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Abstract. In this paper we use the method of upper and lower
solutions combined with degree theoretic techniques to prove the
existence of multiple positive solutions to semipositone superlinear
systems of the form

−∆u = g1(x, u, v)

−∆v = g2(x, u, v)

on a smooth, bounded domain Ω ⊂ Rn with Dirichlet boundary
conditions, under suitable conditions on g1 and g2. Our techniques
apply generally to subcritical, superlinear problems with a certain
concave-convex shape to their nonlinearity.

1. Introduction

In this paper we study the multiplicity of solutions to an elliptic

problem of the form
−∆u = g1(x, u, v) ∀x ∈ Ω
−∆v = g2(x, u, v) ∀x ∈ Ω
u, v > 0 ∀x ∈ Ω

u = v = 0 ∀x ∈ ∂Ω

(1)

where Ω is a smooth bounded domain in Rn, n ≥ 2 and gi(x, u, v) :

Ω×R×R → R, i = 1, 2 are differentiable functions subject to further

restrictions to be named below. We are motivated in this work by

the case of semipositone nonlinearities, for which there is a positive

constant γ such that for i = 1, 2,

(H1): gi(x, 0, 0) ≤ −γ < 0 ∀x ∈ Ω.

However, our work requires no sign condition on the nonlinearity. In

addition, we assume that gi(x, u, v) satisfies suitable conditions on a
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bounded rectangle so that a positive strict lower solution pair and a

positive strict upper solution pair can be constructed. These assump-

tions suffice to prove the existence of at least one positive solution.

For example, in Chhetri-Robinson [6], the authors prove the exis-

tence of a positive solution for a single equation analogous to (1) by

constructing an ordered pair of lower and upper solutions. There, the

nonlinearity satisfies (H1) and additional conditions. Further related

references may be found therein.

To obtain the second solution, we assume that for i, j = 1, 2 there

exist constants qij with 0 ≤ qij < 2∗ − 1 = n+2
n−2

for n > 2 or 0 ≤ qij
for n = 2 so that the following holds: there are continuous functions

hij(x) on Ω which are strictly positive in Ω such that

(H2): gi(x, u, v) = hi1(x)u
qi1 + hi2(x)v

qi2 + ri(x, u, v)

with |ri(x, u, v)| ≤ C(1 + |u|βi1 + |v|βi2) and βij < qij for i, j = 1, 2. (If

qij = 0, βij may also be 0.)

Sun-Wu-Long [24] obtained multiple positive solutions for the single

equation case when the nonlinearity is of the form λuβ + p(x)u−α with

0 < α < 1 < β < 2∗ − 1. The interesting feature about such a nonlin-

earity is that it exhibits concave-convex type behavior, thus making it

possible to obtain Ambrosetti-Brezis-Cerami [2] types of results. Our

nonlinearities roughly exhibit this concave-convex behavior in the sense

that there is a finite rectangle on which they are bounded above by an

upper shelf, whereas for large values of u and v they are superlinear.

Hence the two solution conclusion that we obtain, with one solution in

the concave region and one solution reaching into the convex region, is

not unexpected.

The novelty of this paper lies in the fact that we are able to get

not just one positive solution to a superlinear problem, but also a

second positive solution. To the best of our knowledge, this paper is

the first to deal with multiple positive solutions of general semipositone

superlinear problems, even for single equation. It is also important to

note that our methods allow a large class of differential operators and

nonlinear forcing terms. In particular, our proofs find both positive

solutions using degree-theoretic arguments, rather than a mountain-

pass argument. Thus, our results generalize to nonvariational elliptic

operators. They also generalize easily to larger systems.
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This paper is organized as follows: In Section 2, we state and prove

a general theorem about the existence of two solutions. In section 3,

we prove the existence of positive solutions to an auxiliary problem.

These solutions will become the lower solutions for our main theorem.

In Section 4, we state and prove an existence theorem in the weakly

coupled quasimonotone nondecreasing case, and provide two examples

of nonlinearities that satisfy the hypotheses of the theorem. In sec-

tion 5, we state and prove a theorem that deals with a quasimonotone

nondecreasing Hamiltonian (and thus strongly coupled) system and

provide an example satisfying the hypotheses of the theorem.

2. A General Two-Solution Existence Theorem

Using the method of upper and lower solutions, an a priori bound,

and some degree theory, we formulate very general conditions under

which two solutions will be guaranteed to exist for an elliptic superlin-

ear problem. This is phrased in terms of a 2×2 system of equations for

simplicity of exposition, but the technique also applies to single equa-

tions or larger systems. Throughout this paper we will use the vector

notation ~u = (u, v) to indicate a pair of functions being considered in

the first and second equations of the system respectively.

First we must define some terms for the general types of systems

that we may encounter. The following are taken from Pao [Section 8.4,

Page 402][19].

Definition 1. The nonlinearities gi(x, u, v) are called quasimonotone

nondecreasing if ∀x, u, v, ∂g1
∂v
≥ 0 and ∂g2

∂u
≥ 0. In this case, two pairs

of functions (u, v) and (u, v) are called an ordered lower-upper solution

pair of (1) if u(x) ≤ u(x) and v(x) ≤ v(x) ∀x ∈ Ω, u(x) = 0 and

v(x) = 0 on ∂Ω, u(x) ≥ 0 and v(x) ≥ 0 on ∂Ω and
−∆u ≤ g1(x, u, v) ∀x ∈ Ω
−∆v ≤ g2(x, u, v) ∀x ∈ Ω
−∆u ≤ g1(x, u, v) ∀x ∈ Ω
−∆v ≤ g2(x, u, v) ∀x ∈ Ω

(2)

Definition 2. The nonlinearities gi(x, u, v) are called quasimonotone

nonincreasing if ∀x, u, v, ∂g1
∂v
≤ 0 and ∂g2

∂u
≤ 0. In this case, two pairs

of functions (u, v) and (u, v) are called an ordered lower-upper solution

pair of (1) if u(x) ≤ u(x) and v(x) ≤ v(x) ∀x ∈ Ω, u(x) = 0 and
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v(x) = 0 on ∂Ω, u(x) ≥ 0 and v(x) ≥ 0 on ∂Ω and
−∆u ≤ g1(x, u, v) ∀x ∈ Ω
−∆v ≤ g2(x, u, v) ∀x ∈ Ω
−∆u ≤ g1(x, u, v) ∀x ∈ Ω
−∆v ≤ g2(x, u, v) ∀x ∈ Ω

(3)

Definition 3. The nonlinearities gi(x, u, v) are called quasimonotone

mixed if ∀x, u, v, ∂g1
∂v

≤ 0 and ∂g2
∂u

≥ 0. (If the opposite holds we

switch u and v.) In this case, two pairs of functions (u, v) and (u, v)

are called an ordered lower-upper solution pair of (1) if u(x) ≤ u(x)

and v(x) ≤ v(x) ∀x ∈ Ω, u(x) = 0 and v(x) = 0 on ∂Ω, u(x) ≥ 0 and

v(x) ≥ 0 on ∂Ω and
−∆u ≤ g1(x, u, v) ∀x ∈ Ω
−∆v ≤ g2(x, u, v) ∀x ∈ Ω
−∆u ≤ g1(x, u, v) ∀x ∈ Ω
−∆v ≤ g2(x, u, v) ∀x ∈ Ω

(4)

If any of the three cases above hold, we say that the nonlinearities

are quasimonotone.

The following definitions are taken from de-Figueiredo [8].

Definition 4. The system (1) under condition (H2) is weakly cou-

pled if there are positive numbers c1 and c2 such that

c1 + 2− c1q11 = 0, c1 + 2− c2q12 > 0,

c2 + 2− c1q21 > 0, c2 + 2− c2q22 = 0.

Definition 5. The system (1) under condition (H2) is strongly cou-

pled if there are positive numbers c1 and c2 such that

c1 + 2− c1q11 > 0, c1 + 2− c2q12 = 0,

c2 + 2− c1q21 = 0, c2 + 2− c2q22 > 0.

Now we state our general two solution theorem.

Theorem 1. Suppose that gi(x, u, v) for i = 1, 2 satisfy (H1) and (H2)

and the following:

(C1) gi(x, u, v) are quasimonotone,

(C2) there exists a strictly positive ordered upper-lower solution pair

according to the definition corresponding to the nonlinearities’

quasimonotone type, and either

(C3a) the system is weakly coupled with q11 > 1 and q22 > 1; or
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(C3b) the system is strongly coupled with q12 > 1 and q21 > 1, and an

appropriate a priori bound holds for the system and a simple

homotopy from the given system.

Then (1) has at least two solutions.

We will prove this theorem via several lemmata. Using the method of

upper and lower solutions we will find a first solution and show that the

degree of an operator corresponding to (1) is one on a corresponding

set. We will then prove (or assume) that the problem satisfies an a

priori bound. This will allow us to show that the degree on a larger set

is 0 and conclude that there is a second solution.

In order to establish the existence of solutions we will need to rep-

resent the boundary value problem (1) as an operator equation in the

proper form and then perform a Leray-Schauder degree computation.

Similar arguments for single equations can be found in many references.

See Amann [1] or Shivaji [23] for details.

In order to work in the appropriate function space setting we consider

the auxiliary problem{
−∆z = 1 ∀x ∈ Ω,

z = 0 ∀x ∈ ∂Ω.
(5)

By the Hopf maximum principle we know that z is strictly positive in

Ω and that | ∂z
∂ν
| > 0 on ∂Ω where ν represents the unit outward normal

on the boundary. Let

Cz(Ω) := {u ∈ C(Ω) : −tz ≤ u ≤ tz in Ω for some t > 0};

and let ||u||z := inf{t > 0 : −tz ≤ u ≤ tz}. DefineX := Cz(Ω)×Cz(Ω).

Notice that the rectangle W := {~u ∈ X : u(x) < u(x) < ū(x), v(x) <

v(x) < v̄(x)} = (u, v)× (u, v) is open in the X topology.

Now let F~u := I~u − L−1N(~u) for ~u ∈ X, where I is the identity,

L−1 is the inverse of L := (−∆,−∆), and N(~u) = (g1(x, ~u), g2(x, ~u)).

The standard arguments applied to elliptic operators and substitution

operators show that F is a compact perturbation of the identity, and

so it is valid to discuss Leray-Schauder degree computations for F .

Lemma 1. If g1 and g2 are quasimonotone, then problem (1) has a

solution in the set W . Moreover, deg(F, 0,W ) = 1.

Proof. For simplicity, we provide full details only for the case when the

nonlinearities are quasimonotone nondecreasing. We indicate how to

modify the proof in the other two cases below.
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The first goal is to transform the problem (1) to one with helpful

monotonicity properties. Choose t > 0 such that ∂g1
∂u

(x, u, v) ≥ −t and
∂g2
∂v

(x, u, v) ≥ −t for u(x) ≤ u(x) ≤ u(x) and v(x) ≤ v(x) ≤ v(x).

Let pt(x, u, v) := g1(x, u, v) + tu and qt(x, u, v) = g2(x, u, v) + tv. Let

Lt := −∆ + t. The problem (1) can be rewritten as
Ltu = pt(x, u, v) ∀x ∈ Ω,
Ltv = qt(x, u, v) ∀x ∈ Ω,
u = 0 ∀x ∈ ∂Ω,
v = 0 ∀x ∈ ∂Ω,

(6)

where Lt satisfies the standard maximum principle for linear elliptic

operators, and pt, qt are monotone in both variables. Moreover, it is

easy to check that (u, v) and (u, v) are lower/upper solution pairs for

(6).

The second goal is to restrict the problem so that solutions cannot

occur outside of the rectangle W . For a given function u(x), let

ũ(x) :=

 u(x) if u(x) ≤ u(x)
u(x) if u(x) < u(x) < ū(x)
ū(x) if ū(x) ≤ u(x)

Define ṽ(x) similarly. Define the substitution operators p̃t(u(x), v(x)) :=

pt(x, ũ(x), ṽ(x)), and q̃t(u(x), v(x)) := qt(x, ũ(x), ṽ(x)). We can now

state a modified boundary value problem that has useful properties of

monotonicity and boundedness.
Ltu = p̃t(u, v) ∀x ∈ Ω,
Ltv = q̃t(u, v) ∀x ∈ Ω,
u = 0 ∀x ∈ ∂Ω,
v = 0 ∀x ∈ ∂Ω.

(7)

The third goal is to do a degree computation for (7), and then re-

late that computation back to the original boundary value problem.

The modified boundary value problem can be represented as an oper-

ator equation of the form F̃t(~u) := I~u− ~L−1
t Ñt(~u) = 0 on the space X,

where ~L−1
t is the inverse of ~Lt := (Lt, Lt), and Ñt(~u) = (p̃(x, ~u), q̃(x, ~u)).

Since Ñt is bounded, and every solution of F̃t(~u) = 0 satisfies ||~u|| =

||~L−1
t Ñt(~u)|| ≤ ||~L−1

t ||||Ñt(~u)||, it is straightforward to obtain an a pri-

ori bound on solutions. If we then select any R > 0 larger than the a

priori bound and consider the homotopy h(λ, ~u) = I~u− λ~L−1
t Ñt(~u) for

λ ∈ [0, 1] we see that deg(F̃t, 0, BR(0)) = deg(I, 0, BR(0)) = 1.
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It follows from the previous argument that (7) has at least one solu-

tion in (u, v) ∈ BR(0). Observe that

Ltu(x) = p̃t(u(x), v(x)) ≤ p̃t(ū(x), v̄(x)) < Ltū(x). (8)

By the maximum principle this implies that u(x) < ū(x) in Ω. Similar

arguments show that u(x) < u(x) and v(x) < v(x) < v̄(x). It follows

that all solutions of (7) are also solutions of (6) and thus of (1). More-

over, these solutions must lie strictly between the upper and lower so-

lution pairs, and hence in W . We can now say that deg(F̃t, 0, BR(0)) =

deg(F̃t, 0,W ) = deg(Ft, 0,W ) = 1, where Nt(~u) = (pt(~u), qt(~u)) and

Ft := I − ~L−1
t Nt.

Finally, we consider t to be a homotopy parameter and let t→ 0 so

that Ft → F . It is clear that the solutions to (6) in W do not change

as t changes, so there are no solutions on ∂W for any t. Hence, degree

is preserved along the homotopy and we get deg(F, 0,W ) = 1.

The cases where g1 and g2 satisfy either Definition 2 or Definition 3

can be handled in a similar way. For example, if g1 and g2 are quasi-

monotone nonincreasing, and if (u, v) and (u, v) are lower and upper

solution pairs as described in Definition 2, then we can modify g1 ex-

actly as before, and pt(x, u, v) will then be nondecreasing in u and

nonincreasing in v. It is then straightforward to apply this monotonic-

ity and the assumptions in Definition 2 to get the analog to (8), i.e.

Ltu = p̃t(u, v) ≤ p̃t(ū(x), v(x)) < Ltū(x).

Other comparisons follow similarly. �

In order to obtain a second solution, we will do a second degree

computation on a similar set, (u, T ) × (v, T ), where T is an a priori

bound on the solutions of (1).

In the weakly coupled case, the existence of such an L∞ a priori

bound on solutions of (1) will follow directly from the blowup method

first developed by Gidas-Spruck [11] for the scalar case and will de-

pend on the condition (H2), and in particular the superlinearity and

subcriticality of gi.

In the strongly coupled case, we must simply assume that an appro-

priate a priori bound holds. We can follow the blow-up method exactly

if an appropriate Liouville Theorem holds. That is, we must know that
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there are no nontrivial nonnegative solutions to the blown-up system{
−∆u = h12(x0)v

q12 ∀x ∈ Rn

−∆v = h21(x0)u
q21 ∀x ∈ Rn (9)

for some x0 ∈ Ω.

If an a priori bound holds by another technique, that may also be

used.

We quote the treatment for a 2× 2 system in de Figueiredo [8]:

Proposition 1 (Theorems 2.1 and 2.2 [8]). Suppose that (1) satisfies

condition (H2). Suppose also that the system is weakly coupled, or it

is strongly coupled and the only nonnegative solution to (9) is (0, 0).

Then there exists some T > 0 such that every nonnegative solution

(u, v) to (1) satisfies ‖u‖L∞ < T and ‖v‖L∞ < T .

First, let us discuss the weakly coupled case. It is clear that under

our conditions deg(F, 0, (u, T ) × (v, T )) is well defined. To compute

this degree we use homotopy invariance.

Let λ1 be the first eigenvalue of (−∆) on Ω. If the system is weakly

coupled and condition (C3a) holds, there exists some R0 > 0 such that

∀x ∈ Ω {
g1(x, u, v) > λ1u+ 1 ∀v ≥ 0 and u > R0

g2(x, u, v) > λ1v + 1 ∀u ≥ 0 and v > R0.

Let

m1(x, u, v) :=

{
g1(x, u, v) u ≥ R0

max{λ1u+ 1, g1(x, u, v)} 0 ≤ u < R0,

and similarly

m2(x, u, v) :=

{
g2(x, u, v) v ≥ R0

max{λv + 1, g2(x, u, v)} 0 ≤ v < R0,

and ~m(x, ~u) := (m1(x, u, v),m2(x, u, v)). Let

~pt(x, ~u) = (1− t)~g(x, ~u) + t~m(x, ~u),

where ~g = (g1, g2). We proceed to study the homotopy class of prob-

lems {
−∆~u = ~pt(x, ~u) ∀x ∈ Ω

~u = ~0 ∀x ∈ ∂Ω.
(10)
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Observe that pt increases as t increases, so

−∆u ≤ g1(x, u, v) ≤ pt(x, u, v)

for each t.

Lemma 2. There is a T > 0 such that any solution triple (t, u, v) of

(10) satisfies ‖u‖L∞ + ‖v‖L∞ < T .

Proof. To prove this lemma, we will apply Proposition 1. Notice that,

for all t ∈ [0, 1], m1(x, u, v) = g1(x, u, v) for u sufficiently large, and

m2(x, u, v) = g2(x, u, v) for v sufficiently large. Therefore, ~pt(x, ~u) satis-

fies condition (H2) with the same qij and hij(x). However, we may now

have a modified remainder term r̃i with r̃i(x, u, v) ≤ ri(x, u, v)+λR0+1.

Since this is a bounded change in the nonlinearity, it clearly does not

affect the result after the blow up method is performed. Therefore,

to obtain the a priori bound uniformly in t, one assumes the contrary

and takes a sequence of solutions ~un,tn such that ‖~un,tn‖L∞ → ∞ as

n → ∞, with tn allowed to vary in [0, 1] and ~un,tn solving (10) with

t = tn. Repeating the argument in [8] with this sequence, one easily

obtains an a priori bound uniformly across the entire homotopy class

of problems. �

Combining the fact that (u, v) is a strict lower solution to (10) for

any t ∈ [0, 1] and that T is a strict a priori bound, it is clear that

(u, T ) × (v, T ) ⊂ X is an open set and that (10) has no solutions on

its boundary. If we let F ′ = I~u− L−1 ~m(x, ~u) = 0, then it follows from

homotopy invariance that deg(F, 0, (u, T )×(v, T )) = deg(F ′, 0, (u, T )×
(v, T )).

Lemma 3. In the weakly coupled case, the BVP −∆u = m1(x, u, v) ∀x ∈ Ω
−∆v = m2(x, u, v) ∀x ∈ Ω
u = v = 0 ∀x ∈ ∂Ω

(11)

has no nonnegative solution.

Proof. The proof is by contradiction. Suppose (u, v) is a nonnegative

solution of (11). We only need to consider one of the two equations,

say the equation for −Deltau. Since, ∀x, u, v, m1(x, u, v) ≥ λ1u + 1,

we have −∆u = m1(x, u, v) ≥ λ1u + 1. Multiplying both sides by
9



the positive eigenfunction, φ1, of the laplacian corresponding to λ1 and

integrating by parts, we get

λ1

∫
Ω

uφ1 dx =

∫
Ω

u(−∆Φ1 dx

= −
∫

Ω

(∆u)φ1 dx

≥
∫

Ω

(λ1u+ 1)φ1 dx

= λ1

∫
Ω

uφ1 dx+

∫
Ω

φ1 dx.

Hence

0 ≥
∫

Ω

φ1 > 0,

which is a contradiction. �

In the strongly coupled case, the setup is identical except that we

have that under condition (C3b), with strong coupling, there exists

some R0 > 0 such that ∀x ∈ Ω{
g1(x, u, v) > λv + 1 ∀u ≥ 0 and v > R0

g2(x, u, v) > λu+ 1 ∀v ≥ 0 and u > R0.

As before, let

m1(x, u, v) =

{
g1(x, u, v) v ≥ R0

max{λv + 1, g1(x, u, v)} 0 ≤ v < R0,

and similarly

m2(x, u, v) =

{
g2(x, u, v) u ≥ R0

max{λu+ 1, g2(x, u, v)} 0 ≤ u < R0,

and ~m(x, ~u) = (m1(x, u, v),m2(x, u, v)). Let

~pt(x, ~u) = (1− t)~g(x, ~u) + t~m(x, ~u),

where ~g = (g1, g2). Again we have the a priori bound (assuming the

necessary Liouville result):

Lemma 4. Suupose that (1) satisfies (H2) and is strongly coupled,

and suppose that (9) has no nontrivial nonnegative solutions. Then

there is an T > 0 such that any solution triple (t, u, v) of (10) satisfies

‖u‖L∞ + ‖v‖L∞ < T .
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Proof. The proof of this lemma is again a direct application of Propo-

sition 1 exactly as in Lemma 2. �

We also have:

Lemma 5. In the strongly coupled case, the BVP −∆u = m1(x, u, v) ∀x ∈ Ω
−∆v = m2(x, u, v) ∀x ∈ Ω
u = v = 0 ∀x ∈ ∂Ω

(12)

has no nonnegative solution.

Proof. Suppose (u, v) is a nonnegative solution of (12). Since

m1(x, u, v) ≥ λ1v+1, we have −∆u = m1(x, u, v) ≥ λ1v+1. Similarly,

since m2(x, u, v) ≥ λ1u + 1, we have −∆v = m2(x, u, v) ≥ λ1u + 1.

Therefore, we have that

∆2u = −∆(−∆u) ≥ −∆(λv + 1) ≥ λ2u+ 1.

Multiplying both sides by the positive eigenfunction, φ1, of the lapla-

cian corresponding to λ1 and integrating, we get

λ2
1

∫
Ω

uφ1 dx = λ1

∫
Ω

u(−∆φ1) dx

= −λ1

∫
Ω

(∆u)φ1 dx

=

∫
Ω

(∆2u)φ1 dx

≥
∫

Ω

(λ2
1u+ 1)φ1 dx

= λ2
1

∫
Ω

uφ1 dx+

∫
Ω

φ1 dx,

after integrating by parts repeatedly. (Notice that our boundary condi-

tions are exactly correct to prevent boundary terms in the integrations

by parts.) Hence

0 ≥
∫

Ω

φ1 > 0,

which is a contradiction. �

To conclude the proof of Theorem 1, it follows from Lemmata 3 and

5 that in either the weakly or strongly coupled case

deg(F ′, 0, (u, T )× (v, T )) = 0 and hence that
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deg(F, 0, (u, T ) × (v, T )) = 0 also. By the excision property of Leray-

Schauder degree we now see that

deg(F, 0, (u, T ) × (v, T ) \ (u, u) × (v, v)) = −1, and thus (1) has a

second solution, (u2, v2) ∈ (u, T )× (v, T ), satisfying (u2(x0), v2(x0)) >

(u(x0), v(x0)) at some point in x0 ∈ Ω. Hence we see that under very

general abstract conditions two solutions to an elliptic system like (1)

can be guaranteed.

3. An Auxiliary Problem

Our next goal is to find some explicit situations in which we know

that the conditions of Theorem 1 are satisfied. In this section we study

an important auxiliary problem which has a simplified semipositone

structure. We prove an existence result that generalizes the positone

result in Drábek-Robinson [10] and the radially symmetric positone re-

sult in Robinson-Rudd [22]. In the next section we will use the solution

of this problem to construct a positive lower solution for (1).

Throughout this paper we will denote by z the positive solution of (5)

and let M = ‖z‖∞. Additionally, ν will always represent the outward

unit normal to the boundary of Ω.

Consider the auxiliary problem{
−∆ψ = −kχ{ψ<1} +Kχ{ψ≥1} ∀x ∈ Ω

ψ = 0 ∀x ∈ ∂Ω
(13)

where χ{ψ<1} represents the standard characteristic function on the set

{x ∈ Ω : ψ(x) < 1} and χ{ψ≥1} is defined similarly.

Lemma 6. For each fixed k > 0 there exists K > 0 such that (13) has

a positive solution.

Proof. Let k > 0 be fixed and let B := Br(x0) ⊂⊂ Ω. Consider the

sub-auxiliary problem{
−∆w = −kχBc +KχB ∀x ∈ Ω

w = 0 ∀x ∈ ∂Ω.
(14)

Let wK represent the unique solution to this problem. Then vK := wK

K

satisfies {
−∆vK = − k

K
χBc + χB ∀x ∈ Ω

vK = 0 ∀x ∈ ∂Ω

Since the right hand side of (14) satisfies a uniform L∞(Ω) bound we

have, without loss of generality, that vK −→ v in C1(Ω) as K → ∞,
12



where v solves {
−∆v = χB ∀x ∈ Ω

v = 0 ∀x ∈ ∂Ω.

By the maximum principle, v > 0 in Ω and ∂v
∂ν
< 0 on ∂Ω. This implies

that wK > 0 in Ω for large K. Moreover, it is clear that for all K large

enough we have wK > 1 on B and ∂wK

∂ν
< 0 on ∂Ω.

Since B
c ⊃ {x ∈ Ω : wK < 1}, for large K, wK satisfies

−∆wK = −kχBc +KχB ≤ −kχ{wK<1} +Kχ{wK≥1}

in Ω. Thus wK is a lower solution of (13).

Let K > 0 be chosen so that wK is a lower solution of (13). Then

Kz is an upper solution of (13), because −∆(Kz) = K ≥ −kχKz<1 +

KχKz≥1. By the same calculation, −∆(Kz) ≥ −∆wK . Hence, by the

maximum principle, Kz ≥ wK , so Kz and wK are well-ordered. Note

that the function h(t) := −kχ{t<1} + Kχ{t≥1} is nondecreasing and

continuous from the right. It follows that, given well-ordered lower and

upper solutions, (13) has a solution obtained via monotone iteration

from the upper solution. �

In the arguments that follow we will refer to a solution, u, of (13) as

maximal, if every other solution, v, of (13) for the same values of k and

K satisfies v ≤ u in Ω. The solution found in the previous lemma will

be maximal relative to other solutions lying between the given lower

and upper solutions because it was found by monotone iteration from

the given upper solution.

Lemma 7. If (k,K) is a pair such that (13) has a positive solution,

then (13) has a maximal solution.

Proof. by the maximum principle, u = Kz provides an upper bound on

any solution, u, to (13), because −∆u = K ≥ −kχ{u<1} +Kχ{u≥1} =

−∆u. Hence, the solution obtained by monotone iteration from u is

maximal relative to all solutions. �

The following lemma characterizes the set

Sk := {K > 0 : (13) has a positive solution}.

Lemma 8. The set Sk is a closed ray. That is, for k > 0 fixed, let

Kk := inf{K > 0 : K ∈ Sk}. Then Sk = [Kk,∞).
13



Proof. First, we already know that every sufficiently large K ∈ R is in

Sk. We next need to show that Sk is a ray, i.e. if K0 ∈ Sk and K > K0,

then K ∈ Sk. But this follows immediately because ψK0 satisfies

−∆ψK0 = −kχ{ψK0
<1} +K0χ{ψK0

≥1} < −kχ{ψK0
<1} +Kχ{ψK0

≥1},

so ψK0 is a subsolution for (13) with respect to K. Moreover,Kz is

a strictly larger supersolution to the problem, as above. Therefore, a

solution to (13) for K must exist, and K ∈ Sk.
Finally, we must show that this is a closed ray, i.e. Kk ∈ Sk. Let

K1, K2 ∈ Sk with K1 > K2, and let ψ1, ψ2 represent the corresponding

maximal solutions of (13). Then

−∆ψ2 = −kχ{ψ2<1} +K2χ{ψ2≥1} ≤ −kχ{ψ2<1} +K1χ{ψ2≥1},

so ψ2 is a positive lower solution for (13) with K = K1. Using the

maximal property of solutions we get ψ1 ≥ ψ2.

Now let Kn ↘ Kk and let ψn be the corresponding maximal solu-

tions. Then {ψn} is monotonically decreasing, by the above argument,

and thus the pointwise limit ψk(x) := lim
n→∞

ψn(x) exists and

−kχ{ψn<1} +Knχ{ψn≥1} ↘ −kχ{ψk<1} +Kkχ{ψk≥1}

pointwise, where we have used the fact that h(t), as defined above, is

continuous from the right. Since the right hand side of (13) is uni-

formly L∞ bounded, we can apply standard regularity and imbedding

theorems (see, for example, Gilbarg-Trudinger [Theorems 7.22, 9.11

and 9.15][12]), to derive a subsequence such that ψn −→ ψk in C1,γ(Ω)

for some γ ∈ (0, 1) and ψk is a solution of (13) with K = Kk.

�

4. The Quasimonotone Nondecreasing Case: Weak

Coupling

In this section we consider problem (1) with the assumption that De-

finition 1 is satisfied. We will give explicit conditions for the existence

of the required ordered, strictly positive upper and lower solution pair.

Our result is complementary to the existence and nonexistence results

of Chhetri-Girg [5]. Our theorem here also complements the single

equation positone results in Drábek-Robinson [10] and generalizes the

single equation radially symmetric results in Robinson-Rudd [22].
14



Theorem 2. Fix k1, k2 > 0 and choose Ki > Kki
for i = 1, 2. Let

mki
:= ‖ψki

‖∞ > 1 where ψki
is a solution of (13) with K = Kki

.

Suppose that gi(x, s, t) are such that (H1) and (H2) hold. Suppose

there exist C1 > mk1/M and C2 > mk2/M such that the following hold

uniformly for x ∈ Ω:

(H3a):

{
g1(x, s, t) > −k1 for 0 ≤ s ≤ 1 and t ≤ mk2

g2(x, s, t) > −k2 for 0 ≤ t ≤ 1 and s ≤ mk1 ,

(H3b):

{
g1(x, s, t) > K1 for 1 ≤ s ≤ mk1 and t ≤ mk2

g2(x, s, t) > K2 for 1 ≤ t ≤ mk2 and s ≤ mk1 ,

(H3c): gi(x, s, t) < Ci for 0 ≤ s ≤ C1M and 0 ≤ t ≤ C2M .

Then (1) has at least two solutions.

The proof of this theorem follows from the series of lemmata estab-

lished below.

Lemma 9. (u, v) := (ψk1 , ψk2) is a strict lower solution.

Proof. This lemma follows from the strict inequalities in (H3a) and

(H3b), i.e.

−∆u = −∆ψk1

= −k1χ{ψk1
<1} +K1χ{ψk1

≥1}

= −k1χ{0≤ψk1
<1} +K1χ{1≤ψk1

≤mk1
}

< g1(x, ψk1 , ψk2) = g1(x, u, v)

because 0 < ψk2(x) < mk2 ∀x ∈ Ω. The calculation for the v equation

is similar. �

Lemma 10. (u, v) := (C1z, C2z) is a strict upper solution.

Proof. The proof follows from the fact that 0 ≤ Ciz ≤ CiM for all

x ∈ Ω and so from (H3c) we have the strict inequality

−∆(Ciz) = Ci > gi(x,C1z, C2z)

for i = 1, 2. �

Observe that Ci > gi(x, u, v) because 0 ≤ u ≤ mk1 < C1M and

similarly for v. It follows that −∆u = C1 > g1(x, u, v) > −∆u, and

so an application of the maximum principle shows that u < u, i.e. the

lower and upper solutions are well-ordered. An identical calculation can

be done to show that v < v. By Theorem 1, Theorem 2 immediately

follows.
15



Finally, we provide a few examples of reaction terms gi(x, s, t) that

satisfy the conditions of Theorem 2.

Example 1. For n = 2 or n = 3 let

g1(x, s, t) = εs4 + Ae
at

1+t − γ

g2(x, s, t) = εt4 + Ae
as

1+s − γ,

where ε, γ, a and A are positive parameters. Due to the symmetry of

this system, we may assume that k1 = k2 and C1 = C2 when checking

the conditions.

(H1) Since gi(x, 0, 0) = A− γ, (H1) is satisfied if A < γ. (Recall that

this condition is not actually required for the theorem, but the

semipositone case was our original motivation.)

(H2) Condition (H2) is satisfied with qii = 4, which is subcritical for

n = 2 or n = 3, qij = 0 for i 6= j, hij ≡ 0 for i 6= j; hii ≡ ε;

r1(x, s, t) = Ae
at

1+t − γ and r2(x, s, t) = Ae
as

1+s − γ.

(H3) We show below that (H3a)-(H3b) are satisfied for g1(x, s, t).

(The same arguments work for g2.)

(H3a) Since g1(x, s, t) = εs4 +Ae
at

1+t − γ is a nondecreasing func-

tion for 0 ≤ s, t ≤ 1, to satisfy (H3a), it is enough to show

g1(x, 0, 0) = A − γ > −k. Since A is positive, (H3a) is

satisfied for g1 if γ ≥ k and A ≥ γ − k.

(H3b) Since g1(x, s, t) = εs4 +Ae
at

1+t − γ is a nondecreasing func-

tion for 1 ≤ s, t ≤ mk, to satisfy (H3b), it is enough to

show g1(x, 1, 1) = ε+ Ae
a
2 − γ > K. This holds for g1 if a

is chosen large enough to satisfy ε+ Ae
a
2 > γ +K.

(H3c) Using the fact that g1(x, s, t) is nondecreasing for 0 ≤ s, t ≤
CM , it suffices to show Aea + ε(CM)4− γ < C. This con-

dition holds true if ε is sufficiently small and hence (H3c)

holds.

Remark 1. For higher dimensions, an identical example can be con-

structed so long as the diagonal terms are subcritical and superlinear.

Example 2. For n = 2, 3, let

g1(x, s, t) = εs4 + Atθ − γ
g2(x, s, t) = εt4 + Asθ − γ

16



where ε, γ and A are positive parameters and 0 < θ < 1. Due to the

symmetry of this system, we may assume that k1 = k2 and C1 = C2

when checking the conditions.

(H1) Since gi(x, 0, 0) = −γ < 0 (H1) is satisfied.

(H2) Condition (H2) is satisfied with qii = 4, which is subcritical in

2 or 3 space dimensions, qij = θ for i 6= j; hij ≡ A for i 6= j;

hii ≡ ε for i = j; r1(x, s, t) = −γ and r2(x, s, t) = −γ.
(H3) We show below that (H3a)-(H3b) are satisfied for g1(x, s, t).

(The same arguments work for g2.)

(H3a) Since g1(x, s, t) = εs4 +Atθ−γ is a nondecreasing function

for 0 ≤ s, t ≤ 1, to satisfy (H3a), it is enough to satisfy

g1(x, 0, 0) = −γ > −k. Thus (H3a) is satisfied if γ < k.

(H3b) Since g1(x, s, t) = εs4 +Atθ−γ is a nondecreasing function

for 1 ≤ s, t ≤ mk, to satisfy (H3b), it is enough to show

g1(x, 1, 1) = ε+A−γ > K. This holds for g1 if A is chosen

large enough to satisfy A > γ +K − ε.

(H3c) Using the fact that g1(x, s, t) is nondecreasing for 0 ≤ s, t ≤
CM , it suffices to show A(CM)θ + ε(CM)4− γ < C. This

condition holds true if C is sufficiently large and ε is suffi-

ciently small and hence (H3c) holds.

Remark 2. As above, for higher dimensions an identical example can

be constructed so long as the diagonal terms are subcritical and super-

linear.

5. The Quasimonotone Nondecreasing Case: Hamiltonian

Systems

In this section, we consider the purely Hamiltonian case. Namely we

prove the following theorem:

Theorem 3. Consider a system of the form
−∆u = g1(v) ∀x ∈ Ω
−∆v = g2(u) ∀x ∈ Ω
u, v > 0 ∀x ∈ Ω

u = v = 0 ∀x ∈ ∂Ω

(15)

where Ω ⊂ Rn is convex with C3 boundary. Here g1, g2 : [0,∞) → R
are C1 monotone nondecreasing functions satisfying the following

17



(A1): there exist a, b > 0 such that ab > λ2
1 and

lim inf
s→∞

g1(s)

s
≥ a; lim inf

s→∞

g2(s)

s
≥ b

(A2): there exist positive numbers η1, η2 such that

lim
s→∞

g1(s)

sp
= η1; lim

s→∞

g2(s)

sq
= η2

where p, q ≥ 1 and are subcritical in the following sense:

1

p+ 1
+

1

q + 1
>
n− 2

n
n ≥ 3.

Further assume that for i = 1, 2 there exist ki > 0 and Ci > mki
/M

such that

(A3a): gi(s) > −ki for 0 ≤ s ≤ 1

(A3b): gi(s) > Ki for 1 ≤ s ≤ mki

(A3c): gi(s) < C for 0 ≤ s ≤ CiM

where Ki and mki
are as defined in Theorem 2. Then (15) has at least

two solutions.

Remark 3. Note that, as in previous sections, condition (H1) is not

actually required here; there is no condition on the sign of the nonlin-

earity at 0. However, being motivated by the semipositone case, we will

provide a semipositone example satisfying the conditions of the theorem

below.

Remark 4. Observe that we do not assume (H2) here which states

that the nonlinearities are superlinear and subcritical. The conditions

(A1) and (A2) represent superlinear and subcritical behavior respec-

tively in the Hamiltonian setting, and are used here to apply the result

of Clement-de Figueiredo-Mitidieri [4].

Remark 5. Recall that we wish to apply Theorem 1 to establish the

existence of two solutions to (15). Clement, de Figueiredo and Mitidieri

[4](Theorem 2.1) proved that there exists an a priori bound for positive

solutions to (15) when g1, g2 are monotone nondecreasing and satisfy

(A1)-(A2). In fact, the result was proved in order to establish the

existence of positive solution to a certain Hamiltonian system using

degree theory. Therefore the conditions on the nonlinearities presented

here can depend uniformly on a homotopy parameter t. To maintain the

uniformity with the previous sections, we omit the explicit dependence
18



on t in the statement of the theorem above; however, the proof here

proceeds exactly as for Theorem 2 because the a priori bound holds

uniformly for the homotopy described in Section 2, as we need it to.

Proof. As in Section 4, (u, v) := (ψk1 , ψk2) is a strict lower solution and

(u, v) := (Cz,Cz) is a strict upper solution, and this pair is ordered.

Hypotheses (A1)-(A2) combined with the Hamiltonian structure and

strong coupling ensures that every nonnegative solution of (15) is a

priori bounded [Theorem 2.1][4]. This in turn implies that the condition

(C3b) of Theorem 1 is satisfied. Therefore, by Theorem 1, there are

two positive solutions to (15). �

Finally, we provide an example satisfying the hypotheses of Theorem

3.

Example 3.

g1(v) = ηvp + Avθ − γ
g2(u) = ηuq + Auθ − γ

where η, γ and A are positive parameters and 0 < θ < 1, and p, q > 1

satisfy the subcriticality condition. Due to the symmetry of this system,

we may assume that k1 = k2 and C1 = C2 when checking the conditions.

Clearly gi are monotone nondecreasing functions and gi(0) = −γ <
0.

(A1) Since p, q > 1 and gi are monotone nondecreasing, (A1) is

clearly satisfied.

(A2) Obviously lim
v→∞

g1(v)
vp = η and lim

s→∞
g2(u)
uq = η since 0 < θ < 1.

(A3) We will show below that the conditions (A3a)-(A3c) are satis-

fied for g1(v) (The same arguments work g2.)

(A3a) Since g1(v) = ηvp + Avθ − γ is a nondecreasing function

for 0 ≤ v ≤ 1, to satisfy (A3a), it is enough to satisfy

g1(0) = −γ > −k. Thus (A3a) is satisfied if γ < k.

(A3b) Since g1 is a nondecreasing function for 1 ≤ v ≤ mk, to

satisfy (A3b), it is enough to show g1(1) = η+A− γ > K.

This holds for g1 if A is chosen large enough to satisfy

A > γ +K − η.

(A3b) Similarly, to satisfy (L3) it suffices to show A(CM)θ +

η(CM)p − γ < C. This condition holds true if η is suffi-

ciently small and hence (A3c) holds.
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