Curve name | $X_{119f}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{119}$ | ||||||||||||
Curves that $X_{119f}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{119f}$ | |||||||||||||
Curves that minimally cover $X_{119f}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{12} - 864t^{10} - 10800t^{8} - 65664t^{6} - 193968t^{4} - 228096t^{2} - 27648\] \[B(t) = -54t^{18} - 2592t^{16} - 53136t^{14} - 604800t^{12} - 4153680t^{10} - 17459712t^{8} - 43182720t^{6} - 55655424t^{4} - 25878528t^{2} + 1769472\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 115212x - 15052016$, with conductor $2880$ | ||||||||||||
Generic density of odd order reductions | $41/336$ |