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Abstract

In this paper, we develop new topological methods for handling nonvariational elliptic problems of critical growth. Our
primary goal is to demonstrate how concentration compactness can be applied to achieve topological existence theorems in the
nonvariational setting. Our methods apply to both semilinear single equations and systems whose nonlinearity is of critical type.
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1. Introduction

In this paper we study nonnegative weak solutions to the semilinear elliptic boundary value problem

−∆u − Ec · ∇u = λu + g(x, λ)|u|
2∗

−2u in Ω ,
u|∂Ω = 0,

(1.1)

where Ω ⊂ RN is a smooth bounded domain with N ≥ 3, Ec ∈ RN is a constant, λ is a real parameter, g is a bounded
continuous function, and 2∗

=
2N

N−2 is the critical Sobolev exponent. We also study the related system

Lu1 + α11u1 + α12u2 − λ(β11u1 + β12u2)− g1(u1, u2) = 0

Lu2 + α21u1 + α22u2 − λ(β21u1 + β22u2)− g2(u1, u2) = 0

u1|∂Ω = 0 = u2|∂Ω ,

(1.2)

where Ω ⊂ RN is as above, L is an elliptic differential operator, λ is a real parameter, and (g1, g2) =

g(x, λ)∇F(u1, u2), where g is a bounded continuous function, and F is a smooth, strictly positive, 2∗-homogeneous
function.
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Critical growth problems have been of intense interest since the notion of concentration compactness was
introduced in [9]. Lions’ approach was variational in nature and used the concentration-compactness principle to
prove the Palais–Smale condition below a certain critical energy level, and thus allowed the application of standard
variational theorems such as the Mountain Pass Lemma. Much of the literature since that time has extended this
variational argument to different contexts. Eqs. (1.1) and (1.2) are nonvariational and thus cannot be analyzed with
the same methods.

Our primary motivation is to investigate new and general methods that may be applied in the nonvariational case.
Degree theory is a natural tool to choose in this setting, but it is important to note that the critical growth term
effectively prevents the application of Leray–Schauder degree. We apply concentration compactness to show that the
(S+) (see [2] and [12]) condition is satisfied within a certain bound around the trivial branch of solutions (λ, 0),
and so topological degree is well defined. This allows the application of a well-known bifurcation theorem due to
Rabinowitz [11].

The paper is organized as follows. Section 2 contains the existence theorem for the scalar case. The hypotheses in
Section 2 are kept simple so that the main ideas can be clearly presented. Section 3 presents the existence theorem for
the systems case, and simultaneously demonstrates how the argument in Section 2 can be extended to problems with
more general differential operators and more general nonlinear terms. Section 4 is a conclusion which summarizes
our work and discusses possible extensions.

2. The scalar case

2.1. Preliminaries

Let Ω ⊂ RN be a bounded domain with smooth boundary ∂Ω . We denote by W 1,2
0 (Ω) the completion of C∞

0 (Ω)
with respect to the inner product 〈u, v〉 =

∫
Ω ∇u · ∇vdx . The associated norm is denoted ‖ · ‖.

Consider formal differential operators

Lu := −∆u −

N∑
i=1

ci∂i u and L∗u := −∆u +

N∑
i=1

∂i (c
i u),

where ∂i =
∂
∂xi

. These formal operators induce bounded linear operators L and L∗, respectively, acting from W 1,2
0 (Ω)

into its dual space, defined by

〈Lu, v〉 =

∫
Ω

[
∇u · ∇v −

N∑
i=1

ci∂i uv

]
dx,

〈L∗u, v〉 =

∫
Ω

[
∇u · ∇v −

N∑
i=1

ci u∂iv

]
dx

for any u, v ∈ W 1,2
0 (Ω). The operator L∗ is the adjoint of L . L is self-adjoint, i.e. L = L∗, if and only if ci

= 0 for
all i = 1, . . . , N .

Consider the eigenvalue problems

Lu = λu L∗u = λu,

on W 1,2
0 (Ω) with spectral parameter λ. It follows from the maximum principle [6] and the Krein–Rutman theorem

[7,8] that the two spectra have a common real principle eigenvalue λ1 > 0, which is simple. The corresponding
eigenfunctions ϕ1 and ϕ∗

1 can be assumed to be positive in Ω . Moreover, we can normalize ϕ1 and ϕ∗

1 so that ‖ϕ1‖ = 1
and

∫
Ω ϕ1ϕ

∗

1 dx = 1. We fix real numbers λ and λ in such a way that the only eigenvalue of L in [λ, λ̄] is λ1.

For a given λ ∈ R we say that u ∈ W 1,2
0 (Ω) is a weak solution of (1.1) if, ∀v ∈ W 1,2

0 (Ω),∫
Ω

∇u · ∇v dx −

∫
Ω
(Ec · ∇u)v dx − λ

∫
Ω

uv dx −

∫
Ω

g(x, λ)|u|
2∗

−2uv dx = 0. (2.1)
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Let us define the operators S,Gλ: W 1,2
0 (Ω) → W 1,2

0 (Ω) by

〈Su, v〉 =

∫
Ω

uvdx

〈Gλ(u), v〉 =

∫
Ω

g(x, λ)|u|
2∗

−2uvdx,

∀u, v ∈ W 1,2
0 (Ω). Then S is a compact linear operator and Gλ is a continuous operator. These facts follow immediately

from the compact embedding W 1,2
0 (Ω) ↪→↪→ L2(Ω) and the continuous embedding W 1,2

0 (Ω) ↪→ L2∗

(Ω),
respectively. Moreover, we also have

lim
‖u‖→0

‖Gλ(u)‖

‖u‖
= 0 (2.2)

uniformly for λ ∈ [λ, λ].
Finding a weak solution of (1.1) is thus equivalent to solving

Lu − λSu − Gλ(u) = 0. (2.3)

By a nontrivial solution to (1.1) we mean a pair (λ, u) ∈ R×W 1,2
0 (Ω) satisfying (2.3), with u 6= 0. The trivial solution

is (λ, 0), for any λ ∈ R. A point (λ0, 0) ∈ R × W 1,2
0 (Ω) is said to be a bifurcation point of (1.1) if there exists a

sequence of nontrivial solutions {(λn, un)}
∞

n=1, with λn → λ0 in R and un → 0 in W 1,2
0 (Ω).

Let C be a set in R × W 1,2
0 (Ω) consisting of nontrivial solutions to (2.3) which is connected with respect to the

topology induced by the norm

‖(λ, u)‖′
= (|λ|2 + ‖u‖

2)
1
2 .

Then C is called a continuum of nontrivial solutions of (1.1). If C is such a continuum and if (λ0, 0) ∈ C̄, where
the closure is taken with respect to the above topology, then (λ0, 0) is a bifurcation point of (2.3), and we say that C
bifurcates from (λ0, 0).

2.2. The main theorem

Theorem 2.1. Eq. (1.1) admits a locally compact continuum of nontrivial solutions (λ, u) ∈ R×W 1,2
0 (Ω) bifurcating

from (λ1, 0) and satisfying the asymptotic estimate

λ− λ1

‖u‖2∗−2 = −

∫
Ω

g(x, λ1)ϕ
2∗

−1
1 (x)ϕ∗

1 (x)dx + o(1) (2.4)

as ‖u‖ → 0. Also, u > 0 for ‖u‖ small enough.

Remark 2.1. Assume that∫
Ω

g(x, λ1)ϕ
2∗

−1
1 (x)ϕ∗

1 (x)dx > 0 (<0).

Then there exists λ# < λ1(λ
# > λ1) such that for any λ between λ1 and λ# the Eq. (1.1) admits at least one positive

solution.

In particular, we have the following result.

Example 2.1. Let us consider the Dirichlet problem

−∆u −

N∑
i=1

∂i u = λu + |u|
2∗

−2u in Ω ,

u = 0 on ∂Ω

(2.5)
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and let ϕ1 and ϕ∗

1 be the principal eigenfunctions of ∆u +
∑N

i=1 ∂i u and ∆u −
∑N

i=1 ∂i u subject to the homogeneous
Dirichlet boundary conditions, respectively, which correspond to the common eigenvalue λ1. Then there exists
λ# < λ1 such that for all λ ∈ (λ#, λ1) problem (2.5) has at least one positive weak solution.

2.3. Proof of Theorem 2.1

Let Nλ(u) := Lu − λSu − Gλ(u), u ∈ W 1,2
0 (Ω). Finding weak solutions to Eq. (1.1) is equivalent to solving

Nλ(u) = 0. We show that there is a radius ρ0 > 0 such that the topological degree, deg(Nλ, D, 0), is well defined for
all open, nonempty sets D ⊂ Bρ0(0) ⊂ W 1,2

0 (Ω), such that Nλ(u) 6= 0 for u ∈ ∂D. It is important to notice that the
Leray–Schauder degree is not applicable here, because the operator Nλ cannot be written as a compact perturbation of
the identity. For example, in the special case whereL = −∆ and g(x, λ) ≡ 1 we find that L = I and it follows directly
from the Sobolev Embedding Theorem that Gλ is continuous but not compact. Hence Nλ cannot be written in the form
I + K for some compact operator K . Here the degree is understood in the sense of Browder [2] or Skrypnik [12].
For this purpose we have to prove that on such sets D the operator Nλ satisfies an appropriate compactness condition,
such as the (S+) condition from [2].

Definition 2.1. The operator Nλ is said to satisfy condition (S+) on D ⊂ W 1,2
0 (Ω) if any sequence {un}

∞

n=1 ⊂ D with

un ⇀ u0 (weakly) in W 1,2
0 (Ω) and

lim sup
n→∞

〈Nλ(un), un − u0〉 ≤ 0

satisfies un → u (strongly) in W 1,2
0 (Ω).

To prove the (S+) condition for Nλ on Bρ0(0), we take advantage of the Concentration-Compactness Principle
(CCP) of Lions [9]. The form below is taken from [5] and the Brézis–Lieb Lemma (see e.g. Willem’s book [14]) is
applied to change the notation slightly. We denote by S∗ the optimal coefficient in the critical Sobolev embedding.
That is, S∗

= inf
∫
Ω |∇u|

2dx , where the infimum is taken over all u ∈ W 1,2
0 (Ω) such that ‖u‖L2∗

(Ω) = 1.

Lemma 2.1. Let {un}
∞

n=1 be a bounded sequence in W 1,2
0 (Ω) with un ⇀ u0 in W 1,2

0 (Ω). Then there exist nonnegative
measures µ and ν on Ω̄ such that

|∇un|
2⇀∗

|∇u0|
2
+ µ

|un|
2∗

⇀∗
|u0|

2∗

+ ν

both weakly in the space of measures on Ω̄ with ν(Ω̄) ≤ (S∗)−
2∗

2 (µ(Ω̄))
2∗

2 . In particular, if µ = 0 then we have
un → u0 both in W 1,2

0 (Ω) and L2∗

(Ω).

Lemma 2.2. There exists ρ0 > 0 such that for any λ ∈ [λ, λ̄], the operator Nλ satisfies the (S+) condition on Bρ0(0)
for all ρ ∈ (0, ρ0].

Proof. Let {un}
∞

n=1 be a sequence in Bρ0(0) ⊂ W 1,2
0 (Ω) with un ⇀ u0 in W 1,2

0 (Ω). We will choose ρ0 later.
Then un ⇀ u0 in L2∗

(Ω) and un → u0 in L2(Ω). Moreover, by Lemma 2.1 we know that ∃ν, µ such that
|∇un|

2⇀∗
|∇u0|

2
+ µ and |un|

2∗

⇀∗
|u0|

2∗

+ ν.
We suppose that un satisfies

lim sup
n→∞

〈Nλ(un), un − u0〉 ≤ 0 (2.6)

and consider each piece of the left hand side separately. First,

lim sup
n→∞

〈L(un), un − u0〉 = lim sup
n→∞

[∫
Ω

|∇un|
2 dx −

∫
Ω

∇un · ∇u0 dx

]
= lim sup

n→∞

[∫
Ω

|∇un|
2dx −

∫
Ω

|∇u0|
2dx

]
Please cite this article in press as: M. Chhetri, et al., Nonvariational problems with critical growth, Nonlinear Analysis (2007),
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=

∫
Ω

|∇u0|
2dx + µ(Ω)−

∫
Ω

|∇u0|
2dx

= µ(Ω).

Here we have used the weak convergence of un to u0 in W 1,2
0 (Ω) and the CCP (Lemma 2.1). It is straightforward to

see that

lim
n→∞

〈S(un), un − u0〉 = lim
n→∞

∫
Ω

un(un − u0)dx = 0,

because un → u0 in L2(Ω). Finally,

lim sup
n→∞

〈Gλ(un), un − u0〉 = lim sup
n→∞

[∫
Ω

g(x, λ)|un|
2∗

dx −

∫
Ω

g(x, λ)|un|
2∗

−2unu0dx

]
=

∫
Ω

g(x, λ)|u0|
2∗

dx +

∫
Ω

g(x, λ)dν −

∫
Ω

g(x, λ)|u0|
2∗

dx

=

∫
Ω

g(x, λ)dν

We have used the fact that |un|
2∗

−2un converges pointwise a.e. to |u0|
2∗

−2u0, and that this sequence is bounded

and, without loss of generality, weakly convergent in L
2N

N+2 (Ω). These facts imply that |un|
2∗

−2un ⇀ |u0|
2∗

−2u0 in

L
2N

N+2 (Ω). We have also applied Lemma 2.1.
Define g := sup(x,λ)∈Ω×R |g(x, λ)|. It follows from Eq. (2.6) that

µ(Ω) ≤

∫
Ω

g(x, λ)dν

≤ gν(Ω)

≤ g(S∗)−
2∗

2 (µ(Ω))
2∗

2 .

Thus either µ(Ω) = 0 or µ(Ω) ≥ (g)
2−N

2 (S∗)
N
2 .

We know from the CCP that

µ(Ω) ≤ lim sup
n→∞

∫
Ω

|∇un|
2dx ≤ ρ2

0 .

Hence, if {un} ⊂ Bρ0(0) with (ρ0)
2 < (g)

2−N
2 (S∗)

N
2 , then the only possibility is that µ(Ω) = 0 and we conclude the

strong convergence of {un} in W 1,2
0 (Ω).

In fact, this argument is valid only to verify strong convergence of a subsequence. The fact that the full sequence
must converge strongly is easily proved by contradiction. Suppose that for some subsequence {unk }

∞

k=1 ⊂ {un}
∞

n=1 we

have unk ⇀ u0 in W 1,2
0 (Ω) and

lim sup
k→∞

〈Nλ(unk ), unk − u0〉 ≤ 0,

but unk 6→ u0 in W 1,2
0 (Ω). Then, without loss of generality, we have a subsequence (unk ) such that ‖unk − u0‖ ≥ δ

for some δ > 0 and for all k. Proceeding as above, we can prove that there is a strongly convergent subsequence of
unk yielding a contradiction. This completes the proof of Lemma 2.2. �

We next use degree theory to prove the existence of a bifurcation from λ1.

Proposition 2.1. Eq. (1.1) admits a locally compact continuum C of nontrivial solutions (λ, u) ∈ R × W 1,2
0 (Ω)

bifurcating from (λ1, 0). The continuum meets the boundary of [λ, λ̄] × B0(ρ0).

Proof. Let λ ∈ [λ, λ̄] and let

Ñλ(u) := Lu − λSu.

Please cite this article in press as: M. Chhetri, et al., Nonvariational problems with critical growth, Nonlinear Analysis (2007),
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It follows from Lemma 2.2 that the degree deg(Nλ, Bρ(0), 0) is well defined for any 0 < ρ < ρ0 whenever
0 6∈ Nλ(∂Bρ(0)). It is trivial to check the (S+) condition for Ñ , and deg(Ñλ, Bρ(0), 0) is well defined under the same
conditions as above. It follows from the index formula (see [12], Theorem 5.3.) that for 0 < δ < min{λ1−λ, λ̄−λ1} we
have deg(Ñλ1−δ, Bρ(0), 0) 6= deg(Ñλ1+δ, Bρ(0), 0). It follows from Eq. (2.2) and the homotopy invariance property
of the degree (see [12]) that for any 0 < δ < min{λ1 − λ, λ̄− λ1} there exists ρ > 0 such that

deg(Nλ1−δ, Bρ(0), 0) 6= deg(Nλ1+δ, Bρ(0), 0).

In other words, the index of the isolated zero of Nλ changes (by magnitude 2) when λ crosses λ1. At this point we
can follow the proof of Theorem 1.3 and Corollary 1.12 in [11], with only minor modifications, to get a continuum
C of nontrivial solutions. In particular, since the operator Gλ is not compact the proof of the local compactness of
C requires the following modification: Suppose that {(λn, un)} ⊂ C is a sequence of solutions with {un} ∈ Bρ0(0).
This means that Nλn (un) = 0 for all n. Without loss of generality this sequence of solutions is weakly convergent and
there exists λ ∈ R such that λn → λ. The (S+) condition now implies that {un} converges strongly, and thus the local
compactness of C follows. �

We finally consider the asymptotic characterization of the nontrivial solutions near the bifurcation point. Let
(λ, u) ∈ C. Then

〈Lu, v〉 − λ〈Su, v〉 − 〈Gλ(u), v〉 = 0 (2.7)

for any v ∈ W 1,2
0 (Ω). Choosing v = ϕ∗

1 and using the fact that

〈Lu, ϕ∗

1 〉 − λ1〈Su, ϕ∗

1 〉 = 〈L∗ϕ∗

1 , u〉 − λ1〈Sϕ∗

1 , u〉 = 0,

we obtain from (2.7) that

(λ− λ1)

∫
Ω

uϕ∗

1 dx = −

∫
Ω

g(x, λ)|u|
2∗

−2uϕ∗

1 dx . (2.8)

Now, let w :=
u

‖u‖
and ‖u‖ → 0. Then (λ, u) ∈ C implies λ → λ1 and it follows from (2.2) and (2.7) that w → w0,

and

〈Lw, v〉 − λ〈Sw, v〉 −

〈
Gλ(u)

‖u‖
, v

〉
→ 〈Lw0, v〉 − λ1〈Sw0, v〉,

for any v ∈ W 1,2
0 (Ω). Hence Lw0 − λ1Sw0 = 0 with ‖w0‖ = 1. It follows that w0 = ±ϕ1. Assume without the loss

of generality that w0 = ϕ1. Dividing (2.8) by ‖u‖
2∗

−1 we get

λ− λ1

‖u‖2∗−2

∫
Ω
wϕ∗

1 dx = −

∫
Ω

g(x, λ)|w|
2∗

−2wϕ∗

1 dx,

and letting ‖u‖ → 0 yields (2.4).
Let (λ, u) ∈ C be such that ‖u‖ → 0 and w :=

u
‖u‖

→ ϕ1 in W 1,2
0 (Ω). It follows from [6, Theorem 8.12] that

‖w − ϕ1‖W 2,2(Ω) → 0. This fact and the bootstrap argument combined with [6, Theorem 9.15, Lemma 9.17 and
Corollary 9.18] yield that ‖w − ϕ1‖W 2,p(Ω) → 0 with arbitrarily large p. Taking p > N

2 , we have w ∈ C0(Ω̄) and

according to [6, Theorems 8.33 and 8.34] we get ‖w − ϕ1‖C1,α ¯(Ω) → 0. Since ϕ1 > 0 in Ω and ∂ϕ1
∂ν

< 0 on ∂Ω by
the strong maximum principle [6], we have w > 0 (and also u > 0) in Ω if ‖u‖ is small enough.

This completes the proof of the Theorem 2.1.

2.4. Special case of dimensions 3 ≤ N ≤ 6

The main results can be strengthened if we apply the bifurcation theorem of Crandall and Rabinowitz [4].
However, there is a price which has to be paid for that: the assumptions of this bifurcation theorem allow us to
prove this result only for low dimensions N = 3, 4, 5 and 6. Indeed, under the assumptions that 3 ≤ N ≤ 6 and
Nλ(u): R × W 1,2

0 (Ω) → W 1,2
0 (Ω) is a twice differentiable function of λ and u on some neighborhood of the point

(λ1, 0), we also have that
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(i) Nλ(0)(λ, 0) = 0 for all λ ∈ (λ, λ̄),
(ii) dim ker N ′

λ1
(0) = codim ImN ′

λ1
(0) = 1,

(iii) N ′′
λ1
(0)(1, φ1) 6∈ Im f ′

2(λ1, 0).

Note that (i) is obvious, (ii) follows from the Fredholm alternative and the simplicity of λ1 and (iii) follows again
from the algebraic simplicity of λ1. Denote by W̃ 1,2

0 (Ω) the set {u ∈ W 1,2
0 (Ω):

∫
Ω uϕ1dx = 0}. Then it follows from

the Crandall–Rabinowitz theorem that there is η > 0 and a C1-curve (λ, ψ) : (λ1 − η, λ1 + η) → R × W̃ 1,2
0 (Ω) such

that

λ(0) = λ1, ψ(0) = 0, Nλ(t)(t (φ1 + ψ(t))).

Moreover, there is a neighbourhood U of (λ1, 0) in R × W̃ 1,2
0 (Ω) such that

Nλ(u) = 0 for (λ, u) ∈ U

if and only if

either u = 0 or λ = λ(t), u = t (ϕ1 + ψ(t)).

In other words, for 3 ≤ N ≤ 6, the continuum of nontrivial solutions C from Theorem 2.1 is a curve in a sufficiently
small neighborhood of the point (λ1, 0).

3. The systems case

In this section we consider the system (1.2) and derive a result similar to the scalar result. We allow for more
general hypotheses, but the overall structure of the proof remains the same.

3.1. Preliminaries

Let Ω be a smooth bounded domain in RN . We will reformulate (1.2) as an operator equation in H :=

W 1,2
0 (Ω)× W 1,2

0 (Ω) with inner product

〈Eu, Ev〉H := 〈u1, v1〉 + 〈u2, v2〉,

where we write Eu = (u1, u2). The corresponding norm is denoted by ‖Eu‖H .
Define the linear operator L by

Lu = −

N∑
i, j=1

∂i (a
i j∂ j u)+

N∑
i=1

bi∂i u + cu,

where ∂i :=
∂
∂xi

. We require the following conditions on L:

(L1): ai j is uniformly Lipshitz continuous in Ω for all i, j ,
(L2): A := [ai j

] is a strongly uniformly elliptic matrix, i.e. ∃α > 0 such that ∀x ∈ Ω , ξ ∈ RN , Aξ · ξ ≥ α|ξ |2.
(L3): bi is bounded and measurable for all i , and
(L4): c is a positive, bounded, and measurable function.

As in the previous section L induces a bounded linear operator, L0 : W 1,2
0 (Ω) → W 1,2

0 (Ω), such that

〈L0u, v〉 =

∫
Ω
(A∇u · ∇v)dx +

∫
Ω

(
N∑

i=1

bi∂i u + cu

)
vdx ∀u, v ∈ W 1,2

0 (Ω).

Let L : H → H be defined by L =

(
L0 0
0 L0

)
. It will become clear in the arguments below that (possibly coupled)

lower order terms can be added to each equation in the system (1.2). For the sake of simplicity we do not include those
additional terms.

Let M = [γi j ] such that

(M): γi j ∈ C(Ω) for all i, j , and there exist a real number s and a nonnegative irreducible 2 × 2 matrix M ′ with
spectral radius ρ(M ′) < s, uniformly for x ∈ Ω , such that M = s I − M ′ (i.e. M is an irreducible M-matrix).
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We define the compact linear operator M : H → H by

〈M Eu, Ev〉H =

∫
Ω
(M Eu) · Evdx ∀Eu, Ev ∈ H.

With the assumptions above it follows from Proposition 3.1 of [13] that the eigenvalue problems

L Eu + M Eu = λEu

L∗
Eu + MT

Eu = λEu

have a common simple principle eigenvalue λ0 with positive eigenvector. In all that follows we assume that λ0 > 0.
By Theorem 1.1 in [13] it follows that L + M has a strictly positive inverse satisfying a standard maximum principle.

Observe that (L + M)∗ =

(
L∗

0 0
0 L∗

0

)
+ MT satisfies the same conditions as L + M .

Let B = [βi j ] such that

(B) B is a nonnegative nontrivial matrix with βi j ∈ C(Ω) for all i, j .

We define the compact linear operator B : H → H by

〈B Eu, Ev〉H =

∫
Ω
(B Eu) · Evdx ∀Eu, Ev ∈ H.

With the assumptions above it follows from Theorem 5.1 in [10], which depends on the Krein–Rutman Theorem, that
there is a simple positive principle eigenvalue, λ1, for the weighted eigenvalue problem

L Eu + M Eu = λB Eu Eu ∈ H,

where the associated eigenvector, Eφ1, has positive components that are bounded above and below by positive multiples
of the principle eigenfunction associated with L0. Finally, notice that the adjoint eigenvalue problem

L∗
Eu + MT

Eu = λBT
Eu Eu ∈ H,

has the same principle eigenvalue, by the Krein–Rutman theorem, and this problem also satisfies (L1)–(L4), (M), (B),
so the corresponding eigenfunction Eφ∗

1 has positive components with all of the same properties as Eφ1. Moreover, the
positivity of B, Eφ1, and Eφ∗

1 implies that 〈B Eφ1, Eφ∗

1 〉H > 0. In all that follows we assume that the eigenfunction pairs
have been normalized so that 〈 Eφ1, Eφ1〉 = 〈B Eφ1, Eφ∗

1 〉H = 1.
Finally, we assume

(G): g(x, λ) is a bounded, continuous function on Ω × R, and there is a smooth, strictly positive, 2∗-homogeneous
function F(Eu) with |∇u F(Eu)| ≤ |Eu|

2∗
−1 such that g1(x, λ, Eu) = g(x, λ)F1(Eu), and g2(x, λ, Eu) = g(x, λ)F2(Eu),

where F1(Eu) and F2(Eu) represent the partial derivatives of F with respect to u1 and u2 respectively.

For the purposes of this paper, we could also freely add a strictly subcritical nonlinearity of general type. However,
since we are primarily interested in the behavior of the critical nonlinearity we have omitted these extra terms for the
sake of brevity. We define the continuous nonlinear operator

Gλ : H → H by 〈Gλ(Eu), Ev〉H =

∫
Ω

g(x, λ)∇F(Eu) · Evdx ∀Eu, Ev ∈ H.

A weak solution pair (λ, Eu) ∈ R × H of (1.2) must satisfy

L Eu + M Eu = λB Eu + Gλ(Eu),

where this statement is equivalent to the usual integral definition. We use the terms continua and bifurcation exactly
as in the scalar case.

3.2. The main theorem

Theorem 3.1. Assume (L1)–(L4), (M), (B), and (G). Also assume that the principle eigenvalue of L + M is positive.
Then Eq. (1.2) admits a locally compact continuum C of nontrivial solutions (λ, Eu) ∈ R × H bifurcating from (λ1, E0)
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and satisfying the asymptotic estimate

λ− λ1

‖Eu‖
2∗−2
H

= −

∫
Ω

g(x, λ1)∇F( Eφ1) · Eφ∗

1 (x)dx + o(1) (3.1)

as ‖Eu‖H → 0 and Eu > 0 for ‖Eu‖H small enough.

We define the operator

Nλ(Eu) = L Eu + M Eu − λB Eu − Gλ(Eu), Eu ∈ H.

Clearly, for any λ the pair (λ, E0) ∈ R × H solves Nλ(Eu) = 0. We will use degree theory, as in the scalar case, to find
a continuum of solutions that bifurcates from (λ1, E0). In order to prove the (S+) condition for Nλ we need a variant
of the CCP of P.L. Lions for systems. Note that it follows from [1] that an embedding exists from H to the space of
functions with norm(∫

Ω
F(Eu)dx

) 1
2∗

and minimizers exist for this modified critical Sobolev embedding. We define

SF = inf
∫
Ω
(|∇u1|

2
+ |∇u2|

2)dx,

where the infimum is taken over all Eu ∈ H such that
∫
Ω F(Eu)dx = 1.

Lemma 3.1. Let {Eun}
∞

n=1 be a bounded sequence in H with Eun ⇀ Eu0 in H. Then there exist nonnegative measures µ
and ν on Ω̄ such that(

2∑
i=1

A∇uni · ∇uni

)
dx ⇀∗

(
2∑

i=1

A∇u0i · ∇u0i

)
dx + µ, and

F(Eun)dx ⇀∗ F(Eu0)dx + ν

weakly in the space of measures on Ω̄ . Moreover, ν(Ω̄) ≤ (αSF )
−

2∗

2 (µ(Ω̄))
2∗

2 . Here α is the ellipticity constant in
condition (L2). In particular, if µ = 0 then we have Eun → Eu0 both in H and in L2∗

(Ω)× L2∗

(Ω).

Proof. Let

νn := (F(Eun)− F(Eu0))dx, and µn :=

(
2∑

i=1

A∇uni · ∇uni −

2∑
i=1

A∇u0i · ∇u0i

)
dx .

It is straightforward to show that for an appropriate subsequence there exists ν such that νn ⇀ ν and there exists µ
such that µn ⇀ µ. Using weak convergence it is easy to check that

µn =

2∑
i=1

A∇(uni − u0i ) · ∇(uni − u0i )dx + o(1).

By the Brezis–Lieb Lemma, we know that νn = F(Eun − Eu0)dx + o(1). A proof of the Brezis–Lieb Lemma in this
case is given in [1]. For convenience we let Een := Eun − Eu0, so

νn = F(Een)dx + o(1), and µn =

(
2∑

i=1

A∇eni · ∇eni

)
dx + o(1).

Let ξ ∈ C∞

0 (Ω). Then∫
Ω

|ξ |2
∗

dν = lim
n→∞

∫
Ω

|ξ |2
∗

dνn

= lim
n→∞

∫
Ω

|ξ |2
∗

F(Een)dx
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= lim
n→∞

∫
Ω

F(|ξ |Een)dx

≤ S
−

2∗

2
F lim inf

n→∞

(∫
Ω
(|∇(|ξ |en1)|

2
+ |∇(|ξ |en2)|

2)dx

) 2∗

2

= S
−

2∗

2
F lim inf

n→∞

(∫
Ω
(|ξ |2(|∇en1|

2
+ |∇en2|

2)dx)+ o(1)
) 2∗

2

≤ S
−

2∗

2
F lim inf

n→∞

(
α−1

∫
Ω

|ξ |2
2∑

i=1

(A∇eni · ∇eni )dx

) 2∗

2

≤ S
−

2∗

2
F

(
α−1

∫
Ω

|ξ |2dµ
) 2∗

2

.

Here we have used the following facts: F is homogeneous of degree 2∗; the usual critical Sobolev Embedding Theorem
applies for functions of degree 2∗ meeting condition (G); eni converges strongly in L2(Ω) for i = 1, 2 and weakly in
W 1,2

0 (Ω) (to eliminate lower order terms in the gradient of |ξ |eni ); and finally, A = [ai j
] is uniformly strongly elliptic

with ellipticity constant α.
An appropriate choice of the sequence {ξn} substituted into the previous inequality leads to ν(Ω̄) ≤

(αSF )
−

2∗

2 (µ(Ω̄))
2∗

2 .
If µ = 0, then ‖Eun − Eu0‖

2
H ≤

1
α
[µn + o(1)], so ‖Eun − Eu0‖

2
H → 0, and we get strong convergence in both H and,

by continuous embedding, L2∗

(Ω)× L2∗

(Ω). �

Once again, define λ and λ such that λ1 is the only eigenvalue of L + M weighted with respect to B in the interval
[λ, λ]. We now prove that, there exists ρ0 > 0 such that, ∀λ ∈ [λ, λ], the operator Nλ = L + M − λB − Gλ satisfies
the (S+) condition on Bρ0(0).

Lemma 3.2. There exists ρ0 > 0 such that ∀λ ∈ [λ, λ] the operator Nλ as defined above satisfies the (S+) condition
as an operator from Bρ0(0) ⊂ H to H.

Proof. Let {Eun} be a sequence in Bρ0(0), with ρ0 to be chosen later. Suppose that Eun ⇀ Eu0 in H and that

lim sup
m→∞

〈Nλ(Eun), Eun − Eu0〉H ≤ 0.

By passing to an appropriate subsequence we may assume that Eun → Eu0 in L2(Ω) × L2(Ω), with convergence
pointwise a.e. in Ω , and Eun ⇀ Eu0 in L2∗

(Ω) × L2∗

(Ω). We need to show that Eun → Eu0 in H . Using the L2

convergence mentioned above it is clear that the terms 〈M Eun, Eun − Eu0〉H and 〈B Eun, Eun − Eu0〉H vanish in the limit.
Using weak convergence, it is clear that the lower order terms in 〈L Eun, Eun − Eu0〉H vanish in the limit leaving

〈L Eun, Eun − Eu0〉H =

∫
Ω

2∑
i=1

(A∇uni · ∇uni − A∇u0i · ∇u0i ) dx + o(1).

Notice that

〈Gλ(Eun), Eun − Eu0〉 =

∫
Ω

g(x, λ)∇F(Eun) · (Eun − Eu0)dx

=

∫
Ω

g(x, λ)(∇F(Eun) · Eun − ∇F(Eun) · Eu0)dx,

=

∫
Ω

g(x, λ)(∇F(Eun) · Eun − ∇F(Eu0) · Eu0)dx + o(1)

because ∇F(Eun) converges weakly to ∇F(Eu0) in L2∗′

× L2∗′

by the weak convergence of Eun in L2∗

× L2∗

, the bound
on the derivatives of F , and pointwise-almost-everywhere convergence of Eun to Eu0. Also, by the 2∗-homogeneity of
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F , ∇F(Eu)Eu = 2∗F(Eu). This is the only place in the proof where we are using the fact that our nonlinearity is of
gradient type. Hence

〈Gλ(Eun), Eun − Eu0〉 = 2∗

∫
Ω

g(x, λ)(F(Eun)− F(Eu0))dx + o(1).

Now, define νn and µn as in Lemma 3.1. We then find that there exists ν such that νn ⇀ ν and there exists µ such
that µn ⇀ µ, and

lim
n→∞

〈L Eun, Eun − Eu0〉H = µ(Ω),

and

lim
n→∞

〈Gλ(Eun), Eun − Eu0〉H =

∫
Ω

g(x, λ)dν.

The remainder of the proof follows precisely as in the scalar case with (αSF ) in place of S∗. �

Now that an appropriate concentration-compactness result is in place, and the (S+) condition has been established,
the remainder of the existence proof and the proof of the asymptotic estimate follows precisely as in the scalar case.
Note that the normalization 〈B Eϕ1, Eϕ∗

1 〉 = 1 has been chosen because this quantity appears in the asymptotic estimate
where 〈ϕ1, ϕ

∗

1 〉 appears in the scalar case. Therefore this choice of normalization produces the asymptotic estimate as
claimed.

4. Conclusion

The main purpose of this work has been to demonstrate that the method of concentration compactness can be
applied to nonvariational problems, through the lens of topological degree. Although topological degree has been
generally used to obtain existence of similar problems in Hölder spaces, these spaces require Schauder estimates to
hold on the linear operator and they require strong smoothness of the function g(x, λ) in the nonlinearity. Our methods
prove existence of solutions to a wide range of nonvariational problems with rough coefficients and critical growth
that were previously untreatable. In this direction, note also that the regularity we have required on (ai j ) is necessary
only to obtain pointwise positivity of our solutions; existence and the asymptotic estimate hold for merely bounded,
measurable coefficients.

Several generalizations of our results are immediate:

1. Lower order terms, both subcritical nonlinearities and first-order linear terms may be added to the equation without
difficulty. These terms do not affect whether the operator satisfies the (S+) condition. These lower order terms may
be quite general in form.

2. Systems of n equations with the same conditions on M and B can be treated as in Section 3.
3. Other kinds of matrices can be handled so long as the corresponding linear problem satisfies the conditions of

the Krein–Rutman Theorem, with positive first eigenvalue and vector of eigenfunctions. The class of matrices
mentioned above is a large class meeting this description, but it is certainly not comprehensive.

The authors intend to continue this study by examining the case of nongradient nonlinearities and quasilinear
operators, although the scalar equation involving the p-Laplacian was recently studied in [3]. Each of these
generalizations poses its own difficulties, and will require the development of additional tools.
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