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Abstract. In this work, we consider the stability of solitons for the

KdV equation below the energy space, using spatially-exponentially-
weighted norms. Using a combination of the I-method and spectral

analysis following Pego and Weinstein, we are able to show that, in

the exponentially weighted space, the perturbation of a soliton decays
exponentially for arbitrarily long times. The finite time restriction is

due to a lack of global control of the unweighted perturbation.

1. Introduction

Consider the initial value problem for the Korteweg-de Vries equation
(KdV) {

∂tu+ ∂3
xu+ ∂x(u2) = 0,

u(0, x) = u0(x).
(1)

This is a well-known nonlinear dispersive partial differential equation mod-
elling the behavior of water waves in a long, narrow, shallow canal.

It is well known that the KdV equation (1) is completely integrable. This
means that, among other things, the equation possesses infinitely many con-
served quantities, the first two of which are the mass

M [u] =

∫
R

|u(x)|2dx

and the Hamiltonian

H[u] =

∫
R

(
u2
x(x)− 2

3
u3(x)

)
dx.
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The equation is also known to support traveling wave solutions known as
solitons. Indeed, if one assumes that the solution of (1) is given by Qc(x, t) =
ψc(x− ct) for some profile ψc and some speed c > 0, we find that the soliton
is given by

Qc,x0(x, t) =
3c

2
sech2

(√
c

2

(
x− ct− x0

))
. (2)

The stability of these solitons has been an area of intense study for many
years and is the main topic of this paper.

One might first be interested in the orbital stability of the soliton. In the
Sobolev space Hs = Hs(R), this means that for all ε > 0 there is a δ > 0 so
that if ‖u0 − ψc‖Hs < δ, then there is a continuous function x0 : [0,∞)→ R
such that ‖u(t)− ψc(· − ct− x0(t))‖Hs < ε for all t ≥ 0. The study of orbital
stability in the energy space H1 began with Benjamin [1] and Bona [2]; see
also [3]. This work was made systematic by Weinstein [21], who established
the orbital stability of solitons for nonlinear Schrödinger equations and for
generalized KdV equations. The orbital stability of solitons in Hs with s < 1
is not as well developed. Merle and Vega [12] showed that the solitons are
orbitally stable in H0 = L2 using the Miura transform together with the
stability theory for kink solutions of the mKdV equation in H1. One might
expect that the orbital stability results in L2 and H1 imply orbital stability
in Hs with 0 < s < 1. However, the natural interpolation argument fails
because Hs functions need not be in H1. In the case of Hs with 0 < s < 1
the I-method has been used to show that any possible orbital instability of
the solitons can be at most polynomial in time; see [20] and [18].

A stronger notion of stability is asymptotic stability in which one aims to
show that there exist c+ ∈ (0,∞) and x+ ∈ R so that

‖u(t)− ψc+(· − c+t− x+)‖X → 0 as t→ +∞ (3)

in some Banach space X. By perturbing the main soliton ψc+ by a very small
soliton located sufficiently far to the left of the main soliton, we see that this
notion of asymptotic stability cannot hold in a translation invariant space
X. In order to investigate asymptotic stability of solitons in the Sobolev
spaces Hs, the translation invariance of the space must be broken in some
way. Within the current literature there appear to be three approaches to
this problem:

(1) Insert a spatial weight into the Sobolev space so that movement to
the left registers as decay.

(2) Replace strong convergence in (3) with weak convergence.
(3) Truncate the Sobolev space in an appropriate time-dependent way.

The first results on asymptotic stability for KdV solitons were established
by Pego and Weinstein in [17]. In that paper, the authors considered solutions
of KdV in the exponentially weighted Sobolev space H1

a = {f | ‖eaxf‖H1 <
∞}, for appropriate choice of a. They were able to prove that solitons are
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asymptotically stable and that the rate of decay in (3) is exponential. Mizu-
machi [13] has since proved that the solitons are asymptotically stable in a
weighted version of H1 with polynomial type weight; the decay rate in (3) is
shown to be polynomial.

Martel and Merle [9] have shown that KdV solitons are asymptotically
stable in H1 if we replace the strong convergence in (3) with weak convergence.
Martel and Merle have gone on to show that for any β > 0, KdV solitons are
asymptotically stable in the truncated Sobolev space H1(x > βt); see [10, 11].
Merle and Vega [12] used this approach together with asymptotic stability of
kink solutions to the modified KdV equation to show that KdV solitons are
asymptotically stable in L2

loc. Buckmaster and Koch [4] have shown that for
any β > 0 KdV solitons are asymptotically stable in Hk(x > βt) for k ≥ −1 an
integer. More recently, Mizumachi and Tzvetkov [14] have used the approach
of Pego and Weinstein together with the Miura transform to show that solitons
for KdV are asymptotically stable in L2(x > βt), thus offering an alternative
proof of the result of Merle and Vega.

The principal goal of this paper is to investigate the asymptotic stability
of KdV solitons in Hs with 0 < s < 1. As in the case of orbital stability, the
standard interpolation argument does not enable us to conclude that solitons
are asymptotically stable in Hs for fractional values of s < 1. Instead we turn
to the I-method and implement it in the setting of the exponentially weighted
spaces used by Pego and Weinstein. To that end we define I : Hs → H1 by

Îf(ξ) = m(ξ)f̂(ξ) where f̂(ξ) denotes the Fourier transform of f and the
multiplier m is given by

m(ξ) =

{
1, if |ξ| ≤ N,
Ns−1|ξ|1−s, if |ξ| > 2N,

with smooth, even patching on the intervening intervals, and with N a pa-
rameter that we will choose during the course of our analysis. We also define
the space Hs

a = {f | ‖eaxf‖Hs <∞}.
Theorem 1. There exist ε1 > 0 and 0 < r < 1 and for every T > 0 there
exists ε2 > 0 so that if ‖eayI1v(0)‖H1 < ε1, |c(0)− c0| < ε1 and ‖I1v(0)‖H1 <
ε2, then there exist piecewise differentiable functions c(t), γ(t) and a constant
C > 0 so that for all t ∈ [0, T ]:

(1) ‖eayI1v(t)‖H1 < Cε1r
t,

(2) |ċ|+ |γ̇| < Cε1r
t, and

(3) |c(t)− c0| < 2Cε1.

Remark. Theorem 1 represents the first asymptotic stability result for the
KdV equation in the Sobolev space Hs with noninteger s.

Remark. Due to the absence of good commutator estimates between the
exponential weight and the I-operator, we have chosen to work in the space
with norm ‖eayI1f‖H1 .
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The key difficulty in the proof of Theorem 1 is to accommodate both the
exponential weight which occurs as a weight on the spatial variable and the
I-operator which occurs as a weight on the frequency variable. We proceed
by first establishing local well-posendess for the exponentially weighted soli-
ton perturbation in a space Xs,1/2,1 which embeds into the Bourgain space
Xs,1/2+, partially following the local well-posedness work of Molinet and Rib-
aud [15, 16], and Guo and Wang [7] on dispersive-dissipative equations. In
so doing we establish multilinear estimates that accommodate the presence of
the exponential weight. For technical reasons, this requires that s > 7/8. We
then use the I-method to map our solutions into an exponentially-weighted
version of H1. Finally, we run an iteration scheme inspired by an analogous
argument in [19] to establish global control of the perturbation in Hs and the
exponentially weighted space Hs

a, concluding that the soliton is exponentially
asymptotically stable in Hs

a for s > 7/8.
The paper is organized as follows: In section 2, we will set up our notation

and establish basic results. In section 3, we will establish some necessary
estimates to establish local well-posedness in section 4. In section 5, we will
run the iteration scheme and establish the main result of the paper.

2. Notation and Basic Results

We will define the Fourier multiplier operator IN by ÎNf(ξ) = mN (ξ)f̂(ξ),
with mN a smooth, even, decreasing function of |ξ| which satisfies mN (ξ) = 1

for |ξ| < N and mN (ξ) = |ξ|s−1

Ns−1 for |ξ| > 10N . In this paper, N will be a
function of our time-step n, and, in particular

N(n) = κ

(
− 1

7
4
−s

+η1

)
n

for η1 > 0 very small, where 1 > κ >
√

1− b
2 , and b are defined below.

We define ṽn(t) = IN(n)v(y, t) and w̃n(t) = eayIN(n)v(y, t), where y =

x −
∫ t

0
c(s)ds − γ(t), and c(t), γ(t) are chosen so that, at each time t, for

appropriate value of n, ‖w̃n(t)‖L2 is minimized. In order to do so, we first
need to consider the difference equations satisfied by ṽ and w̃, and consider
their linearizations about the soliton.

Lemma 2.1. The perturbation ṽ satisfies the difference equation

(ṽn)t = ∂y(−∂2
y + c0 − 2ψc)ṽn + IN(n)∂y(v2) + ∂y(IN(n)(ψcv)− ψcIN(n)v)

+ (γ̇∂y + ċ∂c)IN(n)ψc + (γ̇ + c− c0)∂y ṽ

(4)
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Moreover, the perturbation w̃n(t) satisfies the difference equation

(w̃n)t = eay∂y(−∂2
y + c0 − 2ψc)e

−ayw̃n + (c− c0 − γ̇)(∂y − a)w̃

−eayIN(n)∂y(v2)− eay(ċ∂c + γ̇∂y)IN(n)ψc − eay∂y(IN(n)(ψcv)− ψcIN(n)v)

(5)

Proof. From [17], we have that

vt = py(−∂2
y + c0 − 2ψc)v + ∂y(v2) + (γ̇∂y + ċ∂c)ψc + (γ̇ + c− c0)∂yv

and

wt = eay∂y(−∂2
y + c0 − 2uc)e

−ayw + (c− c0)(∂y − a)w + [eay(ċ∂c + γ̇∂y]uc

+ γ̇(∂y − a)w + eay∂y(c− c0 + v2)e−ayw].

The result here comes from applying I to each equation. �

For fixed c > 0, define the operator Aa = eay∂y(−∂2
y + c − 2ψc)e

−ay. We
have the following from [17],[19]:

Proposition 1. For 0 < a <
√

c
3 , the spectrum of Aa in H1 consists of the

following:

(1) An eigenvalue of algebraic multiplicity 2 at λ = 0. A generator of
the kernel of Aa is ζ1 = eay∂yψc, and the second generator of the
generalized kernel of Aa is ζ2 = eay∂cψc.

(2) A continuous spectrum Sa parametrized by τ → iτ3 − 3aτ2 + (c −
3a2)iτ − a(c − a2). For any element λ of this continuous spectrum,
the real part of λ is at most b := −a(c− a2) < 0.

The spectrum contains no other elements.

We also need to consider the elements of the spectrum to A∗a, which are
η1 = e−ay[θ1∂

−1
y ∂cψc + θ2ψc] and η2 = e−ay(θ3ψc), where ∂−1

y f is defined

to be
∫ y
−∞ f(t)dt and θ1, θ2 and θ3 are appropriate constants to obtain the

biorthogonality relationship 〈ζj , ηk〉 = δjk. We will define the L2 spectral

projections Pw =
∑2
i=1〈w, ηi〉ζi and Qw = w − Pw onto the discrete and

continuous spectrums of Aa respectively, with respect to the fixed initial value
of c, c0.

Returning to the difference equation (5), for each fixed t we select ċn(t)

and γ̇n(t) so that Pw̃n = 0, and Qw̃n = w̃n. Defining F̃ = (c− c0 − γ̇)(∂y −
a)w̃−eayIN(n)∂y(v2)−eay(ċ∂c+ γ̇∂y)IN(n)ψc−eay∂y(IN(n)(ψcv)−ψcIN(n)v),

and G̃ = (c − c0)(∂y − a)w̃ − eayIN(n)∂y(v2) − eay∂y(IN(n)(ψcv) − ψcIN(n)v)
we have that

wt = Aaw +QF̃ ,
and

A
[
γ̇
ċ

]
=

[
〈G̃, η1〉
〈G̃, η2〉

]
, (6)
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where A is the matrix

A =

[
1 + 〈eay(∂yψc − ∂yψc0), η1〉 − 〈w̃n, ∂yη1〉 〈eay(∂cψc − ∂cψc0), η1〉
〈eay(∂yψc − ∂yψc0), η2〉 − 〈w̃N , ∂yη2〉 1 + 〈eay(∂cψc − ∂cψc0), η2〉

]
.

3. Linear and Multilinear Estimates

In this section we will review the construction of the space Xs,1/2,1 and
mention the linear estimates which were developed in [19]. At the end of this
section we prove a new bilinear estimate which is then used to establish a
multilinear estimate that is necessary for the proof of Theorem 1.

First, we provide a version of the product rule that holds with the multiplier
operator I in place of a derivative:

Lemma 3.1. Suppose that ‖eayfi‖L2 <∞ and ‖IN∂yfi‖L2 <∞ for i = 1, 2.
Then

‖eayIN∂y(f1f2)‖L2 ≤ 2‖INf1‖H1‖eayIN∂yf2‖L2 + 2‖INf2‖H1‖eayIN∂yf1‖L2 .

Proof. Define ωR(y) = χ{y≤R}e
ay, and consider ‖ωRIN∂y(f1f2)‖L2 . Taking

the Fourier transform and using duality, we find that this equals

sup
‖f‖L2=1

∫ ∫ ∫
Γ4

ω̂R(ξ1)m(ξ2 + ξ3)(ξ2 + ξ3)f̂1(ξ2)f̂2(ξ3)f(ξ4),

where Γ4 = {(ξ1, ξ2, ξ3, ξ4) ∈ R4 | ξ1 +ξ2 +ξ3 +ξ4 = 0}. Now, either ξ2 +ξ3 ≤
2ξ2 or ξ2 +ξ3 ≤ 2ξ3. In the first case, note that m(ξ2 +ξ3)(ξ2 +ξ3) ≤ 2m(ξ2)ξ2
by the properties of m, so we have, with ξ5 = ξ2 + ξ3 and ξ6 = ξ1 + ξ5,

‖ωRIN∂y(f1f2)‖L2 ≤ 2 sup
‖f‖L2=1

∫ ∫ ∫
Γ4

ω̂R(ξ1)m(ξ2)ξ2f̂1(ξ2)f̂2(ξ3)f(ξ4)

= 2 sup
‖f‖L2=1

∫ ∫ ∫
Γ4

ω̂R(ξ1) ̂(I∂yf1)(ξ2)f̂2(ξ3)f(ξ4)

= 2 sup
‖f‖L2=1

∫ ∫
ξ1+ξ5+ξ4=0

f̂2(ξ5)(ωRI∂yf1)̂(ξ5)f(ξ4)

= 2 sup
‖f‖L2=1

∫
ξ6+ξ4=0

(f2ωRI∂yf1)̂(ξ6)f(ξ4)

≤ 2 sup
‖f‖L2=1

‖f2ωRI∂yf1‖L2‖f‖L2

= 2‖f2ωRIpyf1‖L2

≤ 2‖f2‖L∞‖ωRIpyf1‖L2

≤ 2‖f2‖Hs‖eayIpyf1‖L2

≤ 2‖INf2‖H1‖eayIpyf1‖L2 .
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By the symmetry between the two cases, we obtain in total that

‖ωRIN∂y(f1f2)‖L2 ≤ 2‖INf2‖H1‖eayIpyf1‖L2 + 2‖INf1‖H1‖eayIpyf2‖L2 .

Now, lettingR→∞, since χ{y<R}|eayINpy(f1f2)(y)|2 is a pointwise-increasing
function in R, by the Lebesgue monotone convergence theorem we see that

‖eayIN∂y(f1f2)‖2L2 =

∫
|eayINpy(f1f2)(y)|2dy

= lim
R→∞

∫
χ{y<R}|eayINpy(f1f2)(y)|2

= lim
R→∞

‖ωRIN∂y(f1f2)‖2L2

≤ lim
R→∞

(2‖INf2‖H1‖eayIpyf1‖L2 + 2‖INf1‖H1‖eayIpyf2‖L2)2

= (2‖INf2‖H1‖eayIpyf1‖L2 + 2‖INf1‖H1‖eayIpyf2‖L2)2

as claimed. �

We next recall the definition of the space Xs,1/2,1. We define the sets Aj
and Bk by

Aj := {(τ, ξ) ∈ R2 | 2j ≤ 〈ξ〉 ≤ 2j+1}, j ≥ 0

Bk := {(τ, ξ) ∈ R2 | 2k ≤ 〈τ − ξ3〉 ≤ 2k+1}, k ≥ 0.

For s, b ∈ R, the space Xs,b,1 is defined to be the completion of the Schwartz
class functions in the norm

‖f‖Xs,b,1 :=

∑
j≥0

22sj

∑
k≥0

2bk‖f̃‖L2(Aj∩Bk)

2


1/2

.

In taking b = 1/2 we have the following embeddings:

Xs,1/2+ ↪→ Xs,1/2,1 ↪→ C0
tH

s
x.

We will work primarily in the spaces Xs,1/2,1 and Xs,−1/2,1, so we adopt the
notation Xs := Xs,1/2,1 and Y s := Xs,−1/2,1.

The spaces Xs, Y s were used in the case when s = 1 to prove local well-
posedness for the perturbations v and w = eayv in H1(R), see [19]. We review
some of the features of these spaces that were used in the aforementioned local
well-posedness arguments. Let W1(t) denote the standard Airy evolution,

(W1(t)f)̂(ξ) = e−itξ
3

f̂(ξ).

Let W2(t) be the linear evolution defined for t ≥ 0 by

(W2(t)f)̂(ξ) = e−itξ
3−pa(ξ)tf̂(ξ),

where pa(ξ) = 3aξ2 + a(c20 − a). We extend this to all of t ∈ R in defining

(W2(t)f)̂(ξ) = e−iξ
3t−pa(ξ)|t|f̂(ξ).
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While the Airy evolution W1(t) is the linear evolution associated with the
unweighted perturbation v, the evolution W2(t) is the linear evolution associ-
ated with the weighted perturbation w. A key feature of the space Xs is that
it accommodates both of the semigroups W1(t) and W2(t), as illustrated in
the following linear estimates which are valid for all s ∈ R:

‖ρ(t)W1(t)f‖Xs,1/2,1 . ‖f‖Hs , , (7)∥∥∥∥ρ(t)

∫ t

0

W1(t− s)F (s)ds

∥∥∥∥
Xs,1/2,1

. ‖F‖Xs,−1/2,1 , , (8)

and if 0 < a ≤ min(1, c0), then

‖ρ(t)W2(t)f‖Xs,1/2,1 . ‖f‖Hs , (9)∥∥∥∥χR+(t)ρ(t)

∫ t

0

W2(t− s)F (s)ds

∥∥∥∥
Xs,1/2,1

. ‖F‖Xs,−1/2,1 . (10)

Here ρ : R→ R is a cutoff function such that

ρ ∈ C∞0 (R), supp ρ ⊂ [−2, 2], ρ ≡ 1 on [−1, 1], (11)

and χR+
is the indicator function for the set R+ := {t ∈ R | t ≥ 0}. The

estimates (7), (8) are proved in [8] while the proofs of (9), (10) are given
in [19]. Also crucial for the result proved in [19] was the following bilinear
estimate, valid for all s ≥ 0 (see Proposition 3 in [19]):

‖uvy‖Y s . ‖u‖Xs‖v‖Xs . (12)

In the case when s = 1 we have the following generalization of this result.

Proposition 2. Let α1 ∈ (3/4, 1], α2 ∈ (0, 1] and suppose that u ∈ Xα1 , v ∈
Xα2 . Then

‖uyv‖Y 1 . ‖u‖Xα1 ‖v‖Xα2 . (13)

Proof. Since we work primarily in frequency space, we define X̃s,b,1 to be the
completion of the Schwartz class functions in the norm

‖f‖X̃s,b,1 :=

∑
j≥0

22sj

∑
k≥0

2bk‖f‖L2(Aj∩Bk)

2


1/2

.

Here f = f(τ, ξ) is a function of the frequency variables τ and ξ. Adopting

the notation X̃1 = X̃1,1/2,1 and Ỹ 1 = X̃1,−1/2,1, the estimate (13) reads

‖(|ξ1|f) ∗ g‖Ỹ 1 . ‖f‖X̃α1
‖g‖X̃α2

.

Following the proof of the standard bilinear estimate (12) we decompose f
and g on dyadic blocks as follows: Define fj1,k1 := χAj1χBk1 f and gj2,k2 :=
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χAj2χBk2 g. We thus have

f =
∑
j1≥0

∑
k1≥0

fj1,k1 and g =
∑
j2≥0

∑
k2≥0

gj2,k2 .

Our goal is to estimate

∑
j≥0

22j

∑
k≥0

∑
j1≥0

∑
k1≥0

∑
j2≥0

∑
k2≥0

2−k/22j1‖fj1,k1 ∗ gj2,k2‖L2(Aj∩Bk)

2

. (14)

Indeed, we wish to establish an estimate of the form

(14) . ‖f‖2
X̃α1
‖g‖2

X̃α2
.

To simplify the exposition we adopt the following notation:

Fj1,k1 := 2α1j12k1/2‖fj1,k1‖L2 , and

Gj2,k2 := 2α2j22k2/2‖gj2,k2‖L2 .

The proof is divided into the following cases:

(1) At least two of j, j1, j2 are less than 20.
(2) j1, j2 ≥ 20 and j < j1 − 10.
(3) j, j1 ≥ 20, |j − j1| ≤ 10.

Case (1). Here we may assume that j, j1, j2 ≤ 30. Applying Young’s in-
equality followed by Hölder’s inequality yields

‖fj1,k1 ∗ gj2,k2‖L2 . 2j2/2215k1/32215k2/32‖fj1,k1‖L2‖gj2,k2‖L2 .

After summing in k and summing over j (a finite sum), we find that

(14) .

 30∑
j1=0

∑
k1≥0

2j1215k1/32‖fj1,k1‖L2

2 30∑
j2=0

∑
k2≥0

2j2/2215k2/32‖gj2,k2‖L2

2

.

Note that the sum in j2 is finite, so

30∑
j2=0

∑
k2≥0

2j2/2215k2/32‖gj2,k2‖L2

≤

 30∑
j2=0

2(1−2α2)j2

1/2
 30∑
j2=0

22α2j2

∑
k2≥0

Gj2,k2

2


1/2

.‖g‖X̃α2
.

A similar argument shows that

30∑
j1=0

∑
k1≥0

2j1215k1/32‖fj1,k1‖L2 . ‖f‖X̃α1
,
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which completes the argument.

Case (2). We may assume that |j1− j2| ≤ 1, since otherwise fj1 ∗ gj2 = 0 on
Aj . For (τ1, ξ1) ∈ Aj1 ∩Bk1 and (τ2, ξ2) ∈ Aj2 ∩Bk2 we have

(τ1 + τ2)− (ξ1 + ξ2)3 − (τ1 − ξ3
1)− (τ2 − ξ3

2) = −3ξξ1ξ2. (15)

It follows that fj1,k1 ∗ gj2,k2 = 0 on Aj ∩Bk unless 2kmax & 2j2j12j2 ∼ 2j+2j1

where kmax = max{k, k1, k2}.
Suppose that k = kmax. In order for fj1,k1 ∗ gj2,k2 to have low frequency

support we require that whenever (τ1, ξ1) ∈ supp fj1,k1 , (τ2, ξ2) ∈ supp gj2,k2 ,
ξ1 and ξ2 must have opposite signs. It follows that supp fj1 and supp gj2 are
separated by K ∼ 2j1 . In light of Lemma 3.3 in [19], we thus have

‖fj1,k1 ∗ gj2,k2‖L2(Aj∩Bk) . 2−j/22−j1/22−α1j12−α2j2Fj1,k1Gj2,k2 .

Therefore, using 2−k/2 . 2−j/2−j1 , we have

(14) .
∑
j≥0

 ∑
j1≥j+11

∑
k1≥0

j1+1∑
j2=j1−1

∑
k2≥0

2−j1/22−α1j12−α2j2Fj1,k1Gj2,k2

2

.
∑
j≥0

2−j/2

∑
j1≥0

∑
k1≥0

∑
j2≥0

∑
k2≥0

2−j1/8−α1j12−j2/8−α2j2Fj1,k1Gj2,k2

2

. ‖f‖2
X̃α1
‖g‖2

X̃α2
.

Next we suppose that k1 = kmax. In this case we require 2k1 & 2j+2j1 . We
apply Lemma 3.4 from [19] with K ∼ 2j1 to see that

‖fj1,k1 ∗ gj2,k2‖L2(Aj∩Bk) . 2k/22−j12−k1/22−α1j12−α2j2Fj1,k1Gj2,k2 .

Observe that

2−k1/2 . 2−k/162−7k1/16 . 2−k/162−7j/162−7j1/8.

It follows that

(14) .
∑
j≥0

2−j/16

∑
j1≥0
k1≥0

∑
j2≥0
k2≥0

2−j1/82−j2/82−α1j12−α2j2Fj1,k1Gj2,k2


2

. ‖f‖2
X̃α1
‖g‖2

X̃α2
.

Finally we consider the case when k2 = kmax. Since the expression to be
estimated is symmetric in (j1, k1) and (j2, k2), we can argue as in the case
where k1 = kmax to obtain the desired estimate.

Case (3). In this case we may assume that j2 ≤ j + 11. In light of (15) we
require 2kmax & 22j+j2 . We begin by assuming that k = kmax. Lemma 3.3
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from [19] gives

‖fj1,k1 ∗ gj2,k2‖L2(Aj∩Bk) . 2−j/42−α1j12−α2j2Fj1,k1Gj2,k2 .

Therefore, since 2−k/2 . 2−j−j2/2, we find

(14) .
∑
j≥0

2−jε

 j+10∑
j1=j−10

∑
k1≥0

j+11∑
j2=0

∑
k2≥0

2j1( 3
4−α1+)2(−α2−1/2)j2Fj1,k1Gj2,k2

2

. ‖f‖2
X̃α1
‖g‖2

X̃α2
,

provided α1 > 3/4 and ε > 0 is chosen appropriately small.
Suppose that k1 = kmax, meaning that 2k1 & 22j+j2 . We apply Lemma 3.4

from [19] to estimate

‖fj1,k1 ∗ gj2,k2‖L2(Aj∩Bk) . 2k/42−j1/42−α1j12−α2j22−k1/2Fj1,k1Gj2,k2 .

After using 2−k1/2 . 2−j−j2/2

(14) .
∑
j≥0

2−jε

∑
j1≥0

∑
k1≥0

∑
j2≥0

∑
k2≥0

2j1(−α1+ε+ 3
4 )2−j2/22−α2j2Fj1,k1Gj2,k2

2

. ‖f‖2
X̃α1
‖g‖2

X̃α2
,

again provided α1 > 3/4 and ε > 0 is chosen to be sufficiently small.
Finally we consider the case for which k2 = kmax, so that 2k2 & 22j+j2 .

We divide our analysis into the following two subcases:

(i) |j2 − j| ≤ 5.
(ii) |j2 − j| > 5.

In case (i) we use Lemma 3.4 from [19] to estimate

‖fj1,k1 ∗ gj2,k2‖L2(Aj∩Bk) . 2k/42−j2/42−k2/22−α1j12−α2j2Fj1,k1Gj2,k2 .

We thus obtain

(14) .
∑
j≥0

 j+10∑
j1=j−10

k2∑
k1=0

∑
j2≥0
|j−j2|≤5

∑
k2≥0

2j12−3j2/42−α1j12−α2j2Fj1,k1Gj2,k2


2

.
∑
j≥0

2−j/2

∑
j1≥0

∑
k1≥0

∑
j2≥0

∑
k2≥0

2j1(−1/4−α1)2j2(−1/4−α2)Fj1,k1Gj2,k2

2

. ‖f‖2
X̃α1
‖g‖2

X̃α2
.

In case (ii) we again use Lemma 3.4 with K ∼ 2j to estimate

‖fj1,k1 ∗ gj2,k2‖L2(Aj∩Bk) . 2k/22−j/22−j2/22−k2/22−α1j12−α2j2Fj1,k1Gj2,k2 .



12 B. PIGOTT AND S. RAYNOR

Next we estimate

2−k2/2 . 2−k/162−7k2/16 . 2−k/162−7j/82−7j2/16.

We thus find that

(14) .
∑
j≥0

 j+10∑
j1=j−10

∑
k1≥0

j−5∑
j2=0

∑
k2≥0

2j12−3j/82−15j2/162−α1j12−α2j2Fj1,k1Gj2,k2

2

.
∑
j≥0

2−j/8

∑
j1≥0

∑
k1≥0

∑
j2≥0

∑
k2≥0

2j1(−α1+9/16)2j2(−α2−15/16)Fj1,k1Gj2,k2

2

. ‖f‖2
X̃α1
‖g‖2

X̃α2
,

since α1 > 3/4. �

In the proof of the modified local well-posedness result we will require the
following estimate.

Proposition 3. Let s > 7/8. Suppose that u and v are spacetime functions
such that u, v ∈ Xs and eayIu, eayIv ∈ X1. Then∥∥∥eay∂y(I(uv)− IuIv

)∥∥∥
Y 1

.N
3
4−s+ (‖eayIu‖X1‖Iv‖X1 + ‖Iu‖X1‖eayIv‖X1) .

(16)

Remark. Since s > 7/8 we see that (16) implies∥∥∥eay∂y(I(uv)− IuIv
)∥∥∥

Y 1

.N−1/8+ (‖eayIu‖X1‖Iv‖X1 + ‖Iu‖X1‖eayIv‖X1) .

Proof of Proposition 3. For a function u(t, x) of spacetime we let uNj denote
the function whose Fourier transform is given by ûNj = ηAj (ξ)û(ξ), where
ηAj is a smooth cutoff function adapted to the set Aj := {ξ ∈ R | |ξ| ∼ Nj}
with Nj dyadic.

We truncate the exponential weight using a spatial cutoff function. Specif-
ically, for R > 1 we let ϑR : R→ R by

ϑR(y) =

{
1, y < R
0, y > R,

and define ωa,R(y) := ϑR(y)eay. Observe that ωa,R ∈ Hs(R) for all s ∈
R; in particular, it makes sense to speak of the Fourier transform of ωa,R.
Furthermore, we have the following approximation result.

Lemma 3.2. If f ∈ H1
a(R), then

lim
R→∞

‖ωa,Rf‖H1 = ‖eayf‖H1 .
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Proof. Arguing as in the proof of Lemma 3.1, we find that

lim
R→∞

‖ωa,Rf‖L2 = ‖eayf‖L2 . (17)

Observe that ‖eayf‖2H1 = ‖eayf‖2L2 + ‖eay(af + fy)‖2L2 . One also checks that

‖ωa,Rf‖2H1 = ‖ωa,Rf‖2L2 + ‖ωa,R(af + fy)‖2L2 .

In light of this calculation and (17), we obtain the conclusion of the lemma. �

To prove (16) it suffices to show that

‖ĝN1
|ξ2 + ξ3|

(
m(ξ2 + ξ3)−m(ξ2)m(ξ3)

)
ûN2

v̂N3
‖Ỹ 1

.N
3
4−s+

(
N0−

12 N
0−
3 ‖gN1

IuN2
‖X1‖IvN3

‖X1

+N0−
2 N0−

13 ‖IuN2
‖X1‖gN1

IvN3
‖X1

)
,

(18)

where g := ωa,R. Note that by symmetry we may assume that N2 ≥ N3. We
adopt the notation N12 for |ξ1 + ξ2| ∼ N12 when |ξ1| ∼ N1 and |ξ2| ∼ N2. We
adopt similar definitions for N13 and N23.

Case (1). N2 � N . In this case we see that m(ξ2 + ξ3) −m(ξ2)m(ξ3) = 0,
so the expression to be estimated vanishes.

Case (2). N2 & N � N3. We use the mean value theorem to see that

|m(ξ2 + ξ3)−m(ξ2)m(ξ3)| . N3

N2
m(N2)m(N3).

It follows that∥∥gN1
|ξ2 + ξ3|

(
m(ξ2 + ξ3)−m(ξ2)m(ξ3)

)∥∥
Ỹ 1

.
N3

N2

∥∥∥ĝN1 |ξ2 + ξ3|ÎuN2
ÎvN3

∥∥∥
Ỹ 1

.
N3

N2

(
‖gN1IuN2∂yIvN3‖Y 1 + ‖gN1IvN3∂yIuN2‖Y 1

)
.
N3

N2

(
‖gN1IuN2‖X3/4+‖IvN3‖X3/4+ + ‖gN1IvN3‖X3/4+‖IuN2‖X3/4+

)
.

N3

N2〈N12〉1/4−〈N3〉1/4−
‖gN1

IuN2
‖X1‖IvN3

‖X1

+
N3

N2〈N13〉1/4−〈N2〉1/4−
‖gN1

IvN3
‖X1‖IuN2

‖X1

Notice that

N3

N2〈N12〉1/4−〈N3〉1/4−
.

N
3/4+
3

N2〈N12〉1/4−
. N−1/4+N0−

12 N
0−
3 ,
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and

N3

N2〈N13〉1/4−〈N2〉1/4−
.

N
3/4+
3

N2〈N13〉1/4−
. N−1/4+N0−

2 N0−
13 .

Case (3). N2 ≥ N3 & N . Here we split the expression to be estimated into
two terms which are then estimated separately:

‖ĝN1 |ξ2 + ξ3|(m(ξ2 + ξ3)−m(ξ2)m(ξ3))ûN2 v̂N3‖Ỹ 1

.‖gN1
|ξ2 + ξ3|m(ξ2 + ξ3)ûN2

v̂N3
‖Ỹ 1

+‖gN1
|ξ2 + ξ3|ÎuN2

ÎvN3
‖Ỹ 1

=: Term I + Term II.

We estimate Term II as in Case (2) to see that

Term II .
1

〈N12〉1/4−〈N3〉1/4−
‖gN1

IuN2
‖X1‖IvN3

‖X1

+
1

〈N13〉1/4−〈N2〉1/4−
‖gN1IvN3‖X1‖IuN2‖X1 ,

which is sufficient. Turning to Term I, we have

Term I . m(N23)
(
‖gN1

uN2
∂yvN3

‖Y 1 + ‖gN1
vN3

∂yuN2
‖Y 1

)
. m(N23)

(
‖gN1

uN2
‖X3/4+‖v‖X3/4+ + ‖gN1

vN3
‖X3/4+‖uN2

‖X3/4+

)
.

m(N23)

〈N12〉1/4−m(N2)〈N3〉s−3/4− ‖gN1
IuN2

‖X1‖vN3
‖Xs

+
m(N23)

〈N13〉1/4−m(N3)〈N2〉s−3/4− ‖gN1IvN3‖X1‖uN2‖Xs

.
m(N23)

〈N12〉1/4−m(N2)〈N3〉s−3/4− ‖gN1IuN2‖X1‖IvN3‖X1

+
m(N23)

〈N13〉1/4−m(N3)〈N2〉s−3/4− ‖gN1IvN3‖X1‖IuN2‖X1 ,

where in the final inequality we have used that ‖f‖Xs . ‖If‖X1 . Observe
that since N2 ≥ N3 and s > 3/4 we have

〈N2〉s−3/4−m(N3) & N2s−7/4−
3 N1−s ≥ Ns−3/4−,

since s > 7/8. It follows that

m(N23)

〈N13〉1/4−m(N3)〈N2〉s−3/4− . N
3
4−s+N0−

13 N
0−
2 . (19)
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To estimate the other multiplier expression we first note that if N23 & N3,
then m(N23) . m(N3) so that

m(N23)

〈N12〉1/4−m(N2)〈N3〉s−3/4− .
1

〈N12〉1/4−〈N3〉s−3/4− ,

which is acceptable. If N23 � N3, then we must have N2 ∼ N3 (with the
relevant factors being supported at frequencies of opposite sign), in which
case may estimate 〈N3〉m(N2) & Ns−3/4−. The estimate is then completed
as above in (19). �

From Proposition 3 we have the following result.

Corollary 1. Under the hypotheses of Proposition 3 we have∣∣∣∣∣
∫ t0+δ

t0

〈
eayIv, eay∂y

(
I(uv)− IuIv

)〉
H1

dt

∣∣∣∣∣
.N3/4−s+‖eayIv‖X1 (‖eayIu‖X1‖Iv‖X1 + ‖Iu‖X1‖eayIv‖X1) .

Proof. We apply Cauchy-Schwartz together with the embedding X1,1/2+ ↪→
X1,1/2,1 to see that∣∣∣∣∣

∫ t0+δ

t0

〈eayIv, eay∂y
(
I(uv)− IuIv

)
〉H1dt

∣∣∣∣∣
.‖eayIv‖X1‖eay∂y(I(uv)− IuIv)‖Y 1

.N3/4−s+‖eayIv‖X1

(
‖eayIu‖X1‖Iv‖X1 + ‖Iu‖X1‖eayIv‖X1

)
.

�

4. Modified Local Well-Posedness

This section is devoted to the proof of local well-posedness for the ṽ-
equation and the w̃-equation. We make the change of variables y 7→ y +

γ(t) +
∫ t

0
c(s)ds and find that the initial value problem for ṽ = INv is given

by{
∂tṽ + ∂3

y ṽ + IN∂y(v2) + ∂y(ψcṽ) + IN∂y(ψcv) + (γ̇∂y + ċ∂c)INψc = 0,
ṽ(0, y) = ṽ0(y).

(20)
The equation for w̃ = eayINv is given by the modulation equation

∂tw̃ = Aaw̃ +QF̃ ,
where Aa = eay∂y(−∂2

y + c0 − 2ψc)e
−ay, Q is the spectral projection, and

F̃ = (c− c0 + γ̇)(∂y − a)w̃ − eayIN∂y(v2)− eay(γ̇∂y + ċ∂c)INψc

− eay∂y (IN (ψcv)− ψcINv) .
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Upon expanding the operator Aa, we find that the initial value problem for
w̃ is 

∂tw̃ + ∂3
yw̃ − 3a∂2

yw̃ + (3a2 − c0)∂yw̃ + a(c0 − a2)w̃

+2(∂y − a)(ψcw̃)−QF̃ = 0,
w̃(0, y) = w̃0(y).

(21)

Before we proceed with our local well-posedness argument, we define the
time-localized space Xs

δ to be the space with the norm

‖u‖Xsδ := inf{‖w‖Xs | w ≡ u on [0, δ]}.

The main goal of this section is to prove the following modified local well-
posedness result:

Proposition 4. Let 0 < a <
√
c0/3, s > 7/8, and N > 1. There is an r > 0

such that the following statement holds: If v0 ∈ Hs(R) satisfies ‖ṽ0‖H1 < r
and ‖w̃‖H1 < r where ṽ0 = INv0 and w̃0 = eayINv, then there is a δ > 0 so
that the initial value problems (20) and (21) admit solutions ṽ(t, y), w̃(t, y),
respectively, on [0, δ]. Moreover these solutions satisfy

‖ṽ‖X1
δ
. ‖ṽ0‖H1 , and ‖w̃‖X1 . ‖w̃0‖H1 .

Proof. Let ρ : R→ R be a smooth cutoff function, as in (11), and let ρδ(·) =
ρ(·/δ). We begin by rewriting the equation for ṽ(t, y), (20), using Duhamel’s
formula:

ṽ = W1(t)ṽ0 +

∫ t

0

W1(t− s)
(
IN∂y(v2) + 2∂y(ψcṽ) + ∂y(IN (ψcv)− ψcINv)

)
+

∫ t

0

W1(t− s)(γ̇∂y + ċ∂c)INψcds.

We will show that the map Φ given by

Φṽ := ρδ(t)W1(t)ṽ0 + ρδ(t)

∫ t

0

W1(t− s)
(
IN∂y(v2) + 2∂y(ψcṽ)

)
ds

+ ρδ(t)

∫ t

0

W1(t− s)
(
∂y(IN (ψcv)− ψcINv) + (γ̇∂y + ċ∂c)INψc

)
ds

is a contraction on a small ball in X1
δ . We estimate Φṽ in X1

δ using (7) and
(8):

‖Φṽ‖X1
δ
. ‖ṽ0‖H1 + ‖IN∂y(v2)‖Y 1

δ
+ ‖∂y(ψcṽ)‖Y 1

δ

+ ‖∂y(IN (ψcv)− ψcINv)‖Y 1
δ

+ ‖(γ̇∂y + ċ∂c)INψc‖Y 1
δ

=: ‖ṽ0‖H1 + Term I + Term II + Term III + Term IV.

To estimate Term I we first note that

‖I1∂y(v2)‖Y 1
δ
∼ ‖∂y(v2)‖Y sδ . ‖v‖

2
Xsδ
∼ ‖I1v‖2X1

δ
.
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In light of Lemma 12.1 from [?] we may conclude that

‖IN∂y(v2)‖Y 1
δ
. ‖INv‖2X1

δ
= ‖ṽ‖2X1 .

To estimate Term II we use the bilinear estimate (12) to see that

Term II . ‖ψc‖X1
δ
‖ṽ‖X1

δ
.

Recall that for δ, ε > 0 sufficiently small we have

‖ψc‖X1
δ
. δε.

Thus

Term II . δε‖ṽ‖X1
δ
.

Turning to Term III we argue as for Terms I and II to find that

Term III . ‖∂yIN (ψcv)‖Y 1
δ

+ ‖∂y(ψcINv)‖Y 1
δ
. δε‖ṽ‖X1

δ
.

Finally, for Term IV we recall that from the modulation equations we have

‖γ̇‖L∞t , ‖ċ‖L∞t . ‖w̃‖X1
δ

so that

Term IV . δε‖w̃‖X1
δ
.

Taken all together we have

‖Φṽ‖X1
δ
. ‖ṽ0‖H1 + ‖ṽ‖2X1

δ
+ δε‖ṽ‖X1

δ
+ δε‖w̃‖X1

δ
. (22)

For the w̃ equation we expand the spectral projectionQf = f−
∑2
j=1〈f, ηj〉ζj

and make the change of variables y 7→ y − ((3a2 − c0)t+ γ(t)−
∫ t

0
c(s)ds), so

that the equation for w̃ reads

∂tw̃ + ∂3
yw̃ − 3a∂2

yw̃ + a(c0 − a2 − c+ c0)w̃ − aγ̇w̃ − eayIN∂y(v2)

− eay(γ̇∂y + ċ∂c)INψc − eay∂y(IN (ψcv)− ψcINv)

+ 〈F̃ , η1〉ζ1 + 〈F̃ , η2〉ζ2 = 0.

Rewriting this equation using Duhamel’s formula leads us to define the fol-
lowing operator

Ψw̃ = ρδ(t)W2(t)w̃0 + ρδ(t)

∫ t

0

W2(t− s)
(

2(∂y − a)(ρ2
δψcw̃) + aρδγ̇w̃

)
ds

+ρδ(t)

∫ t

0

W2(t− s)
(
a(c− c0)ρδw̃ − eayIN∂y(ρ2

δv
2)
)
ds

+ρδ(t)

∫ t

0

W2(t− s)
(
− eay(γ̇∂y + ċ∂c)ρδINψc + eay∂y(IN (ψcv)− ψcINv)

)
ds

+ρδ(t)

∫ t

0

W2(t− s)
(
ρδ〈F̃ , η1〉ζ1 + ρδ〈F̃ , η2〉ζ2

)
ds,
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which we hope to show is a contraction on a ball in X1
δ . We estimate Ψw̃ in

X1
δ using (9) and (10), which yields

‖Ψw̃‖X1
δ
. ‖w̃0‖H1 + ‖(∂y − a)ρ2

δψcw̃‖Y 1
δ

+ ‖ρδγ̇w̃‖Y 1
δ

+ ‖(c− c0)ρδw̃‖Y 1
δ

+ ‖eayIN∂y(ρ2
δv

2)‖Y 1
δ

+ ‖eay(γ̇∂y + ċ∂c)ρδINψc‖Y 1
δ

+ ‖eay∂y(IN (ψcv)− ψcINv)‖Y 1
δ

+ ‖ρδ〈F̃ , η1〉ζ1‖Y 1
δ

+ ‖ρδ〈F̃ , η2〉ζ2‖Y 1
δ

= ‖w̃0‖H1 + Term I + Term II + Term III + Term IV

+ Term V + Term VI + Term VII + Term VIII.

To estimate Term I we use eay∂ye
−ay = ∂y − a, ṽ = e−ayw̃, and the bilinear

estimate (12) to see that

Term I = ‖eay∂ye−ayψcw̃‖Y 1
δ

= ‖eay∂yψcṽ‖Y 1
δ

≤ ‖eay ṽ∂yψc‖Y 1
δ

+ ‖eayψc∂y ṽ‖Y 1
δ

. ‖w̃‖X1
δ
‖ψc‖X1

δ
+ ‖eayψc‖X1

δ
‖ṽ‖X1

δ

. δε‖w̃‖X1
δ

+ δε‖ṽ‖X1
δ
.

In estimating Term II we use that ‖γ̇‖L∞t . ‖w̃‖X1
δ
, which gives

Term II . ‖w̃‖2X1
δ
.

In order to estimate Term III we note that

|c(t)− c0| ≤
∫ t

0

|ċ(s)|ds .
∫ t

0

‖w̃(s)‖H1
x
ds . ‖w̃‖L1

tH
1
x
.

Since we are restricted to the interval [0, δ], Hölder’s inequality gives

|c(t)− c0| ≤ δ1/2‖w̃‖L2
tH

1
x
. δ1/2‖w̃‖X1

δ
.

It follows that

Term III . ‖c− c0‖L∞t ‖w̃‖X1
δ
. ‖w̃‖2X1

δ
.

To estimate Term IV we use (16) and (12) to see that

Term IV ≤ ‖eay∂y(IN (ρ2
δv

2)− ρ2
δ(INv)2)‖Y 1

δ
+ ‖eay∂y(INv)2‖Y 1

δ

. ‖eayINv‖X1
δ
‖INv‖X1

δ

= ‖w̃‖X1
δ
‖ṽ‖X1

δ
.

The estimate for Term V is similar to the one we used for the analogous term
in the ṽ equation (term (IV )), yielding

Term V . δε‖w̃‖X1
δ
.
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Term VI is estimated using (16), (12), and the fact that ‖INψc−ψc‖X1
δ
. N−C

with C as large as need be:

Term VI ≤ ‖eay∂y(IN (ψcv)− INψcINv)‖Y 1
δ

+ ‖eay∂y(ψc − INψc)INv‖Y 1
δ

. N−1/8+δε‖ṽ‖X1
δ

+N−1/8+δε‖w̃‖X1
δ

+N−C‖ṽ‖X1
δ

+N−C‖w̃‖X1
δ
,

leaving us with

Term VI . δε‖ṽ‖X1
δ

+ δε‖w̃‖X1
δ
.

Turning to Terms VII and VIII we recall from Lemma 3.5 in [19] that

‖〈f, ηj〉ζj‖Y 1
δ
. ‖f‖Y 1

δ
, j = 1, 2.

It follows that

Term VII, Term VIII . ‖F̃‖Y 1
δ
. ‖w̃‖2X1

δ
+‖ṽ‖X1

δ
‖w̃‖X1

δ
+δε‖w̃‖X1

δ
+δε‖ṽ‖X1

δ
.

Altogether, then, we have

‖Ψw̃‖X1
δ
. ‖w̃0‖H1 + δε‖w̃‖X1

δ
+ δε‖ṽ‖X1

δ
+ ‖w̃‖2X1

δ
+ ‖w̃‖X1

δ
‖ṽ‖X1

δ
.

Suppose that ‖ṽ0‖H1 , ‖w̃0‖H1 < r � 1 and let

B =
{
ṽ, w̃ ∈ X1

δ | ‖ṽ‖X1
δ
≤ 2cr, ‖w̃‖X1

δ
≤ 2cr

}
.

Using the estimates that we have established, it transpires that Φ,Ψ : B → B
are contractions following the arguments from Proposition 4 of [19]. The
desired result follows. �

5. Iteration

In this section, we prove the main result of the paper, namely the ex-
ponential decay of the weighted perturbation given in Theorem 1. We will
prove the result by induction. Define ċn and γ̇n by (6), and let the variable

y be defined accordingly as y = x −
∫ t

0
c(s)ds − γ(t). Let T > 0 be given.

Let κ = (max(1 − b, 3
4 ))

1

2+ 1−s
s− 3

4
−

−

. Let N(n) = κ
(− 1

3
4
−s+

+)n
. Now, let ε1

and c2 be sufficiently small so that, whenever ‖eayIN(n)w(tn)‖H1 < 2ε1 and
‖IN(n)v(tn)‖H1 < c2, it follows that v(t) exists on [t0, t0 + δ], and

‖w‖X1,b
[t0,t0+δ]

< C0ε1 and ‖v‖X1,b
[t0,t0+δ]

< C0c2, (23)

where C0 is the implicit constant in the conclusion of Proposition 4. Addi-
tionally, assume that c2 < b

10 . Let n0 = T
δ . Finally, choose ε2 sufficiently

small that Cr
n0
2 ε2 < c2, with r to be expressed later.
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We must recall the known control on v. In [18] it is proven that, with
H(f) =

∫
|∂xf |2 − 2

3f
3,

‖ṽn(n)‖2H1 ∼ H(ψ + ṽn(n))−
(
‖ψ + ṽn(n)‖L2

‖ψ‖L2

) 10
3

H(ψ)

= H(ψ + ṽn(n))−H(ψ) + (1−
(
‖ψ + ṽn(n)‖L2

‖ψ‖L2

) 10
3

)H(ψ).

Then, sinceH(ψ) is constant and (1−
(
‖ψ+ṽn(n)‖L2

‖ψ‖L2

) 10
3

) is very small (O(N−100),

e.g.), it suffices to increment H(ψ+ ṽn(n)). It is then found in [18], as in [20],
that H(ψ+ ṽn(n+1))−H(ψ+ ṽn(n)) ∼ N(n)−1+‖ṽn(n)‖2H1 . Therefore, when
we increment ṽn, we obtain that

‖ṽn+1(n+ 1)‖2H1 − ‖ṽn(n)‖2H1

=‖ṽn+1(n+ 1)‖2H1 − ‖ṽn(n+ 1)‖2H1 + ‖ṽn(n+ 1)‖2H1 − ‖ṽn(n)‖2H1

.

(
N(n+ 1)

N(n)

)1−s

− 1)‖ṽn(n+ 1)‖2H1 + ‖ṽn(n+ 1)‖2H1 − ‖ṽn(n)‖2H1

.

(
N(n+ 1)

N(n)

)1−s

− 1)(‖ṽn(n+ 1)‖2H1 − ‖ṽn(n)‖2H1) + ‖ṽn(n+ 1)‖2H1

− ‖ṽn(n)‖2H1 +

(
N(n+ 1)

N(n)

)1−s

− 1)‖ṽn(n)‖2H1

=

(
N(n+ 1)

N(n)

)1−s

(‖ṽn(n+ 1)‖2H1 − ‖ṽn(n)‖2H1)

+

(
N(n+ 1)

N(n)

)1−s

− 1)‖ṽn(n)‖2H1

≤
(
N(n+ 1)

N(n)

)1−s

(N(n)−1+‖ṽn(n)‖2H1 +

(
N(n+ 1)

N(n)

)1−s

− 1)‖ṽn(n)‖2H1

=(κ(− 1−s
α+1−s+η1)(N(n)−1+ + 1)− 1)‖ṽn(n)‖H1 .

Therefore, for n large,

‖ṽn+1(n+ 1) . κ
1−s

3
4
−s+

+
(N(n)−1+ + 1)‖ṽn(n)‖H1 ≤ r‖ṽn(n)‖2H1 ,

where r = 1.01κ
1−s

3
4
−s+

+
is slightly larger than 1. Hence it follows that

‖ṽn(n)‖2H1 ≤ Crnε22. (24)

Hence it follows that ‖ṽn(t)‖H1 < c2 on Jn for 0 ≤ n ≤ n0.
With all these preliminaries complete, we can state the induction lemma:
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Lemma 5.1. Define w̃n(t, y) = eayIN(n)v(t, y) and ṽn(t, y) = IN(n)v(t, y) on
the time interval Jn := [tn, tn+1),where tn = nδ. Suppose ‖w̃(0)‖H1 < ε1,
‖ṽ(0)‖H1 < ε2, and |c(0)− c0| < ε1. Then, for all n ∈ N, the following hold:

(1) Define c(t) inductively starting at c(0) by c(t) = c(tn)+
∫ t
tn
ċn(t)dt for

t ∈ [tn, tn+1), and similarly for γ(t). Then ċn and γ̇n are continuous
on Jn for all n, and c, γ are continuous functions of t.

(2) |ċn(tn)| < Cε1κ
n,

(3) |γ̇n(tn)| < Cε1κ
n,

(4) |c(tn)− c0| < C 1−κn
1−κ ε1, and

(5) ‖w̃n(tn)‖H1 < ε1κ
n,

where C = 2 max{(2 + ‖u‖L∞ + ‖pyu‖L∞)(‖η1‖L2 + ‖η2‖L2), C
3
2
0 , 1}.

Proof. Note that, for n = 0, t = 0 and N(0) = 1, so (4)-(5) are verified
by hypothesis. Also note that the smoothness of ċn and γ̇n on each Jn is
a standard application of the implicit function theorem. Then c and γ are
continuous by construction, so (1) holds for all n. Finally, we need to verify
(2)-(3) at n = 0 in order to begin the induction. Note that[

γ̇
ċ

]
= A

([
〈G̃, η1〉L2

〈G̃, η2〉L2

])
,

where

A =

([
1 + 〈eay(∂yψc − ∂yψc0), η1〉 − 〈w̃, ∂yη1〉 〈eay(∂cψc − ∂cψc0), η1〉
〈eay(∂yψc − ∂yψc0), η2〉 − 〈w̃, ∂yη2〉 1 + 〈eay(∂cψc − ∂cψc0), η2〉

])−1

.

At any time when |c − c0| and ‖w̃n‖H1 are sufficiently small, it follows that
‖A‖ ≤ 2, so that∣∣∣∣[γ̇ċ

]∣∣∣∣ ≤ 2

∣∣∣∣[〈G̃, η1〉L2

〈G̃, η2〉L2

]∣∣∣∣ ≤ 2(max
i=1,2

‖ηi‖H1)‖G̃‖L2 .

Finally, by Lemma 3.1

‖G̃‖L2 = ‖(c− c0)(∂y − a)w̃ − eayI(v2)y − eay∂y[I(uv)− uIv]‖L2

≤ |c− c0|‖w̃‖H1 + ‖eayI(v2)y‖L2 + ‖eay∂y[I(uv)− uIv]‖L2

≤ |c− c0|‖w̃‖H1 + ‖Iv‖H1‖eayI∂yv‖L2 + 2‖u‖L∞‖eayI∂yv‖L2

+ ‖∂yu‖L∞‖eaypyIv‖L2

≤ (|c− c0|+ ‖Iv‖H1 + 2‖u‖L∞ + ‖∂yu‖L∞)‖w̃‖H1

≤ (2 + 2‖u‖L∞ + ‖∂yu‖L∞)‖w̃‖H1

so long as |c − c0| and ‖Iv‖H1 are at most unit size. Therefore (2)-(3) are
satisfied at t = 0 because of our assumptions on the initial data, given our
choice of C above.
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It remains to make the inductive step. Assume that, at step n, (1)-(5)
are valid. In order to step forward in time, we must first gain some a priori
control of the various functions on the interval Jn. Without loss of generality,
assume δ ≤ 1. Select η so that 24Cε1 < η2 and η+ c2 <

1
20 (and assume ε2 is

sufficiently small to allow this). Define L(t) = 8C‖w̃‖H1 + |ċ|+ |γ̇|+ |c− c0|.
Note that at t = n, L(n) < 11Cε1 < η

2 . Hence, by continuity, there is a
δ0 > 0 so that L(t) < η on [tn, tn + δ0). Let δ1 be the largest such δ0 which
is at most δ. We want to show that δ1 = δ. Suppose not; then δ1 < δ. Then
L(tn+δ1) = η by continuity. Define J = [tn, tn+δ1]. On J , as above, we have
that ċ+ γ̇ < C‖w̃‖H1 < η

6 . Moreover, |c− c0(t)| ≤ |c(n)− c0|+ δ1 supJ |ċ| ≤
2Cε1 + η

4 ≤
η
12 + η

6 = η
4 . Finally, we must estimate ‖w̃(tn + δ1)‖H1 .

We have:

‖w̃(tn + δ1)‖2H1 = ‖w̃(tn)‖2H1 +

∫
J

d

dt
‖w̃‖2H1dt

= ‖w̃(tn)‖2H1 + 2

∫
J

〈w̃, w̃t〉H1dt

= ‖w̃(tn)‖2H1 + 2

∫
J

〈w̃, Aaw̃ +QF〉H1dt

≤ ε1 + 2

∫
J

〈w̃, Aaw̃〉H1dt+

∫
J

〈w̃, QF〉H1dt

≤ ε1 −
2bη2

64C2
+

∫
J

〈w̃, QF〉H1dt

≤ η2

20
− 2bη2

64C2
+

∫
J

〈w̃, QF〉H1dt

by Proposition 1, the inductive hypothesis, the a priori control on w̃ on J ,
and the fact that the length of J is at most 1. It remains to estimate

∫
J

〈w̃, QF〉H1dt

=

∫
J

〈w̃, Q((c− c0 − γ̇)(∂y − a)w̃ − eayIN(n)∂y(v2) + eay(ċ∂c + γ̇∂y)IN(n)ψc

− eay∂y(IN(n)(ψcv)− ψcIN(n)v))〉H1dt

=(I)+(II)+(III)+(IV).

For (I), note that Q(∂y − a)w̃ = (∂y − a)w̃, and ∂y is anti-symmetric, so

(I)=
∫
J

((c − c0) − γ̇)(−a)‖w‖2H1dt, which is at most 2aη3

64C2 , which is certainly
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less than η
20 . For (II), we have

∫
J

〈w̃,−eayIN(n)∂y(v2)〉H1dt

=

∫
J

〈w̃, eay∂y[IN(n)v
2 − (IN(n)v)2]〉H1dt+

∫
J

〈w̃, eay∂y(IN(n)v)2〉H1dt

≤
∫
J

〈w̃, e−ay∂y[IN(n)(v
2)− (IN(n)v)2]〉H1dt+ ‖w̃‖

X1, 1
2
,1‖eay∂y(IN(n)v)2‖

X1,− 1
2
,1

≤2N(n)−
1
4 ‖w̃‖

X1, 1
2
,1‖w̃‖X1, 1

2
,1‖ṽ‖X1, 1

2
,1 + ‖w̃‖

X1, 1
2
,1‖w̃‖X1, 1

2
,1‖ṽ‖X1, 1

2
,1

≤(1 + 2N(n))−
1
4 )‖w̃‖2

X1, 1
2
,1
‖ṽ‖

X1, 1
2
,1

≤(1 + 2N(n))−
1
4C3

0ε
2
1c2

≤ 1

5760

C3
0

C2
η2

≤η
2

20
,

by Corollary 1, Proposition 2, and the local well-posedness estimate (23). For
(III), recall that IN(n)ψc − ψc = O(N−C) for C arbitrarily large. So, since
Q(eay∂cψc0) = Q(eay∂yψc0) = 0, we have

(III) =

∫
J

〈w̃, Q[eay(ċ∂c + γ̇∂y)((IN (n)− 1)[ψc − ψc0 ] + [ψc − ψc0 ] + ψc0))]〉H1dt

=

∫
J

〈w̃, Q[eay(ċ∂c + γ̇∂y)((IN (n)− 1)[ψc − ψc0 ] + [ψc − ψc0 ])]dt

≤ (1 + C̃N−
˜̃C)

∫
J

(|ċ|+ |γ̇|)|c− c0|‖w̃‖H1dt

≤ C̃ η
4

η

3

η

8C

≤ η2

20
.
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Finally, for (IV), we have∫
J

〈w̃, eay∂y(IN(n)(ψcv)− ψcIN(n)v))〉H1dt

=

∫
J

〈w̃, eay∂y[IN(n)(ψcv)− (IN(n)ψc)(IN(n)v]dt

+

∫
J

〈w̃, eay∂y[((IN(n)ψc)− ψc)(IN(n)v]dt

≤ ‖w̃‖
X1, 1

2
,1N
− 1

4 (‖eayIN(n)ψc‖X1, 1
2
,1‖ṽ‖X1, 1

2
,1 + ‖IN(n)ψc‖X1, 1

2
,1‖w̃‖X1, 1

2
,1)

+ C̃N−
˜̃C‖w̃‖

X1, 1
2
,1 [‖eayψc‖

X1, 1
2
,1‖ṽ‖X1, 1

2
,1 + ‖ψc‖

X1, 1
2
,1‖w̃‖X1, 1

2
,1 ]

≤ 4‖w̃‖
X1, 1

2
,1(N−

1
4 ‖ṽ‖

X1, 1
2
,1 + ‖w̃‖

X1, 1
2
,1))

≤ 4C0ε1(c2 + η)

≤ 1

120

C0

C
η2

≤ η2

20

Adding it all together, we get that

‖w̃(tn + δ1)‖2H1 ≤
η2

20
− 2bη2

64C2
+
η2

20
+
η2

20
+
η2

20
+
η2

20
<
η2

4
,

so, L(tn + δ1) < η
4 + η

4 + η
2 = η,and hence δ1 = δ.

Now we are ready to make the inductive step. Consider (2)-(5) at time
tn+1. As above, we have that |ċn(tn+1)| + |γ̇n(tn+1)| ≤ 2C‖w̃(tn+1)‖H1 , so
(2) and (3) are validated whenever (5) is. Indeed, the estimates (2)-(3) hold on
the entire interval Jn whenever ‖w‖H1 is similarly controlled on the interval.
Similarly, whenever (2) is valid on Jn, we have

|c(tn+1)− c0| ≤ |c(tn)− c0|+
∫
Jn

|ċn(t)|dt

≤ C 1− κn

1− κ
ε1 + Cκnε1

≤ C 1− κn+1)

1− κ
ε1,

so (4) is also validated. It therefore remains only to control ‖wn(t)‖H1 on Jn
and estimate ‖wn+1(n+1)‖2H1−‖wn(n)‖2H1 . We must therefore do two things:
Estimate ‖wn+1(n+ 1)‖2H1 − ‖wn(n+ 1)‖2H1 , and estimate ‖wn(t)‖2H1 on Jn.
In what follows, for notational simplicity, we will estimate ‖wn(tn+1)‖2H1 , but
the same estimate is valid for any t ∈ Jn. Define Kn(n) = ‖wn(tn)‖2H1 . Then,
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as computed above, we have the following increment:

Kn(n+ 1)−Kn(n)

=2

∫
Jn

〈w̃, Aaw̃〉H1dt+

∫
Jn

〈w̃, QF〉H1dt

=2

∫
Jn

〈w̃, Aaw̃〉H1dt+ 2

∫
Jn

〈w̃, Q((c− c0 − γ̇)(∂y − a)w̃ − eayIN(n)∂y(v2)

+ eay(ċ∂c + γ̇∂y)IN(n)ψc − eay∂y(IN(n)(ψcv)− ψcIN(n)v))〉H1dt

=(0)+(I)+(II)+(III)+(IV)

We estimate these terms as above. For (0), by Proposition 1, this is at most
−2b

∫
Jn
‖w‖2H1dt. For (I), we get∫

Jn

(c− c0)− γ̇)(−a)‖w‖2H1dt ≤ 4aη

∫
Jn

‖w(t)‖2H1dt.

For (II), we obtain, as above,∫
Jn

〈w̃n, eayIN(n)∂yv
2〉1Hdt ≤ (1+2N(n))−

1
8 )‖w̃n‖2

X1, 1
2
,1
‖ṽn‖

X1, 1
2
,1 ≤ Cc0N(n).

Then, for (III), we get as above

(III) ≤ (1 + C̃N−
˜̃C)

∫
J

(|ċ|+ |γ̇|)|c− c0|‖w̃‖H1dt ≤ 2

∫
Jn

η‖w̃n(t)‖2H1dt.

Finally, for (IV), we have, as above, with τ a small positive number,

(IV ) ≤ ‖w̃‖
X1, 1

2
,1

(
(N

3
4−s+ + τ)‖w̃n‖

X1, 1
2
,1 +N

3
4−s+‖v‖

X1, 1
2
,1

)
≤ 2τN(n) +N

3
4−s+c0

√
N(n).

Notice that N(n) has been chosen so that N(n)
3
4−s+ � κn ≤ Cε1κn. There-

fore, putting everything together, we have that

Kn(n+ 1)−Kn(n) ≤ (−2b+ 4aη + 2η)

∫
Jn

‖w̃n(t)‖2H1dt

+ (Cc0 + 2τ)N(n) + Cc0ε1κ
n
√
Kn(n).

Now, suppose that Kn(n) ∼ (ε1κ
n)2. Then by the same argument as in

[19], it follows that Kn(n + 1) ≤ max {(1− b), 3
4}Kn(n) ≤ κ

2+ 1−s
s− 3

4
−
−
Kn(n).

Finally, it remains to compare Kn+1(n + 1) to Kn(n + 1). By properties of
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the IN multiplier, we have that

Kn+1(n+ 1) ≤
(
N(n+ 1)

N(n)

)1−s

Kn(n+ 1)

≤ κ
1−s

3
4
−s+

+
Kn(n+ 1)

≤ κ
1−s

3
4
−s+

+
κ

2+ 1−s
s− 3

4
−
−
Kn(n)

≤ κ2Kn(n).

On the other hand, if Kn(n) � (ε1κ
n)2, then the largest term on the

right hand side is the last one, and we obtain that Kn(n + 1) � (ε1κ
n)2.

Then Kn+1(n + 1) � κ( 1−s
3
4−s+

+)(ε1κ
n)2, which can be taken to be at most

ε21κ
2(n+1). In either case, after applying the inductive hypothesis, we obtain

that Kn+1(n + 1) ≤ (ε1κ
n+1)2, so ‖w̃n+1(n + 1)‖H1 ≤ ε1κ

n+1. Hence the
inductive step holds and the proof of the lemma is complete.

�

To conclude the proof of Theorem 1, let r = κ
1
δ . Then (2) and (3) are

immediate from the lemma. To conclude (1), note that
‖eayI1v(t)‖H1 ≤ ‖eayINv(t)‖H1 = ‖w̃(t)‖H1 for any N , by the properties of
IN and Lemma 3.2. Hence (1) follows from the last conclusion of the inductive
lemma.
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