Curve name | $X_{102o}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{102}$ | |||||||||
Curves that $X_{102o}$ minimally covers | ||||||||||
Curves that minimally cover $X_{102o}$ | ||||||||||
Curves that minimally cover $X_{102o}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{8} + 432t^{6} - 864t^{5} + 1728t^{3} - 2592t^{2} + 1728t - 432\] \[B(t) = -54t^{12} + 1296t^{10} - 2592t^{9} - 5184t^{8} + 25920t^{7} - 42336t^{6} + 46656t^{5} - 58320t^{4} + 69120t^{3} - 51840t^{2} + 20736t - 3456\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + x^2 - 980x - 15325$, with conductor $210$ | |||||||||
Generic density of odd order reductions | $47/672$ |