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Abstract. We consider radial solutions to the Schrödinger-Poisson system in

three dimensions with an external smooth potential with Coulomb-like decay.
Such a system can be viewed as a model for the interaction of dark matter

with a bright matter background in the non-relativistic limit. We find that

there are infinitely many critical points of the Hamiltonian, subject to fixed
mass, and that these bifurcate from solutions to the associated linear problem

at zero mass. As a result, each branch has a different topological character

defined by the number of zeros of the radial states. We construct numerical
approximations to these nonlinear states along the first several branches. The

solution branches can be continued, numerically, to large mass values, where

they become asymptotic, under a rescaling, to those of the Schrödinger-Poisson
problem with no external potential. Our numerical computations indicate

that the ground state is orbitally stable, while the excited states are linearly
unstable for sufficiently large mass.

1. Introduction

We consider the existence and stability of stationary solutions to the radial,
focusing nonlinear Schrödinger-Poisson equation in R3 with focusing, Coulomb-
like potential1,

(1.1) i∂tφ−∆φ+ V (|x|)φ−N (φ) = 0.

Under the ansatz φ(x, t) = e−iEtu(x), the stationary solution, u, satisfies a nonlin-
ear elliptic equation with nonlocal nonlinearity and long range potential function.
The time independent problem takes the form:

(1.2) −∆u+ V (|x|)u−N (u) = −Eu.
Throughout, the external potential V will be the solution of

(1.3) ∆V = ρ(|x|)
for ρ > 0, ‖ρ‖L1 = Z. The techniques developed here, analytically and numerically,
can be modified to include the case ρ = Zδ(x), leading to the classic Coulomb
potential, −Z/|x|. Note that other nonlinearities, such as V ∼ 1

r2 potentials, can
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also be treated by these methods but due to our interest in the application to
general relativity we have focused on r−1-type potentials here. We will take the
nonlinearity N (u) to be of Schrödinger-Poisson type, given by

(1.4) N (u) = (|x|−1 ∗ |u|2)u = [(−∆)−1|u|2]u,

which is sub-critical and nonlocal. In this case, (1.2) is the Euler-Lagrange equation
for the energy functional

(1.5) H(u) =

∫
|∇u|2dx+

∫
V |u|2dx− 1

2

∫ |u|2(x)|u|2(y)

|x− y| dxdy,

subject to fixed mass

(1.6) M(u) =

∫
|u|2dx,

and E plays the role of the Lagrange multiplier.
The nonlocal nonlinearity, (1.4), arises in the non-relativistic limit of an Einstein-

Klein-Gordon system, which can serve as a model for Dark Matter, [3]. Following
an idea of Bray, this potential allows us to model the trapping of Dark Matter by
“bright matter.” The potential is itself a solution to ∆V = ρ for mass density
ρ. In a general relativistic model proposed by Bray and others, stable excited
states of the Einstein-Klein-Gordon system including a background matter potential
representing the “bright matter” have been sought, [4,5]. This is modeled by adding
a mass density to the Einstein-Klein-Gordon equations, which plays the role of the
potential, V , in the Schrödinger-Poisson model studied here.

Many of our results are applicable to other potentials and nonlinearities, but
we focus on Coulomb and Schrödinger-Poisson. For instance, we might also study
both super-critical and sub-critical local nonlinearities, including the classical cubic
nonlinearity,

(1.7) N (u) = |u|2u,
and a nonlinearity popular in density functional theory, representing a Dirac ex-
change term,

(1.8) N (u) = |u| 23u.
See [2], for instance, regarding Thomas-Fermi-von Weizsäcker theory or [1] for the
LDA functional in density functional theory. In all cases, the nonlinearities are as-
sumed to be focusing and the external potentials are assumed to be attractive. The
most significant differences amongst the cases will appear in the large E asymp-
totics. Additional care in the analysis will also be required for potentials which are
not smooth, such as Coulomb, along with non-smooth nonlinearities, such as (1.8).

Here, we prove the existence of branches of radially symmetric solutions to our
system. Each branch, as a function of the mass, corresponds to solutions with
a particular number of zero crossings in the radial coordinate, and this number is
invariant along the branch. At mass zero, the branches terminate in the eigenstates
associated with the linear operator −∆ + V . Continuing the branches requires a
spectral assumption. Specifically, we assume that

Assumption 1. The kernel of the linearization of (1.2), about a given solution,
restricted to radial functions, is trivial.
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In our numerical computations, we found that the discretized operator did not have
a kernel.

We are able to show that, at the very least, none of the branches intersect. In
addition, we explore the high energy limit (E →∞), showing that these branches,
should they continue all the way to E → ∞, connect to solutions of (1.2) with
V = 0. We also examine the stability of the bound states, both through a numerical
examination of the spectrum, and through time dependent simulations. We find
the ground state to be orbitally stable, while the excited states, of sufficiently large
E, are linearly unstable.

Our work is organized as follows. In Section 2, we review properties of the
spectrum with Coulomb potentials and establish the properties needed for a bi-
furcation analysis. Next, in Section 3, we use a Lyapunov-Schmidt reduction to
construct a branch of bound states emanating from each linear eigenvalue involving
projection onto all the other discrete spectral modes. We then discuss how such
branches behave as the nonlinear eigenvalue E → ∞, in Section 4. In Section 5,
we review orbital stability and relate it to our problem. Then, in Section 6, we
describe the numerical methods we have used and present the results from various
time-dependent simulations and spectral stability calculations. In Section 7, we dis-
cuss our calculations and simulations, along with open problems. Some additional
bounds on unstable eigenvalues are given in Appendix A

2. Review of Linear Spectral Theory

In this section, we review some key results from linear spectral theory for oper-
ators of the form of H = −∆ + V .

2.1. The Hydrogen Atom. Recall that V = −Z/|x| corresponds to the well
known model of the hydrogen atom, for which the eigenvalues and eigenfunctions
are entirely explicit; see [11]. The solutions to

(2.1) −∆ψE −
Z

|x|ψE = −EψE

can be obtained by power series methods, with eigenvalues

(2.2) E = En ≡ −
Z2

2n2
, n ∈ N,

and corresponding radial eigenfunctions

(2.3) ψn(x) = e−
Z|x|
n Pn−1(Z|x|n ).

Here, the Pn(s) are the Laguerre polynomials L1
n(s). Each Pn has precisely n

positive zeros, hence ψn has the corresponding number of roots.

2.2. Potentials with Coulomb like Decay at Infinity. We will use variational
methods to obtain the existence of infinitely many radial excited states, with a
sequence of eigenvalues approaching zero from below. For more on this type of
analysis, see [17,23].

Proposition 2.1. Assume that V (x) is spherically symmetric and in C∞, and
assume that ∃Z ∈ R+ such that

(2.4) lim
|x|→∞

|x|V (x) = −Z.
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Then L = −∆+V (x), interpreted as a linear operator with form domain H1
rad(R3),

has an increasing infinite sequence of negative eigenvalues that approaches zero from
below.

Proof. Let L0 = −∆. We apply the Rayleigh-Ritz technique, as in Section XIII.2
of Reed-Simon, to find the claimed infinite set of eigenvalues.

Define

(2.5) µn(L) := sup
S⊂H,

dim(S)=n−1

inf
ψ∈S⊥,
‖ψ‖=1

〈ψ,Lψ〉.

Note that L is bounded from below because V is bounded and L0 is a nonnegative
operator. Therefore, it follows that if P is a projection onto any n-dimensional
subspace of H, then µn is bounded above by the n-th eigenvalue of PLP on S.
(Theorem XIII.3 of [23]). Define the Rollnik class of potentials, R, by

(2.6) R ≡
{
V : R3 → R |

∫ |V (x)||V (y)|
|x− y|2 dxdy <∞

}
.

Also, define (L∞)ε to be the set of functions with L∞ norm bounded by ε. As
in Example 7 on page 118 of [23], if V ∈ R + (L∞)ε, ∀ε > 0, then −∆ + V is a
form-compact perturbation of L0 and therefore shares the same essential spectrum.
Coulomb potentials belong to the Rollnik class when cut off on any compact set.
Therefore, since the remainder is an arbitrarily small bounded perturbation, the
Coulomb potential is in the class R + (L∞)ε. By standard Fourier analysis and a
spectral perturbation argument, the essential spectrum of L0 can be shown to be
[0,∞). In particular, zero is the bottom of the essential spectrum.

By Theorem XIII.1 of [23], ∀n ∈ N, µn is either the n-th eigenvalue of L or µn =
0, the base of the essential spectrum. Provided we can show that µn < 0 ∀n ∈ N,
we can conclude that L has infinitely many eigenvalues. To do this, for each n we
will find appropriate n-dimensional spaces Hn on which all eigenvalues are negative,
and then apply the above described upper bound.

This argument appears in the proof of Theorem XIII.6 of [23]. Choose ψ ∈
C∞0 (R3) satisfying ψ ≥ 0 and supp(ψ) ⊂ {x : 1 < |x| < 2}, ψ is radially symmetric

and ‖ψ‖L2 = 1. Define ψR(x) = R−
3
2ψ( xR ). Then supp(ψR) ⊂ {x : R < |x| < 2R}

and ψR satisfies the other conditions above. For R sufficiently large,

〈ψR, LψR〉 = 〈ψR,−∆ψR〉 − 〈ψR, V (x)ψR〉 ≤ 〈ψR,−∆ψR〉 − 〈kψR, |x|−1ψR〉
≤ R−2〈ψ,−∆ψ〉 − kR−1〈ψ,ψ〉 < 0.

Fix R0 sufficiently large so that this is true whenever R > R0 Now let φm = ψ2mR0

for m = 1 . . . n. It follows that, on Hn = span{φ1, . . . , φn}, all eigenvalues of PLP
are negative, because these functions have disjoint support. Hence L has an infinite
sequence of negative eigenvalues approaching zero from below. �

2.2.1. Sturm-Liouville Theory. Let (En, ψn) be the eigenpairs for L on H, ordered
so that En increases as n increases. We would like to know that, if Em > En,
then ψm has more zero crossings than ψn. This requires a Sturm-Liouville-type
argument on the radial equation satisfied by the eigenfunctions. We first need a
preliminary lemma about the decay rate of our eigenfunctions:

Lemma 2.1. For each n, ψn has exponential decay as r tends to infinity.
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Proof. To see this, first let φ = rψn. Then φ satisfies

−φ′′ + V φ = −Enφ.

Now, let z = φ′

φ . Then z satisfies

z′ = −z2 + En + V.

We seek a solution where z converges to a finite constant at infinity. Under the
assumption that z is asymptotically finite and constant, and by the properties of
V , the equation is, asymptotically,

z′ ≈ −z2 − En.
Hence, to leading order z ≈ ±√−En at infinity. Since ψn is an L2 eigenfunction,
ψ → 0 as r →∞, so we must select the negative root.

Hence, for every ε > 0, for r sufficiently large, |ψ
′
n(r)
ψn(r) +

√−En| < ε. Then, by

Gronwall, ψn(r) < Ce−[
√
−En−ε]r for any choice of ε > 0, when r is sufficiently

large. �

Now, define Nn to be the number of zeroes of ψn. We will now prove the
following:

Proposition 2.2. Under the same assumptions as above, whenever Em > En,
Nm ≥ Nn + 1.

Proof. After the transformation in the proof of Lemma 2.1 this is a consequence of
standard Sturm-Liouville theory in dimension one, see for instance the treatment
in [6].

�

Finally, we would like to confirm that each of these eigenvalues is simple within
H1

rad.

Proposition 2.3. Each eigenvalue En of the operator H = −∆ + V , ∆V = ρ(|x|)
with ‖ρ‖L1 = Z in the class of radial functions, H1

rad, is simple.

Proof. Again, this follows from Sturm-Liouville Theory once the transformation in
the proof of Lemma 2.1 is used. �

3. Existence of Nonlinear Bound States

We now prove the existence of nonlinear solutions bifurcating from zero mass off
of each discrete linear eigenvalue. We will follow the argument in Kirr-Kevrekidis-
Schlizerman-Weinstein [15] to obtain such bifurcation curves. First let us construct
the individual bifurcation branches.

Theorem 1. For a given n ∈ N, let (−En, ψn) be a simple eigenpair of L :=
−∆ +V (x) in H1

rad, let P be the projection onto the eigenspace, i.e. Pu = 〈u, ψ〉ψ,
and let Q = I − P be the spectral projection onto the rest of the spectrum of L.
Define δ = 1

2 min{|µ − En| : µ ∈ σ(L)}, and let E be such that 0 < E − En < δ.

Then, there exists a solution uE ∈ H1
rad to (1.2) with the same number of zero

crossings as ψ.
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Proof. We seek nontrivial radial solutions u to (1.2), where ‖u‖L2 is small, and
therefore we expect that u ∼ c0ψn and E − En ∼ 0 for c0 also small. For brevity,
we write ψ for ψn in what follows. In order to find u, we make the ansatz u = c0ψ+η
with Qη = η. Substituting into (1.2), we obtain

−∆(c0ψ + η) + V (r)(c0ψ + η)−
(

1

r
∗ |(c0ψ + η)|2

)
(c0ψ + η) = E(c0ψ + η).

Using the fact that −∆ψ + V (r)ψ = −Enψ and that

Q(−∆ + V (x) + E)ψ = Q(E − En)ψ = 0,

we obtain

c0(E − En)ψ − PN (c0ψ + η) = 0

(−∆ + V (x) + E)η −QN (c0ψ + η) = 0

where N (f) = ( 1
r ∗ |f |2)f . Note that ‖N (f)‖L2 ≤ k‖f‖3H2 for some k > 0, and

that N is a real analytic function in each argument. We will choose parameters
ν, ρ later and we require that |c0| < ν, ‖u‖H2 < ρ, and |E − En| < δ. Within this
open set, (L−En)−1Q is an analytic map from L2 to H2 with norm controlled by
δ, and hence it follows that

‖(L− En)−1QN (c0ψ + η)‖2H ≤ C(δ)‖c0ψ + η‖3H2 ,

and the map
F := (c0, En, η) 7→ (L− En)−1QN (c0ψ + η)

is real analytic. Note that F (0, En, 0) = 0 and DF (0, En, 0) = I. Hence, by the
implicit function theorem there exist ν and ρ so that on the open set described
above, there is an analytic solution η(c0, En) to η − (L− En)−1QN (c0ψ + η) = 0.
Note that

Q(L− En)−1QN (c0ψ + η) = Q(0) = 0,

so
Qη = (H − En)−1QN = η.

So η lies in the orthogonal projection away from ψ as desired.
Finally, by substituting back into the first equation, we obtain

c0(E − En)ψ − PN (c0ψη(c0, En)) = 0

with the condition |c0|2 + ‖η(c0, En)‖2L2 = ε for small fixed ε. Projecting onto ψ,
we have that

E − En − |c0|2a−
1

c0
〈ψ,N (c0ψ + η)−N (c0ψ)〉 = 0

where a = 〈ψ,N (ψ)〉. By the implicit function theorem again, we obtain that there
is a differentiable function f so that E = f(c0) in the allowed open interval. We
may conclude that the desired solution uE exists for E on this curve. Note that
E′(c0) > 0, so that E > En in this regime. �

It follows that there is a bifurcation branch from each eigenvalue of the linear
problem. As the spectral gap, measured by the number δ in the above result,
decreases, the range of E for which the theorem holds will be reduced.

We are also interested in the continuation of our branches away from the zero
mass limit, where we know they exist. In particular, we would like to know that
they continue as E → +∞, and that the branches do not intersect.
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First, consider the matter of large values of E. Define (ψj , Ej) to be the radial,
normalized Coulomb eigenpairs of the linear operator. From Theorem 1 we have
a j-th branch for E > Ej , branching from ψj at the zero mass limit. For each
branch, we follow [14], where smooth potentials are treated in dimension one, and
use the regularity of bound states with Coulomb potentials from [18]. Then, the
Euler-Lagrange equations can be seen as a map on H2 functions given by

(3.1) F (Z,E;u) = −∆u+ Eu+ V (|x|)u− (|x|−1 ∗ |u|2)u = 0.

Consequently, away from mass zero (or for values of E > Ej), we can apply the
implicit function theorem directly to F at (E, uE) to construct a C1 family of
solutions uE ∈ H2 space under the assumption that the linearization of the equation
about solution uE ,

L+ = −∆ + V (|x|) + E − (|x|−1 ∗ |uE |2)− 2(|x|−1 ∗ (uE•))uE ,
has no kernel. This is Assumption 1 from the introduction. See the work [17]
for a general treatment of this problem with V = 0, where it is proven in their
Proposition 2 that for the ground state Hartree soliton, the kernel of L+ is trivial
in the space of radial functions. We observe numerically below (see Figure 6) that
each of our branches can be continued. Using the same techniques as in Section 6,
we found, numerically, that the discretized L+ operator lacks a kernel.

Moreover, the branches cannot cross. Indeed, if two branches crossed, then there
would be a transition from a family of solutions with more zeroes to one of fewer
zeroes. As a result, if this were to occur at some point r ≥ 0 along the curve,
there would be a nonlinear bound state with both value and derivative being 0. By
ODE uniqueness theory, this would be a trivial solution.2 Thus, we conclude that
if we were unable to continue a given branch in E, it would not be due to branches
crossing.

We note that, by the arguments for the proof of Theorem 1 of [19], for each
E > E0, there are an infinite number of radial solutions with increasing energy. As
a result, we in the next Section analytically and numerically consider the behavior
of solutions as E →∞, so long as our spectral assumption is met and such branches
can be continued.

4. Limiting Behavior as E →∞
Following in the spirit of Section 4 of [14], in this section we consider the case

E →∞ provided the lowest energy solution branch can be uniquely continued. The
analytic results here will apply to large E behavior of the ground state branch, for
the generalized Coulomb-like equation

(4.1) −∆u+ Eu+ V (|x|)u− (|x|−1 ∗ |u|2)u = 0, ∆V = ρ,

∫
ρdx = Z,

but with appropriate modifications a similar approach will apply to

(4.2) −∆u+ Eu− Z

|x|u− (|x|−1 ∗ |u|2)u = 0.

2Note, there is a slight modification required at r = 0 if V = −Z/|x|. In such a case, we must
use instead of the normal radial condition ur(0) = 0, the fact that we have ur(0) = −Z/2u(0).
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For the excited states, we lack a rigorous result on the kernel of the linearized
operator in the large E limit. Conditional on this having trivial kernel, we can
apply the same argument as in the case of the ground state.

Without the external potential, the problem

(4.3) −∆φ+ Eφ− (|x|−1 ∗ |φ|2)φ = 0

is solved by the φE = Eφ1(
√
Ex) where

(4.4) −∆φ1 + φ1 − (|x|−1 ∗ |φ1|2)φ1 = 0.

Substituting the scaling u = Eũ(
√
Ex) into our problem, we obtain

(4.5) −∆ũ+ ũ+
1

E
V

(
x√
E

)
ũ− (|x|−1 ∗ |ũ|2)ũ = 0.

Note that in the pure Coulomb case we have V
(
x/
√
E
)
/E = −Z/(

√
E|x|), mean-

ing that away from zero, the potential is tending to zero, pointwise. We wish to
show that ũ is close to φ1 as E →∞ by using the fact that the rescaled, smoothed
Coulomb potential vanishes pointwise.

Making the ansatz ũ = φ1 + w,

L̃w = L+w +
1

E
V

(
x√
E

)
w

= − 1

E
V

(
x√
E

)
φ1 +N (φ1, w), N = O(w3),

(4.6)

where

(4.7) L+w = −∆w + w −
(∫ |φ1|2(y)

|x− y| dy
)
w − 2

(∫
φ1w

|x− y|dy
)
φ1.

By results found in [17, Proposition 2, Appendix A], there is a unique radial ground
state φ1, which is positive and exponentially decaying everywhere. Furthermore,
L+ is self-adjoint and non-degenerate with trivial kernel in the space of radial
functions.

For the class of bounded Coulomb potentials under consideration, since V ∈ L∞,

the multiplication operator w 7→ V ( x√
E

)

E w is compact on H1, with norm at most
‖V ‖L∞

E . We also have that V ∈ L2 + (L∞)ε, therefore, L̃ is a relatively compact
perturbation of the operator L+; see Example 6 on page 117 of [23].

We have that L̃ is invertible on H1 for sufficiently large E with an operator norm
that is a perturbation of that of L+. Since L̃−1 : H1 → H1 is bounded, we have
that ‖L̃−1N (φ1, w)‖H1 ≤ C(‖w‖2H1 + ‖w‖3H1), while∥∥∥L̃−1

(
1
EV

(
x√
E

)
φ1

)∥∥∥
H1
≤ C

E .

We therefore have that∥∥∥L̃−1
(
− 1
EV

(
x√
E

)
φ1 +N (φ1, w)

)∥∥∥
H1
≤ C(E−1 + ‖w‖2H1 + ‖w‖3H1).

At the same time,∥∥∥L̃−1 (N (φ1, w1)−N (φ1, w2))
∥∥∥
H1

≤ C(‖w1‖H1 + ‖w1‖2H1 + ‖w2‖H1 + ‖w2‖2H1)‖w1 − w2‖H1 .
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Now assume that w is small, for instance, O(E−1/2). Then, by a standard iteration
argument, a solution w will be found in BR(0) ⊂ H1, with R ∼ E−1/2 as E becomes
large. To conclude, we can construct solutions along our ground state branch such
that w → 0 as E →∞ and the profile of our solutions approaches φ1 for large E as
claimed. See Figure 1 for numerical exploration of this scaling limit, which confirm
the desired scaling as E becomes large.

As a side note, one could prove that solutions to (4.1) for a given E have an
L2 norm indicated by the scalings used above, then as in [14] for the 1d case with
smooth potential, concentration compactness tools could be used to give a simpler
proof of the convergence explored for the ground state branch. However, as the
nonlinearity has such nice algebraic properties, we have taken the approach of
using elliptic estimates directly.

100 101

E

10−3

10−2

10−1

100

101

102

M

Ground State
∝
√
E

100 101

E

101

M

First Excited State
∝
√
E

Figure 1. Plots of E vs. mass for large E for the first branch
(left) and a zoom in on for large E on the second branch (right).
Note, the slope approaches 1

2 on the log− log scale.

Remark. A dividend of this examinatino of the large E limit is that it provides
a strategy for computing excited state solutions for the 4.3. While, in practice,
one would not solve for E = ∞, one could solve Schrödinger-Poisson for large
values of E, to get, after rescaling, an approximation of the solution to the V = 0
problem. This preconditioned guess could then be fed to a Newton solver. See [21]
for a discussion on computing excited states along with an alternative strategy for
obtaining states with a given number of zero crossings.

5. Stability

In the context of [10], we consider the problem of orbital stability, restricted to
radial functions, of our solution. By orbital stability, we mean that for any ε > 0,
there exists a δ such that if ‖u0 − φ‖H1 ≤ δ, then for all t ≥ 0,

inf
θ

∥∥u(t)− eiθφ
∥∥ ≤ ε.

Orbital stability makes no claim as to any particular asymptotic behavior.
To proceed, recall that we can write the linearized evolution operator, in terms

of real and imaginary parts, as

(5.1) H = JL =

(
0 1
−1 0

)(
L+ 0
0 L−

)
=

(
0 L−
−L+ 0

)
,
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where

L− = −∆ + E + V (x)− (|x|−1|uE |2), and(5.2a)

L+ = −∆ + E + V (x)− (|x|−1 ∗ |uE |2)− 2(|x|−1 ∗ (uE•))uE .(5.2b)

Also, define the scalar function

(5.3) d(E) = H(uE) + EM(uE).

Recall then, the results of [10] (see, also, [8,9,16,27,28]), adapted to this problem.
Let p(d′′(E)) = 1 if d′′(E) > 0 and let p(d′′(E)) = 0 otherwise. Let n(L) =
n(L−) + n(L+) be the number of negative eigenvalues of the operators. Subject to
some assumptions on well-posedness of the flow, the existence of the bound states,
and the ability to decompose the spectrum of L, we have:

Theorem 2 (from [9]). Assume d′′(E) 6= 0, then

Stability: If n(L) = p(d′′), the bound state is orbitally stable,
Instability: If n(L)− p(d′′) is odd, then the soliton is orbitally unstable.

In some important cases, such as NLS with a power nonlinearity, these properties
can be deduced analytically; this is the content of some of the formative works
on soliton stability. For our problem, however, we must numerically compute the
bound state of energy E, compute d′′(E), and then count the number of eigenvalues
of the discretized operators L±.

These computational tasks, detailed below, are readily addressed. Briefly, we
find that the ground state soliton is orbitally stable, as is typical for subcritical
problems. For the excited states, we find that n(L)− p(d′′) is even in the cases we
compute; this case is not addressed by the above theory. We thus perform both
direct computation of the spectrum JL, as well as time dependent simulations of
the excited states with finite perturbations. For sufficienlty large E, the excited
states appear to be linearly unstable.

To simplify these computations, slightly, we recall from [8,28] that, for nonlinear
bound states in one parameter, an important identity can be obtained for d′′(E).
Observe that, in general,

d′(E) =

(
δH
δu

, ∂EuE

)
+M(uE) + E

(
δM
δu

, ∂EuE

)
.

Since the variations are evaluated at uE , and uE satisfies the PDE,

(5.4) d′(E) =M(φE).

Thus, d′′(E) > 0 if and only if M(uE) is a decreasing function in E. In our com-
putations, we find that, in all cases examined, d′′(E) > 0; M(uE) is an increasing
function of E.

6. Numerical Computation of Bound States and Stability

Our approach to computing the nonlinear bound states to (1.2) is to start with
a bound state with the desired number of zero crossings for the associated linear
problem

(6.1) −∆u+ V (|x|)u = −λu, ‖u‖L2 = 1.

We then perform numerical continuation to obtain the desired nonlinear bound
state. During the continuation, the number of zero crossings is invariant.
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While it is convenient to think of the linear bound state as the zero mass limit of
the nonlinear bound state, this is impractical for numerical continuation. Instead,
we augment (1.2) with the artificial continuation parameter, γ ∈ [0, 1], to become

(6.2) −∆u+ V (|x|)u− γN (u) = −Eu,

Then, along a sequence of γ values,

0 = γ0 < γ1 < . . . < γnγ−1 = 1,

(u(i), E(i)) pairs are computed, all with L2 norm of unity.
Once the value at γ = 1 is obtained, the mass constraint is relaxed, and E is

varied to determine, for instance, d′(E). At each value of E, the eigenvalues of
matrix discretizations of L± are computed.

For concreteness, V is the smooth radial function solving

(6.3) ∆V =
1

2
e−r, V (r) =

1

2
e−r − 1

r
(1− e−r).

6.1. Computation of the Linear States. To begin with, we compute the eigen-
values of (6.1) using its associated weak form and piecewise linear, radial finite
elements. A Neumann condition is applied at the origin, and a “big box” ho-
mogeneous Dirichlet approximation is made at rmax, assumed to be sufficiently
large. For λ > 0, the states will be exponentially localized, so this is a reasonable
approximation. However, since the point spectra tend to zero, the decay rates,
∝ r−1 exp(−

√
λr) will demand ever larger values of rmax in order to be well ap-

proximated. For this reason, we will only consider the first few eigenstates.
For a fixed rmax, the corresponding linear system is

(6.4) KDir.︸ ︷︷ ︸
Stiffness Matrix

+ VDir.︸ ︷︷ ︸
Potential Matrix

= −λ MDir.︸ ︷︷ ︸
Mass Matrix

.

Recall that since our basis is the set of hat functions, {ϕi}, on [0, rmax),

(KDir.)ij =

∫ rmax

0

ϕ′i(r)ϕ
′
j(r)r

2dr, (VDir.)ij =

∫ rmax

0

V (r)ϕi(r)ϕj(r)r
2dr,

(MDir.)ij =

∫ rmax

0

ϕi(r)ϕj(r)r
2dr.

VDir. is computed using numerical quadrature. The eigenstates are then computed,
as illustrated in Figure 2. Since the states are highly localized, we use a nonuniform
mesh, given by

(6.5) rj = sinh(ξj), ξj = jδξ, δξ =
arcsinh rmax

N
, j = 0, . . . , n.

This spaces the nodes linearly near the origin and exponentially further apart as j
increases.

6.2. Computation of the Nonlinear States. Given the solution to the linear
problem at γ = 0, we must now use a nonlinear solver to obtain the desired solution
at γ = 1. This is performed using the Python implementation of [24] to solve (6.2).
This software is available at https://pythonhosted.org/scikits.bvp_solver/.

https://pythonhosted.org/scikits.bvp_solver/
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Figure 2. The ground state and the first few excited states of the
associated linear problem, (6.1), with V (r) given by (6.3). Com-
puted using (6.4) on the mesh given by (6.5) with n = 4000 and
rmax = 100.

6.2.1. First Order System. To use this software package, we must first reformulate
our problem as a first order system, with associated boundary conditions. We first
remove the nonlocality, by writing our problem as a system of constrained second
order equations:

Eu− u′′ − 2

r
u′ + V (r)u− wu = 0,(6.6a)

−w′′ − 2

r
w′ = |u|2,(6.6b) ∫ ∞

0

|u|2r2dr = 1(6.6c)

This is then transformed into the aforementioned first order system, with v = u′,
z = w′, and m(r) being the accumulated mass in [0, r].

(6.7)
d

dr


u
v
w
z
m

 =
1

r


0 0 0 0 0
0 −2 0 0 0
0 0 0 0 0
0 0 0 −2 0
0 0 0 0 0



u
v
w
z
m

+


v

V (r)u− γwu+ Eu
z
−|u|2
u2r2


In the above expressions, we will use V (r) as given by (6.3).

6.2.2. Boundary Conditions. It is now necessary to specify boundary conditions
for (6.7). First, we have the natural boundary conditions that u and w be radially
symmetric functions. Furthermore, the mass density, m(r), must be zero at the
origin. This yields the following three boundary conditions:

(6.8) u′(0) = v(0) = 0, w′(0) = z(0) = 0, m(0) = 0.

Next, since the computation is performed on a large, but finite, domain, suitable
approximate boundary must be imposed at r = rmax. First, we observe that, since
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Figure 3. Some of the solutions computed during continuation of
γ from zero to one in (6.2). In all computed cases, the number of
zero crossings was invariant during the continuation.

u is localized, we can enforce the fixed mass condition by approximating

(6.9) m(rmax) =

∫ rmax

0

|u|2r2dr = 1.

Next, we first write the equation for w as

(w′r2)′ = −r2|u|2 ⇒ w′(r) = −m(r)

r2
.

Since, for large r, m(r) is approximately constant, we have

w(r) ≈ m(rmax)

r
.

This gives rise to our next approximate boundary condition,

(6.10) z(rmax) +
1

rmax
w(rmax) = 0.

Finally, at large r,

(6.11) 0 ≈ Eu− u′′ − 2

r
u′ + V u− wu ≈ Eu− u′′ − 2

r
u′ − 1

r
u− m(rmax)

r
u

and we arrive at the approximate Robin condition

(6.12) v(rmax) +

(
1

rmax
+
√
E − 1 +m(rmax)

2rmax

√
E

)
u(rmax) = 0

The reader may ask, why, in (6.10) and (6.12), we have not replaced m(rmax)
by one, as in (6.9). The reason is that, in the first stage of our computation, we
will solve for E, as an unknown, at fixed L2-mass. Subsequently, we will allow E
to be a specified parameter, and L2 will be an unknown. When E is specified, we
discard (6.9), but continue to use (6.10) and (6.12), with m(rmax) an unknown that
is solved for.



14 J.L. MARZUOLA, S.G. RAYNOR, AND G. SIMPSON

0 20 40 60 80 100
r

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
E0 = 0.3817

E1 = 0.1176

E2 = 0.0562

E3 = 0.0329

Figure 4. Profiles for the ground state and several excited states
at γ = 1. All have mass one.

6.2.3. Fixed Mass Profiles. For mass fixed at one, our continuation strategy pro-
duces the sequence of solutions indicated in Figure 3 for the ground state and an
excited state with four zero crossings. Note that if uγ solves (6.2), with mass one,
then Uγ =

√
γuγ solves

−∆Uγ + V Uγ −N (Uγ) = −EUγ , M[Uγ ] = γ.

Thus, this figure can also be interpreted as the branching of E off of the linear
eigenvalues from the linear zero amplitude solutions. Several profiles at γ = 1 are
shown in Figure 4.

6.2.4. Variable E Profiles. Starting from the mass one profiles, we vary E about
the value computed above, and compute a collection of profiles for each of the
nonlinear bound states. We plot the mass as a function of E in Figure 5. Recall
from the slope condition, (5.4), that since these appear to be strictly increasing in
all cases, p(d′′) = 1 in all of the cases we have computed. We speculate that this is
true for all cases of this problem. The maximum value of E at which we computed
is, for each branch, twice the value of E corresponding to the mass one problem.
Each branch terminates at the corresponding eigenvalue of the associated linear
problem.

6.2.5. Remarks. In our experience, this approach was highly robust. The continu-
ation strategy from the linear problem to the nonlinear problem required a modest
number of intermediate values of γ; δγ = 0.05 was used in the above calculations.
A slight difficulty occurs when considering states which branch from linear states
with eigenvalues close to the origin. As mentioned earlier, while these will decay
exponentially, the successively slower decay will require larger and larger domains.

6.3. Stability Calculations. To proceed with an analysis of the stability, we first
need to discretize the operators, L±, and then compute their eigenvalues.
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Figure 5. Mass as a function of E for several branches of the
problem. In all cases, the curves appear to be monotonically in-
creasing.

6.3.1. Discretization of the Operators. To compute the spectrum of L±, we continue
to work within the FEM context. The one subtlety to this is how to represent the
nonlocal linear operator, (|x|−1 ∗ (u•))u, in the weak form. Let T denote this
operator. We approximate it as follows. First note that the Galerkin weak form is

(6.13) 〈Tϕi, ϕj〉 = 〈u (|x|−1 ∗ (uϕi))︸ ︷︷ ︸
≡ψ(i)

, ϕj〉.

Observe that ψ(i) solves

(6.14) −∆ψ(i) = uϕi, ∂rψ
(i)(0) = 0, lim

r→∞
ψ(i)(r) = 0.

An artificial boundary condition is now needed to numerically solve this on our
computational domain. First, we observe that since ϕi have finite support and u
is highly localized, at large values of r, −ϕ(i) ≈ 0. Thus, we introduce the Robin
condition at rmax:

(6.15) ∂rψ
(i)(rmax) + 1

rmax
ψ(i)(rmax) = 0.

The ψ(i) are then approximated in the space span(ϕ0, . . . , ϕn) by solving

(6.16) KRobψ
(i) = UMatei,

for i = 1, . . . , n. The matrix UMat is given by

(6.17) (UMat)ij =

∫
uϕiϕj .

Note that KRob is an n + 1 × n + 1 matrix and ψ(i) ∈ Rn+1. Here, we take UMat

to be n+ 1× n+ 1, with i, j = 0, . . . , n. Taking ei ∈ Rn,

(6.18) ψ(i) = K−1
RobUMatI

n+1,nei,
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where In+1,n is an n + 1 × n matrix with ones along the main diagonal and zeros
elsewhere. Thus,

〈Tϕi, ϕj〉 = 〈uψ(i)ϕj〉 ≈
n∑
k=0

〈uϕk, ϕj〉 (K−1
RobUMatI

n+1,nei)k

= (UMatK
−1
RobUMatI

n+1,nei)j

(6.19)

Mapping back into the set of elements vanishing at rmax, the weak form of T
corresponds to the matrix

(6.20) TMat = In,n+1UMatK
−1
RobUMatI

n+1,n

Thus, the Galerkin FEM forms of the eigenvalue problems for L± are

L− : (KDir + EMDir + UMat)v = −µMDirv,(6.21a)

L+ : (KDir + EMDir + UMat − 2TMat)v = −µMDirv.(6.21b)

While it is intimidating to contend with the nonlocal operator, which, in discretized
form, induces a dense matrix, we found that this was readily handled by SciPy, [13].

6.3.2. Eigenvalues of L±. In Figure 6, we plot the numerically computed negative
spectrum for the linearized operators. We note here that as described above for the
full problem, the continuous spectrum for our linearized operators starts at E > 0
and that infinitely many positive eigenvalues of the operators exist in between 0
and E due to the slow decay of the external potential. We note that under the
assumptions that L+ is invertible along the branch and using the nodal count for
L− from the linear solutions, one can show that the number of negative eigenvalues
for L+ and L− does not change from that in the case of the linear problem, which
is once again verified here numerically. We also see that the topological structure
of the modes increases in a very similar fashion to that of the model Hydrogen
atom problem. In the computed cases, for E in excess of the zero mass limit, L+

of uj has j + 1 negative eigenvalues, while L− has j eigenvalues. Thus, we always
obtained 2j+1 negative eigenvalues. This implies that the ground state is orbitally
stable, since n(L) = p(d′′) = 1. However, it is inconclusive for the excited states,
since the difference between n(L) and p(d′′) = 1 is always a nonzero even number.
These were computed using the mesh (6.5), with rmax = 100 and n = 2000.

Remark. Our key assumption is that the kernel of L+ remains trivial along the
branches we have constructed. This held in our numerical computations.

Since this is inconclusive, we instead discretize JL directly, and examine its
spectrum. For the first few states, this is plotted in Figure 7 for E = 1 solutions.
While the ground state has no linearly unstable states, each of the excited states has
some number of linearly unstable modes, through the appearance of the quartets
of point spectra. These were computed using the mesh (6.5), with rmax = 100 and
n = 8000. While we were able to use the automatically obtained mesh for computing
the spectrum of just L±, this resulted in spurious purely real eigenvalues which
converged to the origin under mesh refinement. Indeed, in the case of the third
branch, while not entirely visible, there is a pair of real eigenvalues with magnitude
O(10−4). We believe these will tend to zero under further mesh refinement, which
we were unable to do.
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Figure 6. Numerically computed negative spectrum of L± for
the ground state and the first three excited states. Notice the
crossings of the spectral lines in amongst the excited states. These
were computed on (6.5) with rmax = 100 and n = 2000.

6.3.3. Time-Dependent Simulations. To assess the stability of the nonlinear bound
states, we resort to direct numerical simulation of

(6.22) i∂tφ = −∆φ+ V (|x|)φ− (−∆)−1(|φ|2)φ

using perturbations of the solutions we computed in the previous section as initial
conditions. Indeed, our data is of the form

(6.23) φ0 = uj(r) + ε exp
{
−4(r − 10)2

}
with ε = 10−4 and uj the E = 1 solution of the j-th branch. We focus on the E = 1
solutions, as these are highly localized, decaying ∝ e−r. Our results, pictured in
Figure 8 show that while the ground state appears to be stable, the first excited
state is unstable; this is consistent with our spectral computations. Throughout,
we restrict to the radially symmetric problem, and solve the initial boundary value
problem associated with (6.22) on (0, rmax), with boundary conditions

(6.24) ∂rφ(0, t) = 0, φ(rmax, t) = 0.

We made use of the mesh (6.5).
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Figure 7. Numerically computed spectrum for JL for the ground
state and the first three excited states. Note the appearance of the
quartets for the excited states implying linear instability. These
were computed on (6.5) with rmax = 100 and n = 8000.
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first excited state solutions with E = 1, with perturbed initial
condition (6.23).
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Our algorithm is based on the Strang splitting method in [20]. We solve (6.22)
through three successive problems. Given the solution at tn, φ(n),

φ′ = exp
{
i∆t
2 (−∆)−1|φ(n)|2

}
φ(n)(6.25)

φ′′ =
[
I + i∆t

2 (−∆ + V )
]−1 [

I − i∆t
2 (−∆ + V )

]
φ′(6.26)

φ(n+1) = exp
{
i∆t
2 (−∆)−1|φ′′|2

}
φ′′(6.27)

Problem (6.25) is accomplished by first solving

(6.28) −∆w = |φ(n)|2, w′(0) = 0, lim
r→∞

w(r) = 0

on (0, rmax) with radial piecewise linear finite elements and the Robin condition

w′(rmax) + 1
rmax

w(rmax) = 0.

The FEM solution can be represented as

w = In,n+1K−1
RobMIn+1,|φ(n)|2,

since KRob is an n+ 1×n+ 1 matrix, due to the Robin condition, but our solution
must satisfy the Dirichlet condition at rmax. As before, M is the mass matrix, and
KRob is the stiffness matrix with Robin conditions. The nonlinearity is interpreted
as an element-wise operation at the nodes. Once we have computed w, we have

φ′ = exp
{
i∆t
2 w

}
φ(n),

where, again, the operation is element-wise on the nodes. Then, (6.26) is obtained
from

(6.29) φ′′ =
[
M + i∆t

2 KDir + UMat

]−1 [
M − i∆t

2 KDir + UMat

]
φ′.

Finally (6.27) is computed in the same way as (6.25). This method is efficient,
as only sparse linear algebra operations are required, and accurate. The results
shown in Figure 8 were obtained on the nonuniform mesh (6.5) with rmax = 4000,
∆t = 0.00125 and n = 64000. They were stable to mesh refinement and other
diagnostics.

To assess the accuracy of our simulations, we first examined the conservation of
the invariants, numerically approximated by

M(φ) = φTMφ,(6.30)

H(φ) = φT (KDir + UMat)φ− 1
2 (M |φ|2)TK−1

Rob(M |φ|2).(6.31)

The results for the simulations corresponding to Figure 8 are shown in Figure
9. While the conservation of the ground state is excellent, there is a somewhat
larger discrepancy with the first excited state, although the relative error over the
lifetime of the simulation is still O(10−6). To verify that there was no error, we
performed convergence testing, shown in Figure 10, indicating that the algorithm
is converging under mesh refinement, and further accuracy could be gained with a
reduction in ∆t.

The only other comment we make on our methodology is that rmax must be
sufficiently large to allow for the homogeneous Dirichlet condition at rmax in (6.24).
While we used rmax = 100 to compute the nonlinear bound states, for the time-
dependent problems we took rmax = 2000 and rmax = 4000. We thus matched the
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Figure 9. Conservation of the numerical invariants under dur-
ing the simulations. These are representative of our results and
correspond to Figure 8.
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Figure 10. Convergence of the invariants for the time dependent
simulations of the perturbed first excited state.

computed u on [0, 100] to the far field asymptotics,

(6.32) u ∼ Ke−
√
Err
−1+

1+m(100)

2
√
E ,

to generate an initial condition.
In the time dependent simulations, the solution was typically smaller than O(10−8)

at the boundary throughout the simulation when rmax = 2000 and smaller than
O(10−15) when rmax = 4000. This, together with other convergence testing in time
step, domain size, and mesh spacing leads us to believe that the stability and in-
stability results we have observed are genuine and not numerical. They are also
consistent with simulations appearing in [12], where the authors examined (1.1) in
the setting V = 0. There, they found the ground state to be stable and the first
excited state to be unstable, agreeing with our simulations at E = 1.
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Figure 11. Numerically computed spectrum for JL for the first
excited state over a range of E values, from the mass zero bi-
furcation value up to 0.15. Note the secondary bifurcation near
E = 0.13, where unstable eigenvalues appear. These correspond
to quartets. when plotted in the complex plane. Computed on
(6.5) with rmax = 100 and n = 2000.

6.4. Transitions to Instability. While for E = 1, the JL spectral computa-
tions and time dependent simulations reveal linear instabilities of the excited state
branches, the stability question for general E remains unresolved. As Figure 11
shows, there may be some stable excited state solutions. In the figure, we have
plotted the maximum of the real part of the JL spectrum for a series of branch 1
excited states. These were computed using the nonuniform mesh with rmax = 100
and n = 2000. Examining the figure, there appears to be a secondary bifurcation
near E = 0.13, where a linearly unstable eigenvalue first appears. Beneath that
value, no such linear instability is present. With regard to bounds on unstable
eigenvalues, we calculate in Appendix A that

(6.33) sup |Reσ(JL)| ≤ C‖uE‖2L2

√
1

3
E +

1

3
‖V ‖L∞ +

2

3
‖x∇V ‖L∞ ,

ensuring that unstable eigenvalues must vanish in the zero mass limit.

7. Discussion

We have analytically and numerically explored radial nonlinear bound state solu-
tions of the Schrödinger-Poisson equation with an attractive Coulomb like potential.
These states were shown to branch off of the discrete modes of the associated lin-
ear problem. Subject to a spectral assumption, these can be continued to have
arbitrarily large mass and large E parameter.

Our numerical methods for computing the solutions, first computing the linear
modes, and then performing continuation in an artificial parameter, was robust.
Subsequent time dependent simulations, using a FEM discretization and a splitting
scheme, also proved themselves to be robust, showing excellent conservation of the
invariants.

While our work implies the stability of the ground state at all values of E, we
are unable to make any broad conclusions about the excited states. Our spectral
and time dependent computations for the E = 1 solutions imply they are linearly
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unstable. At the same time, in our examination of the JL spectrum near the zero
mass limit for branch 1, we see a subsequent bifurcation with the emergence of
linearly unstable modes. Further investigation is necessary to explore the other
states, and a spectral approach, such as the one used in [12] for V = 0, may be
of use. We also note the recent work [7], in which it is shown that the spectrally
stable excited states can still be nonlinearly unstable through radiation damping
and the Fermi Golden Rule, which require dispersive decay that is not understood
for long range, Coulomb-style potentials.

In most applications, excited states can be both linearly unstable, as observed
here for large enough E, as well as orbitally unstable due to radiation damping.
For long range potentials of the case studied here, it is unknown how to quantify
radiation effects. See, for instance, the work [26] for a discussion of resonant inter-
actions and [14,15,22] in the setting of bifurcation theory for the excited state of a
localized double well potential.

The promise of stable excited states in our setting is relevant given the observa-
tions in [3], that excess energy contained in a dwarf spheroidal galaxy corresponds
to larger essential support of the dark matter field. By essential support here, we
mean the volume of space on which the solution has non-trivial mass. This is con-
tradictory to the nature of scaling of the ground state, which contracts its effective
support as mass is increased in our model. Our numerics imply that for sufficiently
large E, excited state branches are unstable. More refined numerical analysis and
theory is required to determine if the conjecture of [3] about stability of excited
state branches holds neared the bifurcation points. This merits future analytical
and computational study.

Appendix A. Bounds on Unstable Eigenvalues

To bound the positive real part of the eigenvalues of JL, we follow the results
from [25] and [12, Appendix A]. First, we express the eigenvlaue problem as

L−v = λu,(A.1)

L+u = −λv,(A.2)

with

(A.3) L+ = L− − 2|x|−1 ∗ (uE•)uE .
Therefore

(A.4)

∫
ūL−v −

∫
vL+ū =

∫
λ|u|2 +

∫
λ̄ ¯|v|2

Writing λ = σ + iτ , and using the self adjointness of L−,

(A.5) σ(‖u‖2L2 + ‖v‖2L2) + iτ(‖u‖2L2 − ‖v‖2L2) =

∫
2|x|−1(uE ū)uEv

Therefore, taking real parts and then absolute values,

|σ|(‖u‖2L2 + ‖v‖2L2) = 2

∣∣∣∣Re

∫
|x|−1(uE ū)uEv

∣∣∣∣
≤ 2

∣∣∣∣∫ |x|−1(uE ū)uEv

∣∣∣∣(A.6)
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By Hardy-Littlewood-Sobolev,

(A.7)

∣∣∣∣∫ |x|−1(uE ū)uEv

∣∣∣∣ ≤ CHLS‖uEu‖L6/5‖uEv‖L6/5

By Hölder,

(A.8) ‖uEu‖L6/5 ≤ ‖uE‖L3‖u‖L2

Therefore,
(A.9)
|σ|(‖u‖2L2 + ‖v‖2L2) ≤ 2CHLS‖uE‖2L3‖u‖L2‖v‖L2 ≤ CHLS‖uE‖2L3(‖u‖2L2 + ‖v‖2L2)

Which gives our first bound:

(A.10) |σ| ≤ CHLS‖uE‖2L3

We would like to have that as E tends to the bifurcation value, ‖uE‖L3 tends to
zero. By Hölder again, and Gagliardo-Nirenberg,

(A.11) ‖uE‖L3 ≤
√
‖uE‖L6‖uE‖L2 ≤

√
CGN‖∇uE‖L2‖uE‖L2

Therefore,

(A.12) |σ| ≤ CHLSCGN‖∇uE‖L2‖uE‖L2

A bit more refinement can be done. To get further control in terms of L2 norm
alone, one can modify the energy-momentum tensor tensor techniques as applied
in [25] and [12, Appendix A], to prove

(A.13)

∫
|∇uE |2dx =

1

3
E

∫
|uE |2dx−

1

3

∫
V |uE |2 +

2

3

∫
x · ∇V |uE |2dx.

As a result, we have

(A.14) |σ| ≤ CHLSCGN‖uE‖2L2

√
1

3
E +

1

3
‖V ‖L∞ +

2

3
‖x∇V ‖L∞

Thus we obtain a bound entirely in terms of E and ‖uE‖L2 .
To prove estimate (A.13), recall the energy-momentum tensor as applied in [25],

Tij = ∂iuE∂j(ūE) + ∂juE∂i(ūE) + ∂i(|x|−1 ∗ |uE |2)∂j(|x|−1 ∗ |uE |2)

− δij
(

3∑
k=1

(∂kuE∂k(ūE) +
1

2
∂k(|x|−1 ∗ |uE |2)∂k(|x|−1 ∗ |uE |2))

+

∫
V |uE |2dx− (|x|−1 ∗ |uE |2)|uE |2 + E|uE |2

)
.

This is identical up to the stress-energy tensor from [12, Appendix A] modulo terms
with V . We claim that for i = 1, 2, 3,

Tij,j =

3∑
j=1

∂j(Tij) = −(∂iV ).|uE |2

To see this, observe that

1

2
∂1(|∂1uE |2 − |∂2uE |2 − |∂3uE |2) + ∂2(∂1uE∂2ūE) + ∂3(∂1uE∂3ūE)

= (∆ūE)∂1uE .
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For convenience, let us set φ = (x−1 ∗ |uE |2), the we have

T1j,j = (∆ūE)∂1uE + (∆uE)∂1ūE + (∂1φ)∆φ− ∂1(V |uE |2 − φ|uE |2 + E|uE |2)

= (V ūE − φūE + EūE)∂1uE + (V uE − φuE + EuE)∂1ūE − (∂1φ)|uE |2

− ∂1(V |uE |2 − φ|uE |2 + E|uE |2)

= −(∂1V )|uE |2,
where we have used that −∆φ = |uE |2. A similar calculation for i = 2, 3. Then,

3∑
i=1

3∑
j=1

∂i(Tijxj) =

3∑
i=1

Tii − (x · ∇V )|uE |2.

This implies ∫ 3∑
i=1

Tiidx−
∫

(x · ∇V )|uE |2dx = 0,

and hence

0 =

∫ (
− |∇uE |2 −

1

2
|∇φ|2 + 3φ|uE |2 − 3V |uE |2

− 3E|uE |2 − x · ∇V |uE |2
)
dx.

Recognizing that ∫
|∇φ|2dx = −

∫
∆φφ = −

∫
φ|uE |2dx

and using that

−E
∫
|uE |2dx =

∫
|∇uE |2dx+

∫
V |uE |2dx−

∫
φ|uE |2dx,

we arrive at (A.13).
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