• The sum-to-one constraint. Due to the definition of NTF, imposing an sum-to-

one constraint is more difficult, because the fractional abundances are estimated

by the multiplication of two factors in two spatial dimensions. However, due to

its significance in the abundance estimation, we intend to explore further in this

direction.

• Further experiments. We plan to obtain unclassified AEOS Spectral Imaging

Sensor (ASIS) hyperspectral data, or data based on the model of ASIS developed

by Blake et al. [14], for further tests on using the tensor analysis methods

developed in this paper for space object material identification.

• A new variation of NTF. We will consider a more physically motivated and

less aggressive variant of the NTF defined below, in which one does not insist

on a fully factorized tensor form for each term in the sum. Rather, one merely
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factorizes the 1-D spectral dependence from the 2-D spatial dependence in each

term. This preserves the 2-D spatial correlations of the data cube while sepa-

rating out the spectral or material components. We consider a special rank-k

nonnegative approximate factorization given by:

min
I(i),z(i)

||T −
k∑

i=1

I(i) ◦ z(i)||, subject to I(i) ≥ 0, z(i) ≥ 0, (13)

where T ∈ RD1×D2×D3 , I(i) ∈ RD1×D2 , z(i) ∈ RD3 . Thus we anticipate a decom-

position of the data into a sum of elementary images, each corresponding to a

specific material and expected to be spatially sparse. For example, the matrix

I(i) could correspond to the solar panels which are localized to certain surface

regions and are thus sparse over the full 2-D array, and the vector z(i) could cor-

respond to a solar panel material spectral signature. This has the advantage of

avoiding a factoring of shapes that are not rectangular and thus non-factorizable

in the Cartesian basis, e.g., circular boundaries, while one disadvantage is the

lower compression ratio. However, we expect the approach to accommodate gen-

eral physical situations more accurately than the conventional NTF. We are in

the process of developing algorithms to compute the factorization given in (13),

as well as determining appropriate constraints.
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Table 1. Complexity analysis of Armijo Rules defined in (6) and (7)

Formula Number of multiplications Complexity Pre-computed
H ⊗H mk O(mk)
Φ(H) mnk + 2mn O(mnk)
W T W nk2 O(nk2)

(W T W )H mk2 O(mk2) W T W
∇Φ(H) mk2 + mnk O(mnk) W T W

(6) m(2nk + 4n + 2k) O(mnk) W T W , ∇Φ(H)
(7) m(k2 + 4k) O(mk2) W T W , ∇Φ(H)

Table 2. Benchmarks for two improvements to the Projected Gradient Descent
method. No improvement in Test 0, first improvement only in Test 1, second
improvement only in Test 2 and both improvements in Test 3 (in seconds).

Matrix Size (n×m) Test 0 Test 1 Test 2 Test 3
500× 500 7.28 0.38 1.39 0.078
50× 5000 13.15 3.13 2.60 1.22
5000× 50 7.53 0.083 1.31 0.008

1000× 1000 28.51 0.97 5.18 0.20
100× 10000 40.64 7.34 11.68 2.74
10000× 100 29.97 0.18 5.36 0.037

Table 3. Materials, colors and fractional abundances used for Hubble satellite
simulation.

Material Color Fractional Abundance (%)
Hubble Aluminum light gray 19
Hubble Green Glue dark gray 12
Hubble Honeycomb Top white 4
Hubble Honeycomb Side blue 3
Solar Cell gold 37
Bolts red 3
Black Rubber Edge dark gray 8
Copper Stripping cyan 13
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Table 4. Numbers of matched Z-factors in the four datasets.

Material Clean Blurred Noisy Blurred & Noisy
Hubble Aluminum 5 6 7 5
Hubble Green Glue 11 6 11 8
Black Rubber Edge 0 2 1 0
Bolts 1 2 1 1
Hubble Honeycomb Side 1 0 1 0
Hubble Honeycomb Top 3 2 2 3
Solar Cell 11 13 8 13
Copper Stripping 13 16 19 15
Total matched 45 47 50 45

Table 5. True and recovered material prevalences in percent.

Material True Clean Blurred Noisy Blurred & Noisy
Hubble Aluminum 19 19 12 19 19
Hubble Green Glue 12 14 16 13 14
Hubble Honeycomb Top 4 5 5 5 5
Hubble Honeycomb Side 3 4 0 3 1
Solar Cell 37 48 55 50 52
Bolts 3 0 0 1 2
Black Rubber Edge 8 0 0 0 0
Copper Stripping 13 11 12 10 7

Fig. 1. An illustration of 3-D tensor approximate factorization using a sum of
rank one tensors.
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Table 6. List of Figures

Figure 1 An illustration of 3-D tensor approximate factorization.
Figure 2 A blurred and noisy simulated hyperspectral image of the Hubble Space Telescope
Figure 3 Total variation and cumulative variation for the simulated data
Figure 4 Spectral signatures of materials assigned to a HST model
Figure 5 (a) Simulated image at wavelength .4µm. (b) Materials assigned to pixels in HST
Figure 6 Comparison of frames from the original and the reconstructed data
Figure 7 Relative residual norm error descent through the iterations
Figure 8 Reconstructed images from NTF at wavelength 0.4212µm, with and without resampling
Figure 9 Comparison of reconstruction error with and without resampling in preprocessing
Figure 10 Matched endmembers using the noisy dataset
Figure 11 Reconstructed color image of HST for materials identification
Figure 12 Results from a linear unmixing method with and without assuming prior knowledge

Fig. 2. A blurred and noisy simulated hyperspectral image above the original
simulated image of the Hubble Space Telescope [14], representative of the data
collected by the Maui ASIS system.
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(a)

(b)

Fig. 3. (a) Total variation between observations at neighboring wavelengths
for the simulated data from Section 3. (b) Cumulative variation across all
wavelengths.
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Fig. 4. Spectral signatures of eight materials assigned to a Hubble Space Tele-
scope model.

(a) (b)

Fig. 5. (a) Simulated data sets with images from the data cube at wavelength
.4µm. (b) Materials assigned to pixels in Hubble Satellite Telescope image. All
images have a size of 128× 128.
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(a) Images at .4µm.

(b) Images at 2.0µm.

Fig. 6. Comparison of frames from the original data T 0, T 1, T 2, T 3 (top row in
(a) and (b)) with frames from the reconstructed data T̃ 0, T̃ 1, T̃ 2, T̃ 3 (bottom
row in (a) and (b)). From left to right, each column corresponds to original,
blurred, noisy, and blurred and noisy data.

Fig. 7. Relative residual norm error descent through the iterations. The stop-
ping criteria is when the relative norm difference of two successive approxima-
tions falls below a lower limit, e.g. 10−5.
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Fig. 8. Reconstructed images from NTF at wavelength 0.4212µm. The one on
the right was resampled before processing. Both images have a size of 128×128.

Fig. 9. Comparison of reconstruction error between with and without resam-
pling in preprocessing for all four datasets.
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Fig. 10. Matched endmembers using the noisy dataset, k=50. Red is the orig-
inal material spectrum and blue is the best matched Z-factor.

Fig. 11. Reconstructed color image of HST using the color map in Table 3 for
original materials.
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(a)

(b)

Fig. 12. (a) Linearly unmixed and matched materials using only 8 known
materials. (b) Linearly unmixed and matched materials using the whole library
of 262 materials.
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