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GROUND STATE MASS CONCENTRATION IN THE
L2-CRITICAL NONLINEAR SCHRÖDINGER EQUATION

BELOW H1

J. Colliander, S. Raynor, C. Sulem, and J. D. Wright

Abstract. We consider finite time blowup solutions of the L2-critical cubic fo-
cusing nonlinear Schrödinger equation on R

2. Such functions, when in H1, are
known to concentrate a fixed L2-mass (the mass of the ground state) at the point
of blowup. Blowup solutions from initial data that is only in L2 are known to
concentrate at least a small amount of mass. In this paper we consider the inter-
mediate case of blowup solutions from initial data in Hs, with 1 > s > sQ, where

sQ = 1
5

+ 1
5

√
11. Our main result is that such solutions, when radially symmetric,

concentrate at least the mass of the ground state at the origin at blowup time.

1. Introduction

Special interest has recently been devoted to the existence and long-time
behavior of solutions with low regularity to nonlinear Schrödinger equations.
These questions were mainly investigated for defocusing1 equations with a global-
in-time a priori H1 upper bound [1] [6] [22] [7]. In this article, we are interested
in a detailed description of rough solutions, with regularity below the H1 energy
threshold, which blow up in a finite time.

We consider the initial value problem for the two-dimensional, cubic, focusing
nonlinear Schrödinger (NLS) equation:{

iut + ∆u + |u|2u = 0,
u(0, x) = u0(x), x ∈ R2,

(1.1)

which is L2-critical. This refers to the property that both the equation and the
L2-norm of the solution are invariant under the scaling transformation u(t, x) →
uλ(t, x) = λu(λ2t, λx). This problem is locally well-posed2 for initial data in Hs
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1Low regularity global well-posedness results have also been obtained for other Hamiltonian

evolution equations. Orbital instability properties of solitons subject to rough perturbations
for focusing NLS equations have been studied as well [8], [9].

2For s = 0, the size of the interval of existence depends upon the initial profile u0 [3]; for
s > 0, the Hs norm of the data determines the size of the existence interval.
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with s ≥ 0 [4]. We recall that the following quantities, if finite, are conserved:

Mass = M [u(t)] = ‖u(t)‖2
L2 ,

Energy = E[u(t)] =
1
2
‖∇u(t)‖2

L2 − 1
4
‖u(t)‖4

L4 .

We will frequently refer to 1
2‖∇u(t)‖2

L2 as the kinetic energy of the solution, and
E[u(t)] as the total energy.

It is known that there exist explicit finite time blowup solutions to (1.1);
for sufficiently smooth and decaying initial data, the virial identity provides a
sufficient condition guaranteeing that finite time blowup occurs. For a solution
which blows up in finite time, let [0, T ∗) be the maximal (forward) time interval
of existence.

A specific property of critical collapse is the phenomenon of mass concen-
tration, often referred to in the physical literature as strong collapse [25] (see
also [18] for a review): H1-solutions concentrate a finite amount of mass in a
neighborhood of the focus of width slightly larger than (T ∗− t)1/2. Heuristic ar-
guments suggest that this phenomenon does not occur in supercritical nonlinear
Schrödinger blowup. For H1-solutions of (1.1), there is a precise lower bound on
the amount of concentrated mass, namely the mass of the ground state Q [21],
[16], where Q is the unique positive solution (up to translations) of

∆w − w + |w|2w = 0.(1.2)

In addition to the scaling properties of the NLS equation, the main ingredients in
the proof that H1 blowup solutions concentrate at least the mass of the ground
state are: (i) the conservation of the energy, (ii) a precise Gagliardo-Nirenberg
inequality [23] which implies that nonzero H1-functions of non-positive energy
have at least ground state mass.

The purpose of this work is to address the phenomenon of mass concentration
in the spaces Hs, s < 1, where the conservation of energy cannot be used. In the
setting of merely L2 initial data, if global well-posedness fails to hold for (1.1)
(i.e. T ∗ < ∞), then a nontrivial parabolic concentration of L2-mass occurs [1]
as t ↑ T ∗:

lim sup
t↑T∗

sup
cubes I ⊂ R2

side(I) < (T ∗ − t)
1
2

(∫
I

|u(t, x)|2dx

) 1
2

≥ η(‖u0‖L2) > 0.(1.3)

Unlike the H1-case, there is no explicit quantification on the lower bound.
A natural question3, highlighted in [15], is to determine whether tiny L2-mass

concentrations can occur when u0 ∈ L2. The conjectured answer is no. Solutions
of (1.1) with a finite maximal (forward) existence interval are expected to con-
centrate at least the L2-mass of the ground state. Our main result corroborates
this expectation, at least for Hs-solutions with s just below 1.

3The fact that the lower bound in (1.3) may be taken to be a fixed constant δ0 independent
of the initial size in L2 has recently been announced [13].
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Theorem 1.1. There exists sQ = 1
5 + 1

5

√
11 such that the following is true for

any s > sQ. Suppose Hs � u0 −→ u(t) solves (1.1) on the maximal (forward)
time interval [0, T ∗), with T ∗ < ∞. Moreover, assume that u0 is radially sym-
metric.4 Then for any positive γ(z) ↑ ∞ arbitrarily slowly as z ↓ 0 we have

lim sup
t↑T∗

‖u‖L2
{|x|<(T∗−t)s/2γ(T∗−t) }

≥ ‖Q‖L2 .(1.4)

The proof consists of an imitation of the H1 argument (as presented in [2])
with the energy, which is infinite in the Hs-setting, replaced by a modified
energy introduced in [6]. The idea is to apply to the Hs-solution a smoothing
operator to make it H1 and define the usual energy of this new object. The
crucial point here is to prove that the modified total energy grows more slowly
than the modified kinetic energy. In Section 2, we prove Theorem 1.1 assuming
Proposition 2.1 and Corollary 3.6 stated below. Proposition 2.1 contains a key
upper bound for the modified energy in terms of the Hs-norm of the solution.
Its proof, which relies upon the local-in-time theory developed in Section 3, is
postponed to Section 4.

Remark 1.2. As mentioned above, the expectation is that parabolic concentra-
tion of at least the ground state mass holds true even for L2 initial data. How-
ever, the analysis showing that the modified total energy grows more slowly than
the modified kinetic energy (quantified by the statement that p(s) < 2 in Propo-
sition 2.1), requires taking s close to 1. Also, note that the concentration width
(T ∗ − t)s/2+ obtained in (1.4) is much larger than (T ∗ − t)1/2+ within which
ground state mass concentration is expected to occur.

Remark 1.3. The two-dimensional nature of the analysis only appears directly
in the use of the Sobolev inequality in the proof of Lemma 3.9. In higher di-
mensions the power of the nonlinearity of the L2-critical problem is non-integer,
which would make the multilinear analysis of the modified energy more technical.

Remark 1.4. Our methods only enable us to control the modified energy at time
t by the supremum up to time t of the modified kinetic energy. This is the source
of the lim sup in Theorem 1.1, which does not appear in the H1 result in [21].
Because there is no known upper bound for the rate of blowup of the Hs norm,
we are unable to control the relationship between times at which the blowup is
occurring maximally and those where it is occurring minimally. Any such result
would, in addition to its inherent interest, allow us to strengthen our result to
one with a lim inf. For further discussion of the monotonicity of the blowup, but
in the context of the critical generalized KdV equation, see pp. 621–623 of [14].

Remark 1.5. We use C to denote constants which do not depend on the crucial
parameters and variables. Such constants will not depend on the high-frequency
cut-off parameter (denoted N) or the time t, but may depend on s, T ∗, or
‖u0‖Hs .

4The non-radial case is amenable to treatment by employing the methods of compensated
compactness as used in [24], [17] (see also [2]).
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In the proof of Theorem 1.1, nowhere do we make the hypothesis that ‖u0‖L2 ≥
‖Q‖L2 . Thus, since solutions conserve mass and the concentration is shown to
be in excess of the ground state mass, we prove the following corollary about
the global well-posedness of (1.1).

Corollary 1.6. There exists sQ ≤ 1
5 + 1

5

√
11 such that, if u0 ∈ Hs, s > sQ is

radially symmetric and ‖u0‖L2 < ‖Q‖L2 then the initial value problem (1.1) is
globally well-posed.

Remark 1.7. 5 A statement stronger than Corollary 1.6 may be inferred from
earlier work. The analysis in [6] of the defocusing analog of (1.1) relies upon
the local well-posedness theory and two other inputs: the almost conservation
of the modified energy (Proposition 3.1 of [6]) and the obvious fact that, in
the defocusing case, the modified total energy controls the modified kinetic en-
ergy. The almost conservation property depends upon the local-in-time space-
time boundedness properties of the solution and also holds in the focusing case.
Since the smoothing operator IN (see (2.1) below) shrinks the L2 size of func-
tions, it can be shown that the modified total energy does indeed control the
modified kinetic energy provided that the initial data satisfies the smallness con-
dition ‖u0‖L2 < ‖Q‖L2 . Thus, Corollary 1.6 actually holds without the radial
symmetry restriction and for s > 4

7 .

Acknowledgments: We thank P. Raphael, D. Slepcev and W. Staubach for in-
teresting conversations related to this work. We gratefully acknowledge support
from the Fields Institute where this research was carried out.

2. Mass Concentration

We wish to find a replacement for energy conservation. To do so, we define,
for s < 1, the smoothing operators IN : Hs → H1 used in [6]:

ÎNu(ξ) = m(ξ)û(ξ)(2.1)

where

m(ξ) =
{

1, |ξ| ≤ N

( |ξ|N )s−1, |ξ| > 3N
(2.2)

with m(ξ) smooth, radial, and monotone in |ξ|. For s ≥ 1, we will take m(ξ) = 1.
Note that we will sometimes drop the subscript N when that will not lead to
confusion. The following properties of IN are easily verified:

‖INu‖L2 ≤ ‖u‖L2

‖u‖Hs ≤‖IN 〈D〉u‖L2 ≤ N1−s‖u‖Hs ,
(2.3)

where 〈D〉 is the multiplier operator with symbol (1 + |ξ|2)1/2. We define the
blowup parameters associated to the Hs-norm of the solution

λ(t) = ‖u(t)‖Hs(2.4)

5This remark emerged in correspondence among the authors of [6].
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and

Λ(t) = sup
0≤τ≤t

λ(τ).(2.5)

We also define the modified blowup parameters

σ(t) = ‖IN 〈D〉u(t)‖L2(2.6)

and

Σ(t) = sup
0≤τ≤t

σ(τ).(2.7)

For finite time blowup solutions u, the blowup parameters σ(t) and λ(t) tend to
∞ as t → T ∗, and can be compared using (2.3).

We will exploit the freedom to choose N very large. Indeed, for fixed T < T ∗,
we will show that N = N(T ) may be chosen so large that the modified energy
E[INu(T )] is much smaller than the modified kinetic energy ‖IN∇u(T )‖2

L2 .

Proposition 2.1. There exists sQ ≤ 1
5 + 1

5

√
11 such that for all s > sQ there

exists p(s) < 2 with the following holding true: If Hs � u0 −→ u(t) solves (1.1)
on a maximal (forward) finite existence interval [0, T ∗) then for all T < T ∗ there
exists N = N(T ) such that

|E[IN(T )u(T )]| ≤ C0(Λ(T ))p(s)(2.8)

with C0 = C0(s, T ∗, ‖u0‖Hs). Moreover, N(T ) = C(Λ(T ))
p(s)

2(1−s) .

Remark 2.2. For s ≥ 1 we may set p = 0 since IN is then taken to be the
identity operator. In this case, Proposition 2.1 is reduced to the statement that
the energy remains bounded, which is true since it is conserved. Note also that
we have chosen N = N(Λ) so the time dependence of N only enters through that
of the blowup parameter Λ = Λ(t).

Proposition 2.1 gives a control on the growth of the modified energy as t
approaches T ∗. During the finite time blowup evolution, the modified kinetic
energy explodes to infinity. The above Proposition shows that the total modified
energy grows more slowly than its kinetic component. It is the key element in the
proof of Theorem 1.1, requiring somewhat delicate harmonic analysis estimates
to prove an almost conservation property of the modified energy E[INu] in terms
of space-time control given by local existence theory. For the sake of a clear
presentation, we start by proving Theorem 1.1 assuming Proposition 2.1 and a
lower bound on the rate of blowup of ‖IN 〈D〉u‖L2 expressed in Corollary 3.6.

Proof of Theorem 1.1. It is carried out in four steps.
a. Rescaling and weak convergence.

Let {tn}∞n=1 be a sequence such that tn ↑ T ∗ and for each tn

‖u(tn)‖Hs = Λ(tn).

We call such a sequence maximizing and denote un = u(tn). Define

INun = IN(tn)u(tn)
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with N(tn) taken6 as in the Proposition 2.1. We rescale these as follows:

vn(y) =
1
σn

INun(
y

σn
)(2.9)

where
σn = ‖IN 〈D〉un‖L2 = σ(tn).

We have, from (2.3), that

Λ(tn) ≤ σn(2.10)

along a maximizing sequence so σn → ∞ as n → ∞. The lower bound of σn

by Λ(tn) does not necessarily hold for arbitrary sequences, but does so along
maximizing sequences.

The rescaling (2.9) leaves L2-norms unchanged. Since ‖IN · ‖L2 ≤ ‖ · ‖L2 for
all N and since mass is conserved, we have ‖vn‖L2 ≤ ‖u0‖L2 uniformly in n. By
our choice of σn, we have ‖∇vn‖L2 ≤ 1 for all n. In fact, by construction, we
have

lim
n→∞ ‖∇vn‖L2 = 1.(2.11)

Thus, {vn} is a bounded sequence in H1 and has a weakly convergent subse-
quence, which we also call {vn}. There exists an asymptotic object v ∈ H1 such
that

vn ⇀ v

in H1.
b. Compactness and energy of the rescaled asymptotic object.
Since u is assumed to be radially symmetric, so are the vn, and we can apply

the following Lemma from [19].

Lemma 2.3. (Radial compactness lemma) If {fn} ⊂ H1(R2) is a bounded
sequence of radially symmetric functions, then there exists a subsequence (also
denoted {fn}) and a function f ∈ H1(R2) such that for all 2 < q < ∞,

fn → f

in Lq.

Thus,
vn → v

in L4. This strong L4-convergence is important due to the appearance of the
L4 norm in the energy, which we now examine. The only usage of the radial
symmetry assumption in the argument is to obtain compactness of {vn} in L4.

We have, from Proposition 2.1 and (2.10),

|E[vn]| =σ−2
n |E[INun]|

≤Cσ−2
n Λp(s)(tn)

≤CΛp(s)−2(tn).

6The reason for this choice is made clear at equation (4.2).
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Since s > sQ, we have p(s) < 2, so

|E[vn]| → 0

as n → ∞.
The fact that the energy of the functions vn goes to zero is useful in two

important ways. First, by (2.11) and the strong L4-convergence,

0 = lim
n→∞ |E[vn]|

= lim
n→∞

∣∣∣∣12‖∇vn‖2
L2 − 1

4
‖vn‖4

L4

∣∣∣∣
=

∣∣∣∣12 − 1
4
‖v‖4

L4

∣∣∣∣ .

(2.12)

This ensures that v �= 0. Second, the L2 norm is a lower semi-continuous function
for weakly convergent sequences, so

0 = lim
n→∞E[vn] ≥ E[v].

c. Non-positive energy implies at least ground state mass.
The fact that nonzero functions of nonpositive energy have at least the mass

of the ground state is a consequence of the Gagliardo–Nirenberg inequality:

‖w‖4
L4 ≤ Copt‖w‖2

L2‖∇w‖2
L2 .(2.13)

The optimal constant, obtained by minimizing the functional

J(f) =
‖∇f‖2

L2‖f‖2
L2

‖f‖4
L4

(2.14)

among all functions f ∈ H1(R2), is found to be Copt = 2/‖Q‖2
L2 [23].

Thus, the asymptotic object v satisfies

‖v‖L2 ≥ ‖Q‖L2 .(2.15)

d. Scaling back to the original variables.
Now we complete the proof. To prove (1.4), it suffices to show for any ε > 0

that
lim

n→∞ ‖u(tn)‖L2
{|x|<(T∗−tn)s/2γ(T∗−tn)}

> ‖Q‖L2 − ε.

Fix ε > 0. Since N(tn) goes to ∞, we have

lim
n→∞ ‖u(tn)‖L2

{|x|<(T∗−tn)s/2γ(T∗−tn)}
= lim

n→∞ ‖IN(tn)u(tn)‖L2
{|x|<(T∗−tn)s/2γ(T∗−tn)}

.

Recalling the definition of the functions vn, we have for all n

‖IN(tn)u(tn)‖L2
{|x|<(T∗−tn)s/2γ(T∗−tn)}

= ‖vn‖L2
{|y|<(T∗−tn)s/2γ(T∗−tn)σn}

.

By (2.15) we know there exists ρ > 0 such that

‖v‖L2
{|y|<ρ}

> ‖Q‖L2 − ε.
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Since, by Corollary 3.6, the σn go to ∞ at least as fast as (T ∗−tn)−s/2, eventually
ρ < (T ∗− tn)s/2γ(T ∗− tn)σn, where γ(z) is a positive function satisfying γ(z) ↑
∞ as z ↓ 0. Thus,

lim
n→∞ ‖u(tn)‖L2

{|x|<(T∗−tn)s/2γ(T∗−tn)}
= lim

n→∞ ‖vn‖L2
{|y|<(T∗−tn)s/2γ(T∗−tn)σn}

≥ lim
n→∞ ‖vn‖L2

{|y|<ρ}

≥ ‖v‖L2
{|y|<ρ}

> ‖Q‖L2 − ε.

This concludes the proof of Theorem 1.1 under the assumptions that Proposition
2.1 and Corollary 3.6 hold true.

3. local-in-time theory

In this section, we adapt the arguments in [6] to prove an almost conservation
property for E[INu] which plays a central role in the proof of Proposition 2.1.
We begin by revisiting the Strichartz estimates and the classical proof [4] of local
well-posedness of (1.1) for u0 ∈ Hs, s > 0. We then explain a modification of
the Hs local well-posedness result in which the Hs-norm of u0 is replaced by
‖IN 〈D〉u0‖L2 . The modified local well-posedness result provides the space-time
control used to prove the almost conservation of the modified energy E[INu].

3.1. Strichartz estimates. We recall the classical Strichartz estimates [11] for
the Schrödinger group eit∆ on Rt ×R2

x (see also [12] for a unified presentation).
The ordered exponent pairs (q, r) are admissible if 2

q + 2
r = 1, 2 < q. Note

that (3, 6) and (∞, 2) are admissible. We define the Strichartz norm of functions
u : [0, T ] × R2 → C,

‖u‖S0
T

= sup
(q,r) admissible

‖u‖Lq
t∈[0,T ]L

r
x∈R2

.(3.1)

We will use the shorthand notation Lq
T to denote Lq

t∈[0,T ] and Lp
x for Lp

x∈R2 . The
Hölder dual exponent of q is denoted q′, so 1

q + 1
q′ = 1. The Strichartz estimates

may be expressed as follows:

‖u‖S0
T
≤ ‖u(0)‖L2 + ‖(i∂t + ∆)u‖

Lq′
T Lr′

x
(3.2)

where (q, r) is any admissible exponent pair.
The smoothing properties underlying our proof of the almost conservation of

E[INu] given below requires a careful control of the interaction between high
and low frequency parts of the solution. Linear Strichartz estimates are not
sufficient for this purpose. They are complimented by bilinear Strichartz es-
timates that were introduced in [1] and revisited in [10]. Let Dα denote the
operator defined by D̂αu(ξ) = |ξ|αû(ξ). Similarly, 〈D〉α denotes the operator
defined via 〈̂D〉αu(ξ) = (1 + |ξ|2)α

2 û(ξ). We recall the following a priori bilinear
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Strichartz estimate [1] as expressed in Lemma 3.4 of [10]: For all δ > 0 and any
u, v : [0, T ] × R2 −→ C,

‖uv‖L2
T L2

x
≤ C(δ)

(
‖D− 1

2+δu(0)‖L2
x

+ ‖D− 1
2+δ(i∂t + ∆)u‖L1

T L2
x

)
(3.3)

×
(
‖D 1

2−δv(0)‖L2
x

+ ‖D 1
2−δ(i∂t + ∆)v‖L1

T L2
x

)
.

Note that, in the inequality (3.3), a different amount of regularity is required for
u and v. In the following analysis, we will use it with u, v being the projection
of an Hs solution of (1.1) onto different frequency regimes.

3.2. Standard Hs Local well-posedness. We revisit the proof of local well-
posedness of (1.1) for initial data in Hs, s > 0, extracting the features of the
local-in-time theory required in the proof of the almost conservation property
underlying our proof of Theorem 1.1 and Proposition 2.1.

Proposition 3.1 (Hs-LWP [4]). For u0 ∈ Hs(R2), s > 0, the evolution u0 −→
u(t) is well-posed on the time interval [0, Tlwp] with

Tlwp = c0‖〈D〉su0‖−
2
s

L2 ,(3.4)

for a constant c0 and

‖〈D〉su‖S0
Tlwp

≤ 2‖〈D〉su0‖L2
x
.(3.5)

Proof. The initial value problem (1.1) is equivalent, by Duhamel’s formula, to
solving the integral equation

u(t) = eit∆u0 + i

∫ t

0

ei(t−t′)∆(|u|2u(t′))dt′.(3.6)

For a given function u, denote the right-hand side of (3.6) by Φu0 [u]. We prove
that Φu0 [·] is a contraction mapping on the ball

BL3
T L6

x
(ρ) = {u : [0, T ] × R2 −→ C

∣∣ ‖u‖L3
T L6

x
< ρ},(3.7)

for sufficiently small ρ. In fact, we will show that ‖Φu0 [u] − Φu0 [v]‖S0
T

< 1
2‖u −

v‖L3
T L6

x
provided T is chosen small enough in terms of the Hs size of the initial

data. We write Φu0 [u] − Φu0 [v], observe the cancellation of the linear pieces,
apply the S0

T norm, and use (3.2) to obtain

‖Φu0 [u] − Φu0 [v]‖S0
T
≤ C‖|u|2u − |v|2v‖L1

T L2
x
.(3.8)

(We have made the choice q′ = 1 and r′ = 2 in (3.2) to simplify the analysis
below which emerges from the appearance of this norm in (3.3). This choice
makes it convenient to perform the fixed point argument in L3

T L6
x.)

By Hölder’s inequality and simple algebra,

‖|u|2u − |v|2v‖L1
T L2

x
≤ C(‖u‖2

L3
T L6

x
+ ‖v‖2

L3
T L6

x
)‖u − v‖L3

T L6
x
≤ Cρ2‖u − v‖L3

T L6
x
.

This proves Φu0 [·] is indeed a contraction mapping on B(ρ) if ρ < ρ0, where ρ0

is an explicit constant.
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Thus, the sequence of Duhamel iterates {uj}, defined by the recursion{
u0(t, x) = eit∆u0(x)

uj+1(t) = eit∆u0 + i
∫ t

0
ei(t−t′)∆(|uj |2uj(t′))dt′,

(3.9)

converges geometrically to the solution u provided that

‖eit∆u0‖L3
T L6

x
< ρ0.(3.10)

By Hölder’s inequality in time and Sobolev’s inequality in space,

‖u‖L3
T L6

x
≤ CT

1
3− 1

q ‖〈D〉su‖Lq
T Lr

x
(3.11)

with q > 3 and 2
r = 2

6 +s. We choose q so that (q, r) is admissible, i.e. 2
q + 2

r = 1.
This gives 1

3 − 1
q = s

2 . Applying (3.11) and then (3.2), we have

‖eit∆u0‖L3
T L6

x
≤T

s
2 ‖eit∆〈D〉su0‖Lq

T Lr
x

≤T
s
2 ‖〈D〉su0‖L2 .

(3.12)

We choose T = Tlwp so that the right-hand side of (3.12) is less than ρ0,
namely so that (3.4) holds. The Strichartz estimate implies that the zeroth
iterate satisfies ‖u0‖S0

Tlwp

≤ C‖u0‖Hs . By the geometric convergence of the
iterates, we have that

‖u‖S0
Tlwp

≤ C‖u0‖Hs(3.13)

and

‖u‖L3
Tlwp

L6
x
≤ Cρ0.(3.14)

A posteriori, we can revisit the estimate for the solution of (3.6) and use
the Leibnitz rule for fractional derivatives to prove the persistence of regularity
property

‖〈D〉su‖S0
T
≤ 2‖〈D〉su0‖L2 .(3.15)

This follows from the Strichartz estimate on the linear term in (3.6) and the
estimate

‖〈D〉s(|u|2u)‖L1
T L2

x
≤ C‖u‖2

L3
T L6

x
‖〈D〉su‖L3

T L6
x
≤ Cρ2

0‖〈D〉su‖S0
T

(3.16)

where, in the last step, we used (3.14). The first inequality in (3.16) follows, for
example, from Proposition 1.1 on page 105 of [20].

Corollary 3.2 ([4]). If Hs � u0 −→ u(t) with s > 0 solves (1.1) for all t near
enough to T ∗ in the maximal finite interval of existence [0, T ∗) then

C(T ∗ − t)−
s
2 ≤ ‖〈D〉su(t)‖L2

x
.(3.17)
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Note that the estimate (3.16) implies that, when we restrict attention to so-
lutions of (1.1) with t ∈ [0, Tlwp], we can essentially ignore the contributions
involving the inhomogeneous terms appearing on the right side of (3.3) since
these terms are controlled by the corresponding homogeneous terms. As a con-
sequence of this and the bilinear Strichartz estimate, we prove the following
lemma. We define PNj to be the Littlewood-Paley projection operator to fre-
quencies of size Nj ∈ 2N, i.e. P̂Nj

f(ξ) = χ{ 1
2 Nj<ξ<2Nj}f̂(ξ).

Lemma 3.3. Suppose u solves (1.1) on the time interval [0, Tlwp]. Let uj =
PNj u, for j = 1, 2 with N1 > N2. Then

‖u1u2‖L2
Tlwp

L2
x
≤ C

(
N2

N1

) 1
2−

‖u‖2
S0

Tlwp

,(3.18)

The estimate (3.18) is also valid if uj is replaced by uj.

This bilinear smoothing property of solutions of (1.1) is the key device under-
pinning the proof of the almost conservation of the modified energy in Proposi-
tion 3.7.

3.3. Modified Hs Local Well-posedness.

Proposition 3.4 (Modified Hs-LWP). For u0 ∈ Hs, s > 0, the (1.1) evolution
u0 −→ u(t) is well-posed on the time interval [0, T̃lwp] with

T̃lwp = c0‖IN∇u0‖−
2
s

L2
x

,(3.19)

‖IN 〈D〉u‖S0
T̃lwp

≤ 2‖IN 〈D〉u0‖L2
x
.(3.20)

Proof. The proof is a modification of the arguments used to prove Proposition
3.1. Note first that the estimates (3.12) and (2.3) may be combined to give

‖eit∆u0‖L3
T L6

x
≤ CT

s
2 ‖IN 〈D〉u0‖L2 .(3.21)

Thus, the previous analysis produces a solution u of (1.1) satisfying (3.14) and

‖u‖S0
T̃lwp

≤ C‖IN 〈D〉u0‖L2(3.22)

provided that we choose T̃lwp as in (3.19).
Next, we turn our attention toward the space-time regularity estimate (3.20).

Since eit∆ does not affect the magnitude of Fourier coefficients, (3.20) is clearly
valid for the linear term in (3.6). Since the spaces appearing on both sides of
the trilinear estimate (3.16) are translation invariant and (the first inequality in)
(3.16) is valid, the modified estimate (3.20) follows directly from the interpola-
tion lemma (Lemma 12.1 on page 108) in [5].
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Remark 3.5. A modification of (3.18) follows using the spacetime control given
in (3.20): For N1 ≥ N2 and for solutions u of (1.1),

‖I〈D〉uN1I〈D〉uN2‖L2
T̃

L2
x
≤ C

(
N2

N1

) 1
2−

‖I〈D〉u‖2
S0

T̃

.(3.23)

Corollary 3.6. If Hs � u0 −→ u(t) with s > 0 solves (1.1) for all t near enough
to T ∗ in the maximal finite time interval of existence [0, T ∗)

C(T ∗ − t)−
s
2 ≤ ‖IN 〈D〉u(t)‖L2

x
.(3.24)

Since we are studying here finite time blowup solutions, we will sometimes
implicitly assume that ‖IN∇u(t)‖L2 > 1.

3.4. Almost conservation law for the modified energy.

Proposition 3.7. If Hs � u0 −→ u(t) with s > 0 solves (1.1) for all t ∈
[0, T̃lwp] then

(3.25) sup
t∈[0,T̃lwp]

|E[INu(t)]| ≤ |E[INu(0)]|

+ CN−α4‖IN 〈D〉u(0)‖4
L2

x
+ CN−α6‖IN 〈D〉u(0)‖6

L2
x
,

with α4 = 3
2− and α6 = 2−.

Proof. We adapt arguments from [6] in which a similar result is proved using
local well-posedness theory in the weighted Xs,b spaces. We recall that the
parameter N refers to the operator IN defined in (2.2). In light of (3.20), it
suffices to control the energy increment |E[INu(t)]−E[INu(0)]| for t ∈ [0, T̃lwp]
in terms of ‖IN 〈D〉u‖S0

T̃lwp

. We define the set ∗n = {(ξ1, . . . , ξn) : Σξi = 0}. An

explicit calculation of ∂tE[INu] (carried out in detail in Section 3 of [6]) reveals
that |E[INu(t)] − E[INu(0)]| is controlled by the sum of the two space-time
integrals:

E1 =
∣∣∣∣
∫ t

0

∫
∗4

[1 − m(ξ1)
m(ξ2)m(ξ3)m(ξ4)

]∆̂Iu(ξ1)Îu(ξ2)Îu(ξ3)Îu(ξ4)
∣∣∣∣ ,(3.26)

and

E2 =

∣∣∣∣∣∣∣
∫ t

0

∫
ξ̃1+ξ4+ξ5+ξ6=0

[1 − m(ξ̃1)
m(ξ4)m(ξ5)m(ξ6)

] ̂I(|u|2u)(ξ̃1)Îu(ξ4)Îu(ξ5)Îu(ξ6)

∣∣∣∣∣∣∣ .

(3.27)

We estimate the 4-linear expression (3.26) first. Let uNj denote PNj u. When
ξj is dyadically localized to {|ξ| ∼ Nj} we will write mj to denote m(ξj).
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Lemma 3.8. If Hs � u0 −→ u(t) with s > 0 solves (1.1) for all t ∈ [0, T̃lwp]
then ∣∣∣∣

∫ t

0

∫
∗4

[1 − m1

m2m3m4
]
(
∆̂IuN1(ξ1)ÎuN2(ξ2)ÎuN3(ξ3)ÎuN4(ξ4)

)∣∣∣∣
≤ N−α4‖I〈D〉u‖4

S0
T̃lwp

4∏
j=1

N0−
j ,

(3.28)

with α4 = 3
2−,

Proof. The analysis which follows will not rely upon the complex conjugate
structure in the left-side of (3.28). Thus, there is symmetry under the inter-
change of the indices 2,3,4. We may therefore assume that N2 ≥ N3 ≥ N4.

Case 1. N � N2. On the convolution hypersurface ∗4, this forces N1 � N
as well, so the multiplier [1 − m1

m2m3m4
] = 0 and the expression to be bounded

vanishes.
Case 2. N2 � N � N3 ≥ N4. This forces N1 ∼ N2 on ∗4. By the mean

value theorem and simple algebra

∣∣∣∣[1 − m1

m2m3m4
]
∣∣∣∣ =

∣∣∣∣[m(ξ2) − m(ξ2 + ξ3 + ξ4)
m(ξ2)

]
∣∣∣∣ ≤

∣∣∣∣∇m(ξ2) · (ξ3 + ξ4)
m(ξ2)

∣∣∣∣ � N3

N2
.

(3.29)

We use the frequency localization of the uNj to renormalize the derivatives
and multipliers to arrange for the appearance of I〈D〉uNj . In the case under
consideration, using (3.29) and the frequency localizations, the left-side of (3.28)
is controlled by

N3

N2
N1(N2〈N3〉〈N4〉)−1

∣∣∣∣∣∣
∫ t

0

∫
∗4

4∏
j=1

I〈D〉uNj
(ξj)

∣∣∣∣∣∣ .

We apply Cauchy-Schwarz to obtain the bound

N3

N2
N1(N2〈N3〉〈N4〉)−1‖I〈D〉uN1I〈D〉uN3‖L2

T̃lwpL2
x

‖I〈D〉uN2I〈D〉uN4‖L2
T̃lwp

L2
x
.

By (3.23), we control by

N3

N2
N1(N2〈N3〉〈N4〉)−1

(
N3N4

N1N2

) 1
2−

‖I〈D〉u‖4
S0

T̃lwp

which simplifies to give the bound

N− 3
2+(N1N2〈N3〉〈N4〉)0−‖I〈D〉u‖4

S0
T̃lwp

.(3.30)

Case 3. N2 ≥ N3 � N. In this case, we use the trivial multiplier bound∣∣∣∣[1 − m1

m2m3m4
]
∣∣∣∣ ≤ m1

m2m3m4
.(3.31)
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Again, we pull the multiplier out and estimate the remaining integral using
Lemma 3.3.

Case 3a. N1 ∼ N2 ≥ N3 � N . We bound E1 here by renormalizing the
derivatives and multiplier, then pairing uN1uN3 and uN2uN4 and using Lemma
(3.3) again:

m1

m2m3m4

(
N3N4

N1N2

) 1
2−

N1(N2N3〈N4〉)−1‖I〈D〉u‖4
S0

T̃lwp

.

We reexpress this bound as
m1

m2N
1
2
2 m3N

1
2
3 m4〈N4〉 1

2 N
1
2
1

‖I〈D〉u‖4
S0

T̃lwp

.

Since m(x) is bounded from above by 1 and m(x)〈x〉 1
2 is nondecreasing and

bounded from below by 1, this is bounded by

1

NN
1
2
1

‖I〈D〉u‖4
S0

T̃lwp

≤ N− 3
2+(N1N2N3〈N4〉)0−‖I〈D〉u‖4

S0
T̃lwp

.(3.32)

Case 3b. N2 ∼ N3 ≥ N . A similar analysis leads to the bound

m1

m2m3m4

(
N1N4

N3N2

) 1
2

N1(N2N3〈N4〉)−1‖I〈D〉u‖4
S0

T̃lwp

≤ 1
N

1
2 N2

‖I〈D〉uNj‖4
S0

T̃lwp

≤ N− 3
2+(N1N2N3〈N4〉)0−‖I〈D〉uNj

‖4
S0

T̃lwp

.

A related case-by-case analysis combined with a trilinear estimate establishes
the required 6-linear estimate for (3.27). We write m123 to denote m(ξ1+ξ2+ξ3)
and use N123 to denote the (dyadic) size of ξ1 + ξ2 + ξ3. We will also use the
similarly defined notation m456. Note that N123 could be much smaller than
N1, N2, or N3.

Lemma 3.9. If Hs � u0 −→ u(t) with s > 0 solves (1.1) for all t ∈ [0, T̃lwp]
then

∫ t

0

∫
∗6

[
1 − m123

m4m5m6

]
m123

(
ûN1(ξ1)ûN2(ξ2)ûN3(ξ3)

)
ÎuN4(ξ4)ÎuN5(ξ5)ÎuN6(ξ6)

≤ N−α6‖I〈D〉u‖6
S0

T̃lwp

6∏
j=1

N0−
j(3.33)

with α6 = 2−.
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Proof. We carry out a case-by-case analysis. By symmetry (since we will not
use the complex conjugate structure), we may assume N4 ≥ N5 ≥ N6.

Case 1. N � N4. On ∗6, this forces N123 ∼ N4 so
[
1 − m123

m4m5m6

]
vanishes.

Case 2. N4 � N ≥ N5. On ∗6, N123 ∼ N4 in this case. By the mean value
theorem, ∣∣∣∣

[
1 − m123

m4m5m6

]∣∣∣∣ =
∣∣∣∣m4 − m456

m4

∣∣∣∣ ≤ N5

N4
.

Applying this multiplier bound and the Cauchy-Schwarz inequality to the
integral in (3.33) gives the bound

(N4〈N5〉)−1 N5

N4
‖PN123I(uN1uN2uN3)IuN6‖L2

T x
‖I〈D〉uN4I〈D〉uN5‖L2

T x
.

By Hölder’s inequality and Lemma 3.3, we control the above expression by

(3.34) (N4〈N5〉)−1 N5

N4
‖PN123I(uN1uN2uN3)‖L2

T x
‖IuN6‖L∞

T x

×
(

N5

N4

) 1
2

‖I〈D〉u‖S0
T̃lwp

‖I〈D〉u‖S0
T̃lwp

.

By Sobolev’s inequality on functions with frequency support localized to a dyadic
shell on R2

x,

‖IuN6‖L∞
T x

≤ ‖I〈D〉uN6‖L∞
T L2

x
.(3.35)

In order to continue the proof of Lemma 3.9, we need an estimate of the term
‖PN123I(uN1uN2uN3)‖L2

T x
. This is the purpose of the next lemma. Let N†

1 ≥
N†

2 ≥ N†
3 denote the decreasing rearrangement of N1, N2, N3.

Lemma 3.10.

‖PN123I(uN1uN2uN3)‖L2
T x

≤ 〈N†
1 〉−

1
2

3∏
j=1

‖I〈D〉uNj‖S0
T̃lwp

.(3.36)

Proof. Again, we will not use the complex conjugate structure so we may assume
that N1 ≥ N2 ≥ N3. The projection PN123 allows us to control the left-hand
side of (3.36) by

m123‖uN1uN2uN3‖L2
T x

≤ m123‖uN1‖L4
T x
‖uN2‖L4

T x
‖uN3‖L∞

T x

where we used Hölder’s inequality.
We renormalize the derivatives and use a (dyadically localized) Sobolev in-

equality as in (3.35) to get the bound
m123

m1m2m3
〈N1〉−1〈N2〉−1‖I〈D〉uN1‖L4

T x
‖I〈D〉uN2‖L4

T x
‖I〈D〉uN3‖L∞

T L2
x
.
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Since the norms appearing in the above expression are admissible we focus our
attention upon the prefactor and bound with the expression

m123N
1
2
3

〈N1〉 1
2 〈N2〉 1

2 m1〈N1〉 1
2 m2〈N2〉 1

2 m3〈N3〉 1
2

3∏
j=1

‖I〈D〉uNj‖S0
T̃lwp

.

Since m(x) ≤ 1, m(x)〈x〉 1
2 is nondecreasing, and N3 ≤ N2, this proves (3.36).

We use (3.36) and (3.35) on (3.34) to complete the Case 2 analysis. The
left-hand side of (3.33) is bounded by

(N4〈N5〉)−1
(

N5
N4

) 3
2 〈N†

1 〉
− 1

2 ‖I〈D〉u‖6
S0

T̃lwp

(3.37)

≤ N
1
2
5

N
5
2
4

(N†
1 )−

1
2 ‖I〈D〉u‖6

S0
T̃lwp

(3.38)

≤ N−2+(N1 . . . 〈N5〉〈N6〉)0−
∏6

j=1 ‖I〈D〉u‖6
S0

T̃lwp

.(3.39)

Case 3. N4 ≥ N5 ≥ N. We will use the trivial multiplier estimate∣∣∣∣
[
1 − m123

m4m5m6

]∣∣∣∣ ≤ m123

m4m5m6
.

Familiar steps lead to the bound

m123

m4m5m6
〈N†

1 〉−
1
2

(
N5

N4

) 1
2

(N4N5)−1‖I〈D〉u‖6
S0

T̃lwp

which we recast as
m123

m4N
1
2
4 m5N

1
2
5 m6〈N†

1 〉
1
2 N4

‖I〈D〉u‖6
S0

T̃lwp

.(3.40)

Case 3a. N6 ≥ N . We express the prefactor in (3.40) as

m123N
1
2
6

m4N
1
2
4 m5N

1
2
5 m6N

1
2
6 〈N†

1 〉
1
2 N4

≤ 1

N
3
2 N

1
2
4

≤ N−2+(N1 . . . N6)0−.

Case 3b. N6 ≤ N . Here we have m6 = 1 so we can bound the prefactor in
(3.40) by

1
NN4

≤ N−2+(N1N2N3N4)0−.

Since (3.26) and (3.27) control the increment in the modified energy, it suffices
to prove appropriate bounds on these integrals to obtain (3.25). Lemmas (3.8),
(3.9) provide estimates for dyadically localized contributions to the integrals
(3.26), (3.27), respectively. Since the estimates (3.28) and (3.33) have the helpful
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decay factors N0−
j , we can sum up the dyadic contributions, and apply Cauchy-

Schwarz to complete the proof of (3.25).

4. Modified kinetic energy dominates modified total energy

In this section, we prove Proposition 2.1.

Proof of Proposition 2.1. When s ≥ 1, we set IN(T ) = Identity by choosing
N(T ) = +∞. Since the (unmodified) energy is conserved while the kinetic
energy blows up as time approaches T ∗, the estimate (2.8) is obvious with p(s) =
0. We therefore restrict attention to s ∈ (sQ, 1), with sQ to be determined at
the end of the proof.

Fix s ∈ (sQ, 1) and T near T ∗. Let N = N(T ) (to be chosen). Set δ =
c0(Σ(T ))−

2
s > 0 with c0 the small fixed constant in (3.19). Note that δ is the

time of local well-posedness guaranteed by Proposition 3.4 for initial data of size
Σ(T ), which is the largest value that the modified kinetic energy achieves up
to time T . Thus the interval [0, T ] may be partitioned into J = C T

δ δ-sized
intervals on which the modified local well-posedness result uniformly applies.
More precisely, [0, T ] =

⋃J
j=1 Ij , Ij = [tj , tj+1), t0 = 0, tj+1 = tj + cδ, and we

have at each tj ,
‖IN 〈D〉u(tj)‖L2 = σ(tj) ≤ Σ(T ).

In addition, δ has been taken sufficiently small so that we can apply the al-
most conservation law Proposition 3.7 on each of the Ij . We now accumulate
increments to the energy and have that

|E[INu(T )]| ≤ |E[INu(0)]| + C
T ∗

δ
[N−α4Σ4(T ) + N−α6Σ6(T )]

≤ N2(1−s)λ(0) + C
T ∗

δ
N−α4Σ4(T ) + C

T ∗

δ
N−α6Σ6(T ).

By the choice of δ we see, dismissing irrelevant constants, that

|E[INu(T )]| � N2(1−s) + N−α4Σ4+ 2
s (T ) + N−α6Σ6+ 2

s (T ).

Using (2.3), we can switch from Σ to Λ:

|E[INu(T )]| � N2(1−s) + N−α4+(4+ 2
s )(1−s)Λ4+ 2

s (T ) + N−α6+(6+ 2
s )(1−s)Λ6+ 2

s (T ).
(4.1)

We choose N = N(Λ) so that the first and third terms in (4.1) give comparable
contributions. A calculation reveals that the second term in (4.1) produces a
smaller correction with α2 and α4 as given in Proposition 3.7. Thus, with the
choice

N = Λ
6+ 2

s
α6−(4+ 2

s
)(1−s) ,(4.2)
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the Proposition 2.1 is established with

p(s) =
6 + 2

s

α6 − (4 + 2
s )(1 − s)

2(1 − s).(4.3)

Note that p(s) < 2 reduces to to a quadratic condition on s. Specifically

10s2 + (α6 − 6)s − 4 > 0.

For α6 = 2− this yields

s > sQ =
1
5

+
1
5

√
11 ∼ 0.863.
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