Overview of Computer Science

CSC 101 — Summer 2011

Digital Video

Lecture 17 — July 28, 2011

Announcements

- Lab #6 Today (Due Monday)
- Writing Assignment #6 Due Today
- Quiz #3 Tomorrow!

Objectives

- Analog and digital video standards
- Digital video compression methods
Disadvantages of Analog Video

- Limitations of analog video (television & video tape)
 - Sequential access—must be fast-forwarded or rewound
 - Playback
 - Editing
 - Low resolution
 - Standard NTSC video image is only 60 fields × 484 lines
 - Standard NTSC video is 30 images per second
 - A poor match to film’s 24 frames per second
 - Poor color reproduction
 - Susceptible to noise and interference
 - High bandwidth requirement
 - Bandwidth: amount of data transmitted per unit time
 - Not compressible

Advantages of Digital Video

- Scalable
 - Can be played on a variety of output devices
 - Higher resolution possible (depending on output device)
 - HDTV standard allows up to 1920 × 1080 resolution
 - Higher frame rate possible
 - HDTV uses 60 fps
 - Easily matched to film’s 24 fps by using 3:2 pulldown
- Random access
 - Analog video is linear, but digital video has random access
- Compressible
 - Digital video can be compressed to reduce bandwidth requirement; analog video cannot

Advantages of Digital Video

- More flexible playback
 - Fast, slow, freeze-frame, looping, etc. work well
- Interactive possibilities
 - Realistic video games, information kiosks, etc.
- Powerful editing possibilities
- **But:** large computer resource requirements
 - High-quality digital video uses lots of storage space
 - Video compression techniques are critical, but use a lot of computational power
Analog vs. Digital Broadcast

• NTSC (analog) phased out June 12, 2009
 – Over-the-air TV broadcasts are now all digital (ATSC)
 – Analog televisions only work if connected
to cable, satellite, or a converter box
• Much lower bandwidth needs frees up
 radio spectrum for other uses
 – US auctioned off much of the bandwidth
 – Google was one bidder
 – Almost $20 billion in proceeds to the US,
 mostly from AT&T and Verizon
 – Also to be used for public safety and military uses

Digital Video

• Moving pictures are a series of still images (frames)
 – Movies whole photographic frames projected sequentially
 • (24 images per second)
 – Analog video ‘paints’ images on a screen, line-by-line
 • (30 images per second)
 – Analog broadcast video started around the 1940s
• Digital broadcast video has replaced analog
 – Digital requires less bandwidth for the same or better
 quality
 • Bandwidth: amount of data transferred per unit of time

HDTV

• One digital broadcast standard:
 HDTV – High Definition TV
 • HDTV is a digital format,
 but not all digital TV is high-definition
 • Wide aspect ratio: 16:9
 • High resolution, up to 1920 × 1080 pixels
 • 60 frames per second
 • Uses lossy compression (MPEG-2)
Digital Bandwidth Requirements

- How much bandwidth would digital video require?
- HDTV-quality, full-screen movie with no compression:
 - 1920 × 1080 resolution
 - 24-bit color
 - 60 frames per second
 - CD-quality audio (16-bit stereo; 44.1 KHz sample rate)
 - 373 MB/sec bandwidth needed
 (or, 1,340 GB for a one-hour video file)
 (that's 300 standard DVDs! at ~4.7 GB each)

These data sizes are too large for most uses
- Compression is necessary to reduce bandwidth requirements
- Tradeoff between video quality and compressed size due to lossy compression
- Changes in available bandwidth (network congestion, transmission interference, etc.) can affect video quality
 - Want to be able to dynamically reduce the required bandwidth when necessary to maintain the 'speed' of the video

Video Compression

- Compressor: encodes the digital video data into a smaller file (or a smaller data stream)
- Decompressor: decodes the compressed data to reproduce the original video
- A codec is a compressor / decompressor pair for a particular compression method
 - There are many different codecs in common use
Codecs

- Some codecs require specific, proprietary players such as:
 - QuickTime
 - .qt or .mov files
 - QuickTime Player is required
 - RealMedia
 - .rm, .ra, or .ram files
 - RealPlayer is required
- Many other codecs are freely available
 - Can play in Windows Media Player, Winamp, DivX, or others

Video Compression

- Two main types of video compression
 - Spatial compression techniques are used on individual frames
 - Image compression
 - Dynamic resolution reduction
 - Temporal compression techniques work by comparing differences in consecutive video frames
 - Dynamic frame rate adjustment
 - Interframe coherency

Spatial Image Compression

- Each frame of a video is just a single image
 - Each image (each frame) can be compressed using standard image compression techniques, like JPEG
- This reduces video size somewhat, but more compression is still possible
 - Dynamic resolution reduction is a spatial image compression technique that takes advantage of the character of the image being compressed
Dynamic Resolution Reduction

- Need high resolution for fine detail, but not all parts of an image need full detail.
- Different parts of an image can have different resolution levels.
 - Fewer, larger pixels, or large rectangular patches, can be used where fine detail is not needed.
- The compression system can dynamically choose different resolution levels for different parts of each frame.

Dynamic Frame Rate Adjustment

- Full-quality digital video is at least 60 frames per second.
 - Not every frame needs to be shown, especially when images don’t change much between frames.
- Frame rate can be dynamically adjusted to adapt to:
 - The amount of change (motion) in the video.
 - Bandwidth limitations due to slower hardware, a slower connection, transmission interference or network congestion.

Interframe Coherency

- While parts of a scene may change rapidly from frame to frame, other parts don’t change much.
 - Instead of including all details on each successive frame, the compression system can avoid updating parts of the image that don’t change between frames.
MPEG Video

- Most digital video signals use the **MPEG-2** format
 - (MPEG = Motion Experts Group)
 - Each video frame is compressed with a JPEG-like compression scheme
 - Interframe coherency greatly reduces the required bandwidth
 - Dynamic frame-rate adjustment and dynamic resolution reduction are also used
 - MP3 audio files use just the audio part of the MPEG format (“MP3” = “MPEG-1 Audio Layer 3”)

Video Compression Example

- This 30-second video clip shows effects of too much use of dynamic resolution reduction and interframe coherency compression techniques
Editing Digital Video

• Analog video editing is performed linearly
 – Playback and recording (dubbing)
 – Actual cutting and pasting of pieces of film
 • (But, this isn’t even possible for videotape)

• Digital editing is nonlinear
 – Random access avoids need for dubbing
 – Editing software just maintains a list of clips and the instructions for assembling them

Live Video Modification

• Technology now exists to modify live video
 – Yellow first-down line and other kinds of virtual advertising
 http://www.pvi.tv

Live Video Modification

• Live news broadcast from Times Square
 – CBS News replaced NBC’s famous video screen with a CBS logo
 www.commercialalert.org/cbs-news.htm
Examples of Digital Video Editing

Computer Graphics

- **2D Graphics**
 - Creating and displaying two-dimensional images
- **3D Graphics**
 - Creating, manipulating and displaying images of three-dimensional objects and scenes
 - “Computer graphics” usually refers to 3D graphics

Creating 3D Graphics

- First step: creating and placing the 3D objects in the scene
 - A creative, artistic process
- Second step: producing the image from the scene
 - Computationally intensive
3D Graphics

- **Modeling:**
 - Mathematically represent objects and shapes as a series of points
 - Connecting the points creates a mesh of polygons – a “wireframe” version
 - Construct 3D objects to represent the creative ideas

- **Modeling:**
 - Replace the mesh with smooth, solid surfaces
 - Identify hidden and visible parts of each object
 - The hidden parts of objects should not be visible

- Adding details
 - “Sully” has over 2,300,000 individual hairs modeled on his surface
- Adding surface characteristics: texture mapping
- Lighting and shading
3D Graphics

- **Rendering**: Creating the final frame in full detail
 - A single movie frame may take many hours to render, even on a massive compute cluster
 - ~0.04 sec of movie time
 - A feature film may have more than 250,000 frames
 - 174 minutes @ 24 fps
- A rendering farm at Pixar

3D Graphic Animation

- How do we change the model to simulate motion?
 - Dynamics
 - Describe the motion of objects using simple physics
 - Kinematics
 - Simulating motion by describing all the individual moving parts of an object, such as the bones, joints, muscles and tendons of a human figure
 - Each movable component of an object is called an **avar** (animation variable)

3D Graphic Animation

- "Woody" (from *Toy Story*) has about 100 avars in his face for
 - Expressing emotions
 - Mouthing spoken words
- Each avar manually changed by animator